留数定理在定积分中的应用

留数定理在定积分中的应用
留数定理在定积分中的应用

留数定理在定积分中的应用

1. 留数定义及留数定理

1.1 留数的定义

设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

()()1

:,02f z dz z a R i ρρπΓ

Γ?=<

s f z =.

1.2 留数定理

介绍留数定理之前,我们先来介绍复周线的柯西积分定理:

设D 是由复周线012C C C C --=+++…n C -所围成的有界连通区域,函数()f z 在D 内解析,在_

D D C =+上连续,则()0C

f z dz =?.

定理1 []1

(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …

,n a 外解析,在闭域_

D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分)

()()1

2Re k

n

z a k C

f z dz i s f z π===∑?. (1)

证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得

()()1k

n

k C

f z dz f z dz =Γ=∑??,

由留数的定义,有

()()2Re k

k

z a f z dz i s f z π=Γ=?.

特别地,由定义得 ()2Re k

k

z a f z dz i s π=Γ=?,

代入(1)式得 ()()1

2Re k

n

z a k C

f z dz i s f z π===∑?.

2.留数定理在定积分中的应用

利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.

2.1 形如

()20

cos ,sin f x x dx π

?型的积分

这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =,

21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z

-++== 得

()222

10

11cos ,sin ,22z z z dz

f x x dx f z iz iz

π

=??--= ????

?

()1

2Re k n

z z k i s f z π===∑.

例1 计算20

53cos d I π

θ

θ

=

+?

解 令i z e θ=,则

()2210

2

53cos 3103z d I dz i z z π

θ

θ

==

=

+++?

?

()()121

313z dz i

z z ==

++?

()()13

21

2Re 3

13z i s i z z π=-??=

???++??

32π=

. 例2

计算()

22

2dx

I x

π

=

+

?

解 ()

22

210

2

1222z dx

dz

I iz x

z z π

==

=

??

+

+ ? ? ?

??

?

? ()

2

1

2

443z z

dz i

z z ==

+

?

1244

31

3

z zdz

i

z z ==

++?, 由于分母有两个根12z z ==121,1z z <>, 因此 I =

14

2Re 43z z i s i

ππ=?=.

2.2 形如

()f x dx +∞

-∞

?型的积分

把握此类积分要注意,首先分析其函数特点,函数必须满足一下两条才能适用。第一:()()

()

P z f z Q z =

,其中()P z ,()Q z 均为关于z 的多项式,且分母()Q z 的次数至少比分子()P z 的次数高两次;第二:()f z 在半平面上的极点为k z (k =1,2,3,…,

n ),在实轴上的极点为k x (k =1,2,3,…,n )则有

()()12Re k

n z z k f x dx i s f z π+∞

==-∞

??

=????

∑?

例3 计算2

42

1x I dx x x +∞

-∞

=++?. 解 取()()()

22

4222111z z f z z z z

z z z ==

+

+-+++,

孤立点为12341111,,,2222z z z z =

+=-=-=--,其中落在上半平面的为1z ,3z ,故

(

)2

1

2Re k z z k I i s f z π====

∑。

例4 计算()

()2

2

2

20x I dx a x

a

+∞

-∞

=

>+?

解 由于()

2

2

2

2lim 0z z z z

a

→∞

?

=+,且上半平面只有一个极点i a ,因此

()

2

2

2

2x I x

a

+∞

-∞

=

+?

()

2

2

2

22Re z ai

z i s

z

a

π==?+

()'

222z ai

z i z ai π=??

=???

+????

2a

π

=

. 2.3 形如

()()imx

P x e dx Q x +∞

-∞

?型的积分 2.3.1留数公式

定理2

[]

1(若尔当引理)设函数()g z 沿半径圆周:Re i R z θΓ=(0θπ≤<)上连

续,且()lim 0R g z →+∞

=在R Γ上一致成立,则()()lim

00R

imz R g z e dz m Γ→+∞=>?

证明 ()00,0R εε?>?>,使当0R R >时,有 (),R g z z ε<∈Γ

于是

()()Re sin 0

Re

Re i R

imz

i im i mR g z e dz g e

d R

e d θ

π

π

θ

θ

θθεθ-Γ=

≤?

?? (2)

这里利用了 ()Re ,Re i i g i R θθε<= 以及Re sin cos sin i im mR imR mR e e e θ

θθθ-+-==

于是由若尔当不等式

2sin θ

θθπ

≤≤(02

π

θ≤≤

)将(2)化为

()sin 0

2R

imz

mR g z e dz R e d π

θεθ-Γ≤?

?

()2

20

212mR mR

e R e mR m m π

θθπ

θπεπεεπ=

--=????=-

=-

?

??? 即 ()lim

0R

imz R g z e dz Γ→+∞=?

2.3.2举例

例5 计算2210ix

xe I dx x x +∞

-∞

=-+?.

解 不难验证,函数()2210

iz

ze f z z z =-+满足若尔当引理条件.

这里1m =,()2210

z

g z z z =

-+,函数有两个一阶极点13z i =+及13z i =-,

()()

()3'132

1313Re 6210i iz

z i

z i

i e ze s f z i

z

z -+=+=++=

=

-+

于是 2210ix

xe I dx x x +∞

-∞

=-+?

()31326i i e i

i

π-++=

()()33cos13sin13cos1sin13

3

e i

e π

π

--=

-++.

2.4 形如()()cos P x mxdx Q x +∞

-∞?和()

()sin P x mxdx Q x +∞

-∞

?型积分

定理3

[]

1 设()()

()

P x g z Q x =

,其中()P x 和()Q x 是互质多项式,并且符合条件: (1)()Q x 的次数比()P x 的次数高;

(2)在实轴上()0Q x ≠;

(3)0m >.

则有

()()2Re k

k

imx imz

z a ima g x e dx i s g z e π+∞

=-∞

??=??∑?

(3)

特别地,将(3)式分开实虚部,就可用得到形如

()()cos P x mxdx Q x +∞

-∞?及()

()sin P x mxdx Q x +∞

-∞?的积分.

例6 计算()()

22

cos 19x

I dx x x +∞

-∞=

++?. 解 利用

()()

()2

2

1

019z z

z →→∞++以及若尔当引理,且分母在上半圆只有两个

孤立奇点z i =和3z i =,得到

()()

22

cos 19x

I x x +∞

-∞=

++? ()()()()22223Re 2Re Re 1919iz iz

z i z i e e i s s

z z z z π==?? ?=+ ?++++??

()()()()''22

223Re 21919iz iz z i z i e e i z z z z π==?

?

?=+ ? ?++++??

13Re 21648e e i i i π--??

=+ ?-??

()2

3

3124e

e

π

=

-.

例7 计算44

sin x mx

I dx x a

+∞

=

+?

(0,0m a >>). 解 被积函数为偶函数,所以

440

sin x mx I dx x a +∞

=

+?

4444

1sin 122imx

x mx xe dx im dx x a x a

+∞+∞

-∞-∞==++??,

设函数关系式为()44

imz

ze f z z a =+,它共有四个一阶极点,即

24

k i

k a ae

ππ

+=(0,1,2,3k =)

得 ()4

4

Re k k

imz

z a z a ze s f z z a ===+(0,1,2,3k =),

因为0a >,所以()f z 在上半面只有两个一阶极点0a 及1a ,于是

444

402Re k m k imx imz

z a z a xe ze dx i s x a z a π+∞

=>-∞

=++∑?

2

i

e a

π=

, 故 44

sin x mx

I dx x a

+∞

=

+?

442122imx xe i im dx e

x a a

π+∞

-∞==+? 3.小结

上面举例说明了常见的几种可以用留数定理计算的定积分类型,计算比较简捷,通过上面几例,可以看出实积分中是定积分计算与利用留数定理计算之间既有区别,也有联系.解题时应视具体情况而定,有使用实积分理论计算很困难甚至无法计算时,利用留数定理能收到很好的效果.

参考文献

[1]钟玉泉.复变函数论[M]高等教育出版社,2004.

[2]盖云英.复变函数与积分变换指导[M]科学出版社,2004.

[3]王玉玉.复变函数论全程导学及习题全解[M]中国时代经济出版社,2008. [4]王瑞苹.论留数与定积分的关系[J]菏泽学院学报,2005.

[5]余家荣. 复变函数论[M]高等教育出版社,2004.

[6]李红,谢松发.复变函数与积分变换[M]华中科技大学,2003.

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

使用留数定理计算实积分

用留数定理计算实积分 一:教学容(包括基本容、重点、难点): 基本容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 , 仅以 为一级极点, 在 上无奇点,故由留数定理

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分0 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系 起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+?? ? ; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ? 就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是证 明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞) ;复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少 高于()x ?两次. 图1

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

论文留数定理及其应用

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。 柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论

及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1. 引言············································· 2. 留数············································· 2.1 留数的定义及留数定理························ 2.2 留数的求法·································· 2.3 函数在无穷远处的留数························ 3. 用留数定理计算实积分 3.1 计算形如∫f (cos x ,sin x )dx 2π 0的积分············ 3.2 计算形如∫f (x )+∞ ?∞dx 的积分···················· 3.3 计算形如∫P (x ) Q (X )+∞?∞e imx dx 的积分················ 3.4 计算形如∫P (x )Q (x ) +∞?∞ cos mxdx 和∫P (x ) Q (x ) +∞?∞sin mxdx 的积分 3.5 计算积分路径上有奇点的积分···················· 参考文献 1. 引言

留数在物理学中的应用

留数在物理学中的应用 摘要:留数定理是复变函数理论的一个重要定理,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等都有密切的联系. 应用留数定理可以求解某些较难的积分运算问题, 所以它可以起到采用不同方法,相互检验所得结果的作用.具体的物理问题中遇到的一些积分在数学分析中没有对应的原函数,留数定理往往是求解这些积分的有效工具。本文介绍留数概念,留数定理,对留数定理进行一定的拓展,以及留数理论在电磁学中安培环路定理、高斯定理公式推导,以及在阻尼振动、热传导、光的衍射等问题中积分计算上的的一些应用,大大简化了计算过程。 关键词:留数定理、安培环路定理、高斯定理、阻尼振动、热传导

目录 第一章 留数..........................................3 1.1 引言 1.2 留数的定义 1.3 留数定理 1.4 留数定理的计算规则 1.5 留数定理的拓展 第二章 留数定理在电磁学中的应用.........................6 2.1 安培定理及其与留数定理的区别 2.2 应用留数定理对安培环路定理的推导 2.3 留数定理在静电学中的应用 2.4 留数在电磁学中一类积分中的应用 第三章 留数定理在物理学其他领域的应用.......................15 3.1 留数在有阻尼的振动的狄利克雷型积分dx x x ? ∞ sin 中的 3.2 留数定理在研究光的衍射时需要计算的菲涅尔积分 dx dx x x ?? ∞ ∞ 2 2 cos ,sin 中的应用 3.3 留数定理在用傅里叶变化法求解热传导问题的偏微分方程时将遇到的? ∞->0 ),0(cos 2 为任意实数b a bxdx x e a 积分中的应用 第四章 结语 (18) 参考文献 (19)

留数定理及其在积分中的运用

江西师范大学数学与信息科学学院 学士学位论文 留数定理及其在积分中的运用 (Residue theorem and the use in the Calculus) 姓名:刘燕 学号: 0507010122 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:易才凤(教授) 完成时间:2009年*月*日

留数定理及其在积分中的应用 【摘要】本文首先在预备知识中介绍了复函数积分,并介绍了留数的计算 方法等。在此基础上,我们叙述并证明了本文的主要内容--留数定理,并得到留数定理的推广。然后利用留数定理探讨分析学中的积分计算问题,并利用积分技巧得到它们的一般计算方法和公式,进而更简捷的解决了分析学中积分的计算问题. 【关键词】解析孤立奇点留数留数定理

Residue theorem and the use in the Calculus 【Abstract】This paper, we first introduce the prior knowledge of complex function Calculus,and introduce the method of calculating the residue, etc.On this basis,We described and proved the main contents of this article--the Residue theorem,and the promotion of the Residue theorem . This paper discussed the calculating problems of intgral in analysis with the theorem of residue, got the general computating method and formula by using analysical skills, and then made it easier to resolve the calculating problems. 【Key words】Analysis Isolated singular point Residue Residue theorem

留数定理在定积分中的应用

留数定理在定积分中的应用 1. 留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1 形如 ()20 cos ,sin f x x dx π ?型的积分 这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z -++== 得 ()222 10 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ???? ?

论文留数定理及其应用

论文留数定理及其应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。

柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1.引 言············································· 2.留 数············································· 2.1留数的定义及留数定 理························ 2.2留数的求 法···························· ······ 2.3函数在无穷远处的留

留数定理及应用

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数, 因此我们只关心该奇点处罗朗 留数理论是复积分和复级数 理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点.

11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1 ()()() , ∞ ∞ -===+-∑∑-n n n n n n f z c z a c z a 称()n=1 ∞ -∑-n n c z a 为()f z 在点a 的主要部分,称 () ∞ =-∑n n n z a c 为()f z 在点a 的正则部分, 当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为 (1)11 (0)()()------+++≠---L m m m m m c c c c z a z a z a 称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点. 二. 留数的概念及留数定理 1. 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域 0z a R

定积分在几何学上的应用比赛课教学教案.docx

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思 路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程

— b y=f (x) 、 x a 、 x b 与 x 轴所围成的曲边梯形 当 f(x) 0 时,积分 a f (x)dx 在几何上表示由 的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x ) 0 时由 积分 b y f ( x ) 、x a 、x b 与 x 轴 f (x)dx 在几何上表示 a b c b f ( x ) dx 。 所围成的曲边梯形面积的负值 f ( x ) dx f ( x ) dx c a S a 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

相关文档
最新文档