留数定理在广义积分中的应用

留数定理在广义积分中的应用
留数定理在广义积分中的应用

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

积分中值定理中的极限

积分中值定理中n ξ的极限 杨勇洪 (楚雄师范学院数学系2005级2班) 指导老师 郎开禄 摘要:本文讨论了改进后的积分中值定理中n ξ的极限,获得几个有意义的结果. 关键词:积分;中值定理;极限 The limit of n ξ in integral theorem of mean Yan zilan Abstract :In this paper, we discussed the limit of n ξ in the improvement integral theorem of mean , several meaningful results are obtained. Key words :Integral ;Theorem of mean ;limit 导师评语: 在文[1] ([1].郎开禄.积分中值定理注记[J ].楚雄师范学院学报,2008,23(6):7-15.)中讨论了改进后的广义积分中值定理中n ξ的极限,并获得了两个基本结果,并讨论了其应用.在文[2] ([2].裘兆泰,王承国,章仰文编.数学分析学习指导[M ].2004:223-226,272.)中讨论了积分中值定理中n ξ的极限,获得了几个基本结果. 受文[1]- [2]的启发,在文[1]- [2]的基础上,杨勇洪同学的毕业论文《积分中值定理 中n ξ的极限》进一步研究改进后的广义积分中值定理中n ξ的极限,获得了的三个结论(定理 8至定理10),并讨论了其应用. 杨勇洪同学的毕业论文《积分中值定理中n ξ的极限》选题具有理论与实际意义,通过深入研究,该论文获得了关于积分中值定理中n ξ的极限的三个结论,并讨论其应用.该论文完成有 一定的技巧性和难度,其结果在理论与实际上都有重要意义.论文语言流畅,打印行文规范 ,是一篇创新型的毕业论文.该同学在作论文过程中,悟性好,爱钻研,能吃苦,独立性强.

使用留数定理计算实积分

用留数定理计算实积分 一:教学容(包括基本容、重点、难点): 基本容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 , 仅以 为一级极点, 在 上无奇点,故由留数定理

推广的积分中值定理及其应用

推广的积分中值定理及其应用 摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性. 关键词:积分中值定理;导函数;微分中值定理 Promotion of Integral Mean Value Theorem and Its Application Abstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system to promote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after. Keywords: Integral mean value theorem, derivative, mean value theorem

无穷限广义积分的数值计算[文献综述]

文献综述 信息与计算科学 无穷限广义积分的数值计算 一.前言部分 定积分的数值近似称为数值求积.[1] 它起源于古代用铺贴小方块近似计算不规则图形或曲边形的面积.在近似积分中,主要从定义积分的黎曼和出发,用被积函数在积分区间上有限个点上值的加权和来近似计算积分. 我们一般使用牛顿-科茨求积公式,梯形公式及其复合公式,辛普森公式及其复合公式,Gauss 求积公式,切比雪夫求积法,三次样条函数求积法,自适应积分法等方法来进行数值求积. 在讨论积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”. 根据函数的变化率,利用定积分我们可以计算函数在指定区间上的增量,利用变限定积分可以把握函数变化区间上增量的变化,为了把握函数在无穷区间上增量的变化,我们还需要引进并讨论无穷限积分[2] . 比如现在人类要发射人造地球卫星或发射完成星际航行的飞行器,就要摆脱地球强大的引力,那如何离开地球呢? 地球上的物体要脱离地球引力成为环绕太阳运动的人造行星,需要的最小速度是第二宇宙速度.第二宇宙速度为11.2公里/秒,是第一宇宙速度的2倍.地面物体获得这样的速度即能沿一条抛物线轨道脱离地球. 我们可以运用无穷限广义积分解决第二宇宙速度问题. 在黎曼积分的定义中,被积函数和积分区间都是有界的.若被积函数或积分区间无界,则称为广义积分.对无界区间,如[)∞,a ,如果对任何有限的b ,f 在区间[]b a ,上可积,并且下列极限存在且为有限数,则广义积分的定义为 ()()? ?∞ ∞→=a lim b a b dx x f dx x f . 对无界的积分区间,可以使用有限区间上的标准求积程序计算广义积分,具体方法如下:

积分常用公式

积分常用公式 一.基本不定积分公式: 1.C x dx +=? 2.111++= ? αα αx dx x 1(-≠α) 3.C x dx x +=?ln 1 4.C a a dx a x x +=?ln )1,0(≠>a a 5.C e dx e x x +=? 6.C x xdx +-=? cos sin 7.C x xdx +=? sin cos 8.C x dx x xdx +== ?? tan cos 1sec 22 9.C x dx x xdx +-==??cot sin 1csc 22 10.C x xdx x +=??sec tan sec 11.C x xdx x +-=?? csc cot csc 12. C x dx x +=-? arcsin 112 (或12 arccos 11C x dx x +-=-? ) 13. C x dx x +=+?arctan 112 (或12cot 11 C x arc dx x +-=+?) 14.C x xdx +=?cosh sinh 15.C x xdx +=? sinh cosh 二.常用不定积分公式和积分方法: 1.C x xdx +-=?cos ln tan 2.C x xdx +=? sin ln cot 3. C a x a x a dx +=+?arctan 122 4.C a x a x a a x dx ++-=-?ln 2122 5.C x x xdx ++=?tan sec ln sec 6.C x x xdx +-=? cot csc ln csc 7. C a x x a dx +=-? arcsin 2 2 8.C a x x a x dx +±+=±?222 2ln 9. C a x a x a x dx x a ++-=-?arcsin 2222 22 2 10. C a x x a a x x dx a x +±+ ±±= ±? 222 2 2 2 2 ln 2 2 11.第一类换元积分法(凑微分法):

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分0 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系 起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+?? ? ; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ? 就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是证 明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞) ;复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少 高于()x ?两次. 图1

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

对积分中值定理的一点思考

对于积分中值定理的一点思考 摘要 积分中值定理是高等数学中重要的一部分,中值定理是人们认识高等数学世界、解决数 学问题的重要武器,本文在数学分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间 ),(b a 内取得,并且给出几分中值定理及其推广的一些应用. 关键词 积分中值定理 积分中值定理应用 积分中值定理的推广 第一积分中值定理 极限 一 引言 推广的积分第一中值定理: 若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在[a, b]上至少存在一点ξ使得 ??=b a b a x d x g f x d x g x f )()()()()()(ξ (1) 推广的积分中值定理可改进如下: 定理1:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在) ,(b a 上至少存在一点ξ使得??=b a b a x d x g f x d x g x f )()()()()()(ξ。 对其证明如下: 因为)(x f 在],[b a 上连续,故)(x f 在],[b a 上存在最大值和最小值,不妨分别设为M 和m,即M x f m ≤≤)(,则必存在x x x x b a 2 1 2 1 ],,[,<∈,使m f x =)(1 ,M f x =)(2 , 又因为 )(x g 在],[b a 上不变号,不妨设0)(≥x g ,则?≥b a dx x g 0)(, 且有)()()()(x Mg x g x f x mg ≤≤,又)(x f 和)(x g 都在],[b a 可积,则)()(x g x f 在] ,[b a 也可积,从而有 ???≤≤ b a b a b a dx x g M dx x g x f dx x g m )()()()( (2)

论文留数定理及其应用

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。 柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论

及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1. 引言············································· 2. 留数············································· 2.1 留数的定义及留数定理························ 2.2 留数的求法·································· 2.3 函数在无穷远处的留数························ 3. 用留数定理计算实积分 3.1 计算形如∫f (cos x ,sin x )dx 2π 0的积分············ 3.2 计算形如∫f (x )+∞ ?∞dx 的积分···················· 3.3 计算形如∫P (x ) Q (X )+∞?∞e imx dx 的积分················ 3.4 计算形如∫P (x )Q (x ) +∞?∞ cos mxdx 和∫P (x ) Q (x ) +∞?∞sin mxdx 的积分 3.5 计算积分路径上有奇点的积分···················· 参考文献 1. 引言

积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)的几种证明方法 定理:设f 在[,]a b 上连续,则(,)a b ξ?∈,使得 ()()()b a f x dx f b a ξ=-?。 [证一]:由积分第一中值定理(P217), [,]a b ξ?∈, 使得 ()()()b a f x dx f b a ξ=-?。 于是 [()()]0.b a f x f dx ξ-=? 由于函数()()()F x f x f ξ=-在[,]a b 上连续,易证(可反证): (这还是书上例2的结论) (,)a b η?∈,使得()()()0F f f ηηξ=-=,即()()f f ηξ=。 [证二]:令()()x a F x f t dt =?,则()F x 在[,]a b 上满足拉格朗日中值定理的条件,故 (,)a b ξ?∈,使得()()()()F b F a F b a ξ'-=-,即结论成立。 (注:书上在后面讲的微积分基本定理) [证三]:反证:假设不(,)a b ξ?∈,使得 ()()()b a f x dx f b a ξ=-?,由积分第一中值定理, 知ξ只能为a 或b ,不妨设为b ,即 1(,),()()()b a x a b f x f b f x dx b a ?∈≠=-?。 由于f 连续,故(,),x a b ?∈ ()()f x f b >(或()()f x f b <), (这一点是不是用介值定理来说明) 这样 (上限x 改为b )()()()().x b a a f x dx f b dx f b b a >=-?? (这个严格不等号不太显然要用书上例2结论来说明) 矛盾。 [证四]:设f 在[,]a b 上的最大值为M ,最小值为m 。若m M =,则f c ≡,ξ可任取。 若m M <,则1[,]x a b ?∈,有1()0M f x ->,故 [()]0b a M f x dx ->?,即 ()().b a f x d x M b a <-?

相关文档
最新文档