地铁车辆故障及维修技术分析

地铁车辆故障及维修技术分析
地铁车辆故障及维修技术分析

龙源期刊网 https://www.360docs.net/doc/797253320.html,

地铁车辆故障及维修技术分析

作者:张鑫

来源:《中国新通信》2016年第18期

【摘要】地铁现在逐渐成为各大城市基础交通系统的核心,与其他交通运输方式相比,

其具有更大的优势。但是就我国地铁系统运行现状来看,基本上还处于较低的效率状态,因为受技术与理念限制,很多地铁车辆建设阶段管理不当,埋下众多隐患,再加上车辆自身问题,导致其在实际运行中不能完全达到安全、可靠标准,而出现故障,降低系统运营质量。因此必须要确定各类故障发生原因,并结合其表现形式选择对应技术进行维修,及时解除故障,提高地铁车辆运行效率,本文对此进行了简要分析。

【关键词】地铁车辆运行故障维修

地铁作为城市轨道交通重要部分,因其运行环境的特殊性,一旦在运行过程中出现故障,不仅会产生重大经济损失,严重的甚至会出现安全事故。因此必须要提高对地铁车辆有效运行的重视,分析存在的各类故障,确定其发生原因,有目的性和针对性的采取措施进行维修,及时消除存在的运行隐患,提高车辆运行安全性与可靠性。

一、地铁车辆运行常见故障

1.现象分类。按照故障现象进行分类,常见故障主要包括振动、磨损、断裂、尺寸不符、噪声、变形过量等。

2.性质分类。以故障性质进行分类,可以分为破坏性故障、不规则性故障与劣化性故障。第一,破坏性故障。即机械系统突然丧失规定功能,常见如齿轮箱中齿轮断齿,或者司机室门把手断裂等。第二,不规则性故障。即系统稳定性差,导致地铁车辆在运行过程中出现故障,常见如车门系统中EDCU运行不稳定而出现车门开关实际状态与显示不符,或者车辆颞部LCD显示器黑屏等[1]。第三,劣化性故障。即车辆系统局部功能弱化,需要根据不同设备运行原理与结构特点进行分析,并结合故障特征确定原因。

3.范围分类。按照故障影响范围进行分类,可分为局部故障和系统故障。第一,局部故障。常见如车门系统中上下导轨与导论间间隙过大,影响车门正常开启,以及制动管路局部漏气等,影响车辆正常运行。第二,系统故障。常见如受电弓碳滑板磨损严重无法受流,而影响车辆运行效率。或者是空气弹簧胶囊破裂,造成二系缓冲装置失效,车辆运行时必须降速。

4.危害分类。地铁车辆运行环境比较特殊,受外界因素影响比较大,同时一旦出现故障将会产生较大的损失。但是不同危害结果,可以将故障分为轻微故障、严重故障以及危害性故障等,需要根据不同类型故障采取措施处理,将故障影响范围缩小,减少故障损失。

二、地铁车辆运行故障维修技术

地铁车辆段固定式驾车机技术分析

地铁车辆段固定式驾车机技术分析 摘要:如今,地铁成为城市中一种热门的交通工具。由于地铁车辆的结构特点,需要采用固定式架车机进行车列的架落车作业,以提高检修作业的工作效率。本 文通过分析比较不同的架车方式,研究固定式架车机的性能和机理,以便合理选 取地铁车辆段架车机型式。 关键词:固定式架车机地铁车辆段技术 一、架车机型式的选择 1.架车方式比较 一般情况下,车辆段内采用的架车方式有地面固定式架车机架车、地面移动式架车机架车、固定式架车机架车。地面固定式架车机在铁路机务段、车辆段内广泛使用,为比较固定 的单台机车或单台客、货车辆架车所用。由于机务段、车辆段检修工作量大,任务饱满,因 此该设备的使用频率很高。移动式机车机是地面固定式架车机的一种替代形式。由于地面固 定式架车机的架车立柱被固定在地面上。因此,在工作量相对较小的使用场所使用就显得非 常不经济,故而在此情形下可以采用移动式架车机,当不使用架车机时,可方便地移开,以 腾出工作场地。但无论是地面固定式架车机还是移动式架车机,机车或车辆均是单辆架车, 对于固定列车编组架车时,需要解编列车,大大地增加了工作量。 地铁列车实行高密度、小编组的开行方案,一般情况下为固定编组,车辆与车辆之间通 常采用半自动车钩和半永久牵引杆连接。当列车队中的车辆或某一转向架发生故障需要维修时,则需要进行架车作业,脱离故障单元。由于车辆之间不同连接方式的电气连接、机械连接、风管连接十分复杂,解编作业和架车作业将消耗很多时间,为提高作业效率,固定式架 车机组应运而生. 2.固定式架车机的使用目的 如前所述,固定式架车机组主要是满足固定列车编组的检修作业需要。其作用一是在不 完全解体条件下的单节车辆解钩或单个转向架更换,二是整列车解钩作业以及全部转向架推 出检修。 二、固定式架车机的结构形式及架车方式 1.结构形式 整体地下式固定架车机组,可对整列车(或一个单元车组)在不摘钩状态下进行同步架 落车作业,也能对任一单节车辆进行架落车作业。当架车机组将整列车(或一个单元车组) 或单节车辆举升起来之后,便可更换举升起来的车辆底部的转向架,或在车辆底部进行维修 工作。 固定架车机组在地下基础坑内安装,完成对单元列车或单车的架落车作业。架车作业时,由调车机车或公铁两用车,将列车单元牵引到架车台位上,并正确对位,架车机构将车辆 (带转向架)举升到设定高度,解除转向架与车体之间的连接,升起车体托架支承车体,架 车机构带转向架一同落下,推出转向架。落车作业的工艺过程为架车作业的反序过程。架落 车作业完成后,设备全部降入地坑,车库地面平整无障碍。 车辆同地下式固定架车机系统正确对位后,转向架举升单元才能作业。架车作业时,转 向架的每个滚轮都限制在轨道桥活动部分顶部轮缘的凹陷处,这样能确保在举升过程中,转 向架不会从轨道桥上滚落下来。该系统的优点是不会被铁锈或其它任何零件的不活动而卡死。因此,该系统不需要能引起故障的电控系统。为了准确地定位车辆 /转向架,在凹陷处安装 有轮探测设备和限位开关。 固定式架车机的单台结构形式由转向架架车单元、车体架车单元以及控制装置三部分组成,用于每辆架车时有 4套转向架架车单元和4套车体架车单元。架车单元是固定式架车机 的主要承载部件,每套转向架架车单元由 2根立柱形成的门式框架座位车轮抬升立柱,车体 架车单元由 1根车体抬升立柱组成,当各立柱升至最高位置时,可将车体及转向架升高 2m 以上。为保证立柱能垂直升降,每根立柱设置8组导向滚轮,保证立柱在受到偏心弯矩时能 自由升降。 在4个车体举升托架支撑起单节车辆后,设计采用2组转向架举升单元完成单节车辆转

地铁车站弱电系统的防雷与接地问题

地铁车站弱电系统的防雷与接地问题 港铁轨道交通(深圳)有限公司梁红 摘要:地铁车站弱电系统多与强电系统共用一个综合接地装置,经各自引上线至强、弱电总接地端子排,再引致众多机电设备房内的弱电接地端子排上,在设备房内系统设备除以弱电接地端子排为基准做等电位联接,还需在各级电源端加装浪涌保护器SPD. 关键词:综合接地装置、综合接地装置、总弱电接地端子排、引上线、浪涌保护器SPD、弱电系统 一.接地系统的类型、综合接地网及强、弱电接地系统的设置: 接地系统的类型有保护性接地、功能性接地以及功能性和保护性合一的接地。 保护性接地分为:保护接地、过电压保护接地(包含防雷接地)、防静电接地和防电蚀接地; 功能性接地分为:工作接地、逻辑接地和信号接地。不同的接地有不同的要求,应按设计决定不同的接地方式。 功能性和保护性合一的接地,如:屏蔽接地; 与普通建筑不同的是,地铁因其牵引供电系统产生杂散电流,决定了地铁车站的接地装置必须与车站内的金属物绝缘,接地装置多选用人工接地网(接地电阻小于0.5Ω),由水平接地体、垂直接地体、接地引上线等组成,其材料以耐腐蚀的铜质材料为主,水平接地体采用50mmX50mm镀锡铜带、垂直接地体采用¢50X7.5mm铜管、接地引上线各采用3根绝缘铜芯电缆ZR-YJY-(1X240mm2),分别独立引出提供给强电系统、弱电系统和接触网接地使用,强、弱电系统各设一个总接地端子排;至此强、弱电接地系统独立分开,不允许再有交集; 二.为满足弱电系统对电源稳定性的要求,地铁车站分别设置强、弱电两套接地系统: 地铁车站内弱电系统分为主控系统、PSCADA、通信、广播、PIDS、自动售检票系统、屏蔽门和安全门系统、火灾自动报警系统、安保监控系统等。 各种接地各有优缺点。分散的独立接地可有效地防止信号之间的相互干扰,但在遭受雷击时,易造成不同的接地点地电位不一样,从而引起地电位反击,使设备工作不正常或损坏;综合接地虽然有效地防止了地电位反击,但又会引起不同信号之间的相互干扰,为有效解决防干扰和防雷击安全接地的问题,车站的接地系统采用以下设置: 在各设备房内依据需要分别设置末端强、弱电接地端子排; 从总强电接地端子排至各设备房内的强电接地端子排,强电接地系统采用环式等电位连接方式的接地系统,以消除各接地点的电位差; 为了避免电磁干扰、地环路干扰,弱电接地系统与综合接地装置之间采用采用一点接地,从总弱电接地端子采用辐射式接地系统,即采用阻燃铜芯电缆ZR-YJY-(1X70mm2)放射式敷设至各设备房内的弱电接地端子排上; 在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。 设备房内的强电接地端子排可为设备提供等电位接地、保护接地、设备外壳屏蔽接地; 设备房内的弱电接地端子排可为设备提供工作接地、逻辑接地和信号接地,由于采用放射式布线方式,可以使弱电系统有效地抑制外来干扰(包含来自其他弱电系统的干扰),又能降低设备本身对外界的干扰。 正确的接地是抑制电磁干扰、提高电子设备EMC性的重要手段之一。 三.弱电系统的防雷技术措施: 一般分为“三道防线” (1)将绝大部分雷电流直接引入地下泄散(外部保护) (2)阻塞沿电源线或数据信号线引入的侵入波危害设备(内部保护及过电压保护)

试论地铁车辆维修模式

试论地铁车辆维修模式 发表时间:2019-12-17T09:00:34.213Z 来源:《科学与技术》2019年第14期作者:向银强周鲁宁 [导读] 近年来,由于地铁交通系统建设的快速推进,地铁车辆运行的负担显著增加, 摘要:近年来,由于地铁交通系统建设的快速推进,地铁车辆运行的负担显著增加,从而大幅度降低了地铁车辆运行的安全性与可靠性。为了营造良好的车辆运行环境,应当构建地铁车辆维修模式,以保障地铁车辆的安全运行以及地铁交通系统的稳定发展。本文关于构建地铁车辆维修模式展开相关讨论。 关键词:地铁车辆;维修模式;构建 1965年,中国第一条地铁开始建设,至1969年建成。如今,中国成为地铁里程最多的国家之一。五十年间,中国经济飞速发展,轨道交通的地位水涨船高,地铁因其便利快捷成为人们出行的宠儿。我国国内设计使用的地铁车辆,寿命普遍不低于30年,但车辆一经使用,磨损、变形、老化等一系列问题不可避免,所以需要定期对车辆进行检查与维修,从而尽可能延长车辆的使用寿命,稳定地铁的运营成本。因此,构建科学有效的地铁车辆维修模式极其重要。 一、国内外地铁车辆的基本维修模式概述 国内外地铁车辆的基本维修在具体表现方式上又一定的差别, 但往往存在异曲同工之妙。维修是对地铁安全运行的保证,维修需要依据车辆各个部位零件距离上一次的维修时间和车辆投入使用的时间进行定期或者是不定期的检查与维修[1]。 (一)国外地铁车辆维修方式 以日本和俄罗斯的莫斯科为例,两者皆采用计划预防性维修方式。然而两者所采取的具体维修措施不尽相同。 (二)国内地铁车辆维修方式 我国北京采取的方式同样是计划预防性维修方式。计划预防维修是指在车辆尚未发生故障之前就对其进行修理,消除车辆零部件存在的缺陷和隐患,预防车辆故障[2]。上海对于地铁车辆的维修采取定期计划维修和故障维修相结合的维修模式。广州的地铁车辆维修与上海模式相类似,采取计划维修与状态维修相结合的模式。南京对于地铁车辆的维修采用日常检修和定期维修。经过2008年的变革之后,对于地铁一号线所有车辆采取“全效修”的模式。 二、构建地铁车辆维修模式 由于我国各地地铁各不相同,建立起完整的维修模式相对困难。但我国可以在构建地铁车辆维修模式上可以引进国外处理地铁车辆维修方面的先进技术,例如将RCM维修模式引进至我国地铁交通系统。RCM模式(Relability Centered Maintenance)是指通过对于设备进行功能和故障的分析来确定设备各类故障的后果,使用逻辑决断方法来明确各类故障所需要的预防性的维修对策[3]。 (一)构建RCM模式的依据 地铁车辆的运行具有一定规律性,但地铁的运行方式和路程都是尤为复杂的,因此在构建RCM模式时需要注意决策和实践这两大因素。在RCM模式下,合理利用地铁的车辆维修的黄金时期,能够达到事半功倍的效果。 (二)RCM模式内容 地铁车辆中的RCM维修模式构建的主要对象便是模式内容。地铁车辆维修模式的标准是通过对于模式内容的构建提供的,以此规范地铁车辆维修中的各项措施[5]。其内容主要包括预防检修手段、建立隶属维修模式的分系统、建立状态检修板块、建立管理体系、树立均衡维修的理念。 (三)RCM模式所需要的实施条件 实施RCM维修模式需要满足两方面的条件。一方面,高效的维修需要拥有监测与诊断条件的支持,为其提供试验数据并判断车辆故障信息;另一方面,车辆的维修信息以及维修模式的状态需要有一个反馈的平台,即管理条件。 三、建立地铁车辆维修模式基本体系 影响车辆维修模式的因素主要分为:人力因素、经济因素、环境因素、制度因素四个方面。然而构建一个完整的地铁车辆维修模式是一个漫长的过程,需要通过一定的体系来进行规范,避免在构建过程中受到人力、经济、环境、制度因素的不良影响。关于建立基本管理体系,应当从以下方面着手。 (一)人力资源管理体系 人力资源作为生产管理之中的难点,同时也是车辆维修模式之中的动态因素,对地铁车辆维修模式构建的影响重大。因此,人力资源管理体系的建立必不可少,在此体系中规范人力行为,规避人力风险,保障维修模式的稳定性。 (二)物资管理和资源配置体系 物资因素虽不是影响车辆维修模式的主要因素,但其影响程度同样不容小觑。关于地铁维修,所涉及的物资众多,需要明确的物资管理体系,制定相应物资管理体系与资源配置体系来满足地铁车辆的维修需求。 四、开展维修策略研究 关于开展维修策略的方案研究,不外乎逻辑决断图法和灰色局势决策法两种方式。两者作为RCM技术分析方法的重要组成部分,是确定维修策略的基础工作。 关于逻辑决断图法。一般来讲,当地铁车辆发生故障时,首先采取的便是对该车辆进行监测,寻找故障出现的原因才能对症下药,采取有效的维修。常见的地铁车辆故障有以下四种。其一为隐形故障。隐性故障往往指的是各零部件中存在,但却不能被轻易发现的故障,从而最后引起严重故障。其二车辆的使用寿命影响故障的机理。就正常情况来讲,车辆的使用时间越长,则其故障产生的可能性大于刚投入使用的车辆。然而使用时间较长的车辆的具体故障问题还需要经过专业数据分析后才能判断。其三,判断故障是否严重的指标是多重故障的风险度高低。多重故障往往会造成连锁故障,从而导致车辆或者某个零部件损坏严重。因此,防止多重故障的发生或者降低多重故障风险度是减少车辆损坏的有效途径。其四,安全故障以及对于环境的消极影响则导致故障后果的严重化。 关于灰色局势决策法。该方法是利用系统中信息完全已知的信息来解决其他信息不全或具有不确定信息的部分。它是根据系统具有多个目标的决策方法这一特点而进行设计的,使用不同的策略方式对车辆的各个部位进行检测,再根据效果的不同,分析出适应某个部分的

地铁车辆段工程施工技术分析 何会祥

地铁车辆段工程施工技术分析何会祥 发表时间:2019-04-26T16:21:35.877Z 来源:《基层建设》2019年第3期作者:何会祥[导读] 摘要:车辆段工程是地铁项目中的核心部分,其中涉及到较多专业性的问题,截面较为复杂,施工难度较大,需要针对其进行全面细致的分析和研究,积极采用先进科学的工程技术和施工工艺,并加强全面合理的施工管理工作,减少施工失误问题的出现,最大限度的保证和提升车辆段工程施工的总体质量和建设水平。 苏州中车建设工程有限公司江苏 215126 摘要:车辆段工程是地铁项目中的核心部分,其中涉及到较多专业性的问题,截面较为复杂,施工难度较大,需要针对其进行全面细致的分析和研究,积极采用先进科学的工程技术和施工工艺,并加强全面合理的施工管理工作,减少施工失误问题的出现,最大限度的保证和提升车辆段工程施工的总体质量和建设水平。本文主要是从地铁车辆段工程基本情况入手,提出了一些地铁车辆段工程施工技术与施工管理策略,为全面提升地铁车辆段工程的整体施工建设水平提供一定的借鉴和参考。 关键词:地铁车辆段工程;施工技术;施工管理 1地铁车辆段工程地铁车辆段是总体地铁工程项目中的关键性部分,其实际建设质量会直接影响到整个地铁工程的施工情况和使用效果。地铁车辆段之中主要是包含了综合楼、检修库、运用库、物资总库、洗车库、不落轮镟库、材料棚与调机工程车库、索引降压混合电所与动调试验间、污水处理站、蓄电池间、危险品库等多个建筑物,并且涉及到土建、基础处理、桥涵工程、轨道工程、金属结构、给排水、综合管线等多个专业,需要多个系统工程施工协调运作,表现出较为复杂的特征:第一,需要开展交叉作业,对施工组织协调工作提出了较高的要求;第二,工程占据了较大的面积,工程量大,尤其是地基基础和主体结构方面,需要开展多环节的施工工作;第三,地铁车辆段对于物资具有较大的需求,想要保证工程施工质量和进度质量,需要做好科学性的物资采购工作;第四,地铁车辆段工程施工过程中,多个环节之间具有较为紧密的联系,一旦某个环节中出现质量问题,将会直接影响到后续施工的开展效果,需要积极开展施工管理工作。 2地铁车辆段工程关键施工技术 2.1地铁车辆段地基处理 针对地铁车辆段工程地基处理上我们可以深层石灰搅拌桩、填料压实、砂垫层施工以及强夯等技术。以深层石灰搅拌桩技术应用为例,企业采用它进行地铁车辆段工程地基处理时,可将石灰用作固化剂。将石灰与软土混合搅拌的过程中,会产生一定的化学反应,形成具有整体性、水稳定性和一定强度的增强体,和原土体构成复合地基,从而提高地基的各项性能。又比如填料压实技术地应用上,企业在地铁车辆段挖掘施工完成后,将之前选择好的填料倾到并进行压实作业,需注意的是压实要采取分段分层原则。 2.2钢网架屋盖结构施工技术 钢网架屋盖结构,在地铁车辆段车库建筑结构之中的应用程度较高,能够起到良好的稳定和支撑效果。安装钢网架的过程中,需要从网架受力和结构构造的特点出发,综合分析和确定地铁车辆段施工现场的各项施工技术条件。通过整体吊装法、高空滑移法以及分条安装法等方式,都能够保证网架安装的良好效果。将网架杆件作为支撑,制作出切实有效的作业平台即滑移脚手架,在此基础上拼装高空网架散件,将能够提升钢网架屋盖结构施工技术的优势和作用。 2.3结构混凝土的质量控制技术 地铁车辆段大多为大型框架混凝土结构库房及库内的检修地沟(如柱式检修地沟、壁式检修地沟),其在设计和施工精度方面要求很高,需要着重控制好结构混凝土施工问题。首先,需要选用适合地铁车辆段工程施工的水泥,重点选择强度、稳定性较高的水泥种类,保证结构混凝土施工的耐久性。其次,需要控制和优化混凝土的配合比,在设计配合比的过程中,需要保证新拌混凝土、硬化混凝土都能够满足设计、施工以及使用环境的要求。重点控制好结构混凝土水灰比、砂率、单方用水量方面的情况,保证其具有良好的施工效果。做好施工现场各项原材料的检查工作,发现不合施工标准的材料,需要及时排除在施工之外。保证各项原材料的质量符合地铁车辆段施工要求,根据现场施工情况,适当的增加一些缓凝减水剂,减少结构混凝土出现收缩的情况,从而有效减少混凝土的开裂问题。混凝土施工最为重要的一环应该是成品混凝土质量偏差的控制,对于库内检修地沟允许偏差为几毫米,如350×350mm(柱中心距900mm左右)的轨道支撑柱,支撑柱中心线精度控制必须满足偏差在±2mm以内,否则无法具备上部轨道安装的条件,不仅造成返工、影响总工期,甚至对公司履约、质量口碑造成极大的负面影响。为此,我们在进行4000余根轨道支撑柱施工时,事先进行了试验性施工,对试验中出现的中心线偏差超标的各个因素,从“人、机、料、法、环、测”等方面进行全面的分析,制定相应对策再组织实施。柱体定位采用全站仪逐个测量、放样,人工一次绑扎钢筋成形,柱子模板采用定型钢模板拼装、单独加固,为控制模板整体偏移,单柱模板完成后采用2道方木(或方钢)作为背楞将单根轨道10余根柱体模板进行整体加固,最后再将左右两根轨道进行整体全面地加固。为减少混凝土料冲击和泵管碰撞模板造成模板偏位,采取人工入仓,浇筑过程防止碰撞、做好变形监测等控制手段。既确保了精度的控制,还减少了混凝土的浪费。在过程中不断总结提高,把握好工程施工的每个环节,确保工程整体质量的提升。 3地铁车辆段施工管理工作为了全面有效保证地铁车辆段的总体施工质量和建设水平,需要开展施工管理工作。首先,强化进度管理工作。从车辆试运行进度节点工期出发,安排地铁工程各项施工项目的重点工作,保证各个环节施工工作顺利实施,使其按照预定工期交付。充分考虑到地铁车辆段的施工情况,需要开展施工环节的统筹控制工作。其次,加强质量管理。地铁车辆段的施工质量会影响到总体工程的施工情况[3]。针对地铁车辆段的各项施工工序进行全面检查,选派专门管理人员全程控制更好各个部分的工作情况。构建质量管理体系,重点控制好建筑主体结构工程、机电工程以及防水系统等方面的工程质量,及时发现各个施工环节中潜在着的风险和失误,并加以切实有效的处理和应对,全面提升整体的施工效果。再者,需要开展管理工作。地铁车辆段部分建筑物属于地下工程,会容易受到水文地质等不良施工条件的限制。施工地理环境对于地铁车辆段的施工安全性具有重要影响。施工安全是施工管理过程中重要内容,全面开展安全管理工作,针对地铁车辆段的施工全过程进行充分有效的控制,坚持“安全第一、预防为主、综合治理”的原则,建立健全安全管理制度,针对现有的安全生产组织管理体系进行不断的健全和完善,明确责任人的职责范围和工作内容,落实安全责任。明确施工现场的布置情况,从消防安全等方面要求出发,良好控制各项安全风险事故。 4结束语

某地铁站综合接地施工方案

目录 1、编制依据、范围 (1) 1.1编制依据 (1) 1.2编制范围 (1) 2、设计原则及要求 (1) 3、工程概况 (3) 3.1车站概况 (3) 3.2车站工程地质概况 (3) 4、施工组织 (4) 4.1施工平面布置及分段划分 (4) 4.2工程数量 (4) 4.3资源配置 (4) 5、施工方案 (5) 5.1施工准备 (6) 5.2施工方法 (7) 6、质量控制措施 (15) 7、安全文明施工 (16) 7.1安全作业措施 (16) 7.2接地与防雷安全措施 (17) 7.3防触电安全保障措施 (18) 7.4季节施工安全保障措施 (19) 7.5临时用电安全保障措施 (20) 八、环境保护措施 (20) 第1页/共1页

***站综合接地施工方案 1、编制依据、范围 1.1编制依据 (1)《南宁市轨道交通*号线(科园大道-平乐大道)工程***站接地(土建部分)》; (2)《地铁设计规范》GB 50157-2013; (3)《交流电气装置的接地设计规范》GB/T 50065-2011; (4)《电气装置安装工程接地装置施工及验收规范》GB 50169-2006; (5)《接地装置工频特性参数的测量导则》DL/T475-2006; (6)《南宁市轨道交通*号线工程(科园大道~平乐大道)***站(原玉洞大道站)详细勘察阶段岩土工程勘察报告》; (7)《南宁市轨道交通*号线工程(科园大道~平乐大道)设计技术要求》; (8)施工现场调查及咨询所获得的有关资料; (9)现有的施工技术水平、施工管理水平、机械设备配备能力。 1.2编制范围 本方案适用于***站接地网施工。 2、设计原则及要求 (1)综合接地系统的设计应同时满足变电所设备、弱电设备的工作接地、安全接地及其它需接地的车站设备对接地的要求。在保证人身安全、设备安全及运营可靠性的基础上,应尽可能减少投资。 (2)在道床中设置专用排流网钢筋,与其他结构钢筋非电气连接,车站主体的结构钢筋和附属结构钢筋作为自然接地体,杂散电流收集网和车站主体结构钢筋电气上应绝缘,其钢筋不应有任何的连接。 (3)地铁车站接地分为两个部分,第一部分为主体结构钢筋和附属结构钢筋组成的自然接地体,第二部分为预埋在车站结构底板下的人工综合接地网。结构施工时,人工综合接地网与自然接地装置电气分离,两者相互独立,分别测量,不应有任何连接。 (4)车站主体结构钢筋和附属结构钢筋应按焊接要求进行焊接,在伸缩缝处应通过结构专业预留连接端子,供电专业制作安装连接线,将主体结构钢筋和附属结构钢筋

地铁车站综合接地施工方案

车站综合接地施工方案 1 编制说明 1.1 编制依据 1、《地铁设计规范》GB50157—2003 2、《城市轨道交通技术规范》GB50490—2009 3、《交流电气装置的接地设计规范》GB/T50065—2011 4、《电气装置安装工程接地装置施工及验收标准》GB50169—2006 5、《接地装置工频特性参数的测量导则》DL/T475—2006 6、车站主体围护结构图、主体结构图、综合接地图 1.2 编制原则 1、严格执行施工过程中涉及的相关规范、规程和设计标准; 2、遵守、执行合同文件各条款的具体要求,确保实现业主要求的工期、质量、安全、环境保护、文明施工等各方面的目标; 3、结合工程实际情况,应用新技术成果,使施工组织具有技术先进、方案可靠、经济合理的特点; 2 工程概况 2.1 车站概况 车站形式为地下双层岛式车站,本站设置4个出入口和两组风亭。车站中心里程为K17+400.000,车站总长227.5米,标准段宽度21.1米,盾构端头井段宽度24.6米。车站顶板覆土3米,中心里程附近覆土5米;标准段底板埋深17.74米,盾构井段底板埋深19.38米。本车站为两层三跨框架式结构,车站采用明挖顺做法和局部盖挖顺做法施工。 2.2 综合接地概况 车站综合接地装置以水平接地为主,以垂直接地为辅,外缘闭合,内部敷设多条水平网络带的复合接地网。 (1)组成 综合接地装置由两部分构成,一部分由车站结构围护桩内的钢筋组成自然接地体,一部分由车站结构底板下的人工接地网组成,并通过车站主体结构钢筋与人工接地网的连接构成车站的总等电位联结。人工接地网施工完成后,将其与车

站结构围护桩内的结构钢筋进行连接。 (2)埋深与布置 综合接地装置的水平接地极埋设在车站主体结构底板下800mm处。 综合接地装置的人工外引接地网外缘应闭合,外缘各角应做成圆弧形。圆弧半径不应小于均匀带间距的一半,本站圆弧半径为5m。 除水平接地极外,综合接地装置还设置了垂直接地极,垂直接地极每隔适当距离分布在接地网的周边地带,并和水平接地极之间进行连接,从而构成复合接地网。 综合接地装置的人工外引接地网内设置若干条水平网格带。 综合接地装置根据需要设置了8个接地引入线,其中2个用于连接强电接地母排,2个用于连接若电接地母排,2个用于连接动力照明接地母排,另外两个预留。 2.3综合接地设备材料 主要材料详见下表: 名称型号规格单位数量备注 扁铜50mm*5mm 米975 紫铜 连铸铜包钢垂直接地 极TGB25mm*2500mm 根26 钢棒直径25mm,镀铜厚度不小 于1mm 接地引入线SDTZ-1500 根8 一体化装置,含防盗装置 热熔扁接头RB2-50*5/50*5Z 个160 用于水平接地体之间的一字连 接 热熔扁接头RB2-50*5/50*5L 个30 用于水平接地体之间的T字连 接 热熔扁接头50*5/50*5十字个9 用于水平接地体之间的十字连 接 热熔扁接头RB1-25/50*5T 个30 用于水平接地极和垂直接地极 之间的连接 热熔扁接头50*5/50*5十字个10 用于水平接地极和接地引入线 之间的连接 焊粉FW-200P10 适量用于扁铜间连接 焊粉2XFW-150P10 适量用于扁铜和垂直接地极之间连 接 电缆ZR-YJY-1X120 米75 铜母排50mm*10mm 米 2.7 电车绝缘子WX-01 套9 槽钢10# 米 2.7

未来地铁运营以及维修模式的设想

关于未来地铁运营以及维修模式的设想

————————————————————————————————作者:————————————————————————————————日期:

关于地铁未来运营以及维修模式的设想摘要:自1971年中国第一条地铁在北京开通以来,四十多年来以客运为主的运营模式以及以人力检修为主的维修模式均为发生明显变化。随着科学技术的日新月异,技术的革新必然会带来生产模式的变化。那么在大数据、虚拟现实飞速发展之后的将来,地铁又会有怎样的变化呢?本文基于当前地铁运营以及维修情况,结合目前工业以及科学发展现状,探讨未来地铁运营以及维修模式。 关键词:地铁;运营;维修;未来 A vision for operation and maintenance mode of Future Metro Abstract:Since the opening of China's first subway line in Beijing in 1971, more than forty years, the main operation mode of passenger transport and the mode of human based maintenance have changed significantly. With the rapid development of science and technology, technological innovation will inevitably bring about the change of production mode. So with the the rapid development of big data and virtual reality, what the metro will change to? This paper based on the current subway operation and maintenance, combined with the current situation of industrial and technological development, show some idea of future subway operation and maintenance mode. Key words:metro, operation, maintenance, future 0 引言 四十多年前,地铁以客运票务收入作为主要盈利来源。随着多媒体技术的发展,媒体广告收入也为地铁提供盈利来源。但在以公益性为主的中国地铁,这些收入远比不上建设以及运营管理维护的支出。一直以来,地铁日常管理和维护主要以人力为主,随着地铁安全越来越被人们所重视,维护人力成本也在逐步增加。随着工业4.0概念的提出,智能化是未来的一大趋势。利用大数据以及人工智能,节约人力,节省检修时间,为地铁发展其它业务提供可能。目前铁路货运正大力发展,在交通如此拥挤的城市,利用客运低峰时间段以及节约出来的检修时间进行货运将为地铁带来更多的收入来源。 1 地铁运营模式 地铁具有节省土地、减少噪音、减少交通干扰、节约能源以及减少污染的优势。与其他交通工具相比,除了能避免城市地面拥挤和充分利用空间外,还具有运量大、准时、速度快等优点。 截止2015年末,中国城市轨道交通运营线路长度3612公里。2015年新增青岛、南昌、淮安和兰州4个运营城市;全国新增15条运营线路,438公里运营线路长度。在3612公里运营线路长度中,地铁2658公里,占线路总长的73.6%;轻轨239公里,占线路总长的6.6%;单轨89公里,占线路总长的2.5%;现代有轨电车161公里,占线路总长的4.5%;磁浮交通49公里,占线路总长的1.4%;市域快轨412公里,占线路总长的11.4%;APM线4公里,占线路总长的0.1%。在经历了十几年的高速发展之后,中国拥有城市轨道交通的城市已经由2000年的3座(北京、上海、广州)上升至2014年的22座。截止到2014年年底,中国城市轨道交通的线路条数为101条,地铁线路总计88条。截止2015年末,中国累计有26个城市建成投运城轨线路116条。 地铁运营以客运为主要业务,其它商业模式一直在探索过程中,但目前成功应用的只有

地铁车辆故障的处理和维修技术

龙源期刊网 https://www.360docs.net/doc/797253320.html, 地铁车辆故障的处理和维修技术 作者:陈强 来源:《科学大众》2019年第11期 摘; ;要:地铁已经成为人们出行的主要交通工具之一。虽然,地铁运行具有快速高效的优点,但是,如果不对地铁车辆的故障进行处理和维修,将会为地铁的安全、稳定运行埋下安全隐患,因此,加强对地铁车辆故障的处理以及维修,具有非常重要的意义。文章在此基础上,对我国当前地铁车辆故障处理以及维修的现状进行研究,发现其中存在的问题,同时对处理以及维修的策略进行探讨。 关键词:地铁车辆;故障处理;维修技术;方法策略 随着我国城市发展的扩大以及地铁交通的普及,人们在享受地铁快速通行便利的同时,也需要考虑到地铁车辆运行的安全以及稳定。对地铁车辆进行故障的处理以及维修,有利于维护地铁的安全、稳定运行,使得地铁正常的班次调度不会受到影响。文章主要对我国地铁车辆运行中遇到的故障进行分析,提出具体的维修处理建议,希望能够保证我国地铁车辆的安全、稳定运行。 1; ; 地铁运行过程常见故障 1.1; 按现象分类 按照现象可以将地铁车辆的故障分为以下几种:材料零件引起的故障、电路控制引起的故障、动力方面的故障等。在这几个方面地铁车辆所发生的故障与普通车辆基本相同。其中,材料和零件所引发的故障主要包括材料结构的损毁、零部件的磨损等。电路控制有关的故障主要包括控制失效或者异常。动力方面的故障包括噪声过大或者动力输出不稳定等。工作人员可以通过地铁车辆发生故障的现象,来对其故障进行初步的判断。 1.2; 按性质分类 按照故障性质的不同,可以将地铁故障分为破坏性故障、劣化性故障以及不规则故障3种。其中,劣化性故障是指在地铁车辆运行过程中,车辆的某些功能降低,从而对车辆的安全稳定运行产生影响;破坏性故障是指由于地铁车辆零部件的破损,或者发生变形而不能使用,影响到地铁车辆的正常运行,包括齿轮的磨损以及轮毂的裂缝等;而不规则故障则是指由于电路控制故障,导致车门控制系统失灵、信息不能正常显示等[1]。 1.3; 按范围分类

地铁车辆接地技术分析

地铁车辆接地技术分析 发表时间:2018-12-28T12:24:50.873Z 来源:《防护工程》2018年第24期作者:李国华 [导读] 地铁车辆的接地系统直接关系到车辆人身安全和车上设备的正常运转,车辆的高压接地和低压接地应分别进行,直流系统和交流系统要分别布线,不可共用回路。这对我们今后设计地铁车辆和增购新车有一定的借鉴意义。 李国华 昆明地铁运营有限公司云南昆明 650500 摘要:地铁车辆的接地系统直接关系到车辆人身安全和车上设备的正常运转,车辆的高压接地和低压接地应分别进行,直流系统和交流系统要分别布线,不可共用回路。这对我们今后设计地铁车辆和增购新车有一定的借鉴意义。 关键词:地铁车辆;接地技术 引言 随着电力电子技术的发展,作为强电和弱电集成的一体化系统,地铁车辆的电磁环境日益复杂。而地铁车辆接地可以为漏电电流、雷击电流、系统内的电磁干扰提供引入大地的通路,从而保证设备正常工作和车辆安全运行。所以车辆的接地无误是保证整车电磁干扰的一项重要指标,也为旅客提供一个优质乘车环境。 1 概述 地铁车辆采用直流供电系统,并把钢轨作为回流排,直接连至牵引变电站。地铁运营时,供电系统回流路径按照:牵引变电所正极—接触网一受电弓一车辆负载一轮对—轨道—地下回流线—牵引变电所负极。车辆内部电子设备的增加,不仅使地铁车辆内部设备布局十分密集,也使车内的电磁环境变得复杂,整列车的电磁兼容问题也成为很重要的问题。为了保证地铁车辆上的电气设备正常工作和人身安全,以及考虑到整车的电磁兼容性能,必须将地铁车辆上的电气、电子设备进行接地。广义地说,“地”可以是一个等位点或等位面,它为电路系统提供一个参考电位,其数值可以与大地电位相同,也可以不同。地铁车辆是一个与地面有相对运动的系统,因此与地面固定装置不同的地方在于车辆内的“地”不是大地,而只是相对零电位基准。 2 接地系统构成 按照接地回路的布置,分为回流接地和安全接地,其中安全接地又包括设备外壳接地和屏蔽接地。 2.1 回流接地 即高压电源负端的回流,通过接地回流装置与列车轨道相连。高压电源的负端首先通过导线经与车体绝缘的绝缘子相连,然后通过接地导线与转向架构件相连,再通过接地导线与轴端接地回流装置连接,经列车轨道最终回到变电站高压负端,从而形成高压回路。 2.2 安全接地 安全接地包括保护性接地和屏蔽接地。 2.3 保护性接地 所有导电的可触及到的车辆零部件,如转向架、牵引电机、牵引设备箱、辅助供电模块箱等,它们在故障状态下可能携带危险接触电压,必须通过保护性接地以较低的电阻连接到车体上。根据EN50153,在车体与固定式的保护性导体(轨道)之间,必须存在至少两条保护性屏蔽接地路径作为车辆保护性屏蔽接地。这两条路径的布置和定尺必须保证一条路径故障时,不会产生触电危险。两条路径应能够检查。 2.4 屏蔽接地 整列车的等电位连接有利于提高通信设备工作时的信噪比,有效改善通信质量。车体等电位连接,为有用信息提供了一个良好的参考面。如果接地体出现短路或雷击电流时,屏蔽层两点接地的电缆两端电位不同,屏蔽层内就有电流流过,屏蔽层本身将形成一个很大的干扰源。因此整列车的等电位连接,可防止两端接地的电缆屏蔽层过流,使信号传输过程中不会出现干扰。 3 接地系统特性要求 将回流的电路接地与保护接地分开;将高压电路接地与低压电路的接地分开;转向架地线就近接到接地端子台上;从接地端子台到各接地装置的回流线的阻抗尽量一致;车体接地点尽量设在车体中央;各车之间设均压线,消除电位差,并将各车低压负极线连在一起;车辆机电设备的外壳、机架等必须可靠地接车体地,不能依赖于铰链等机械接触的手段接地,否则会造成系统的不稳定。接地点处必须采用牢固的紧密接触,如铜焊。若不同金属焊在一起时,要防止化学原电池反应引起的腐蚀效应。若采用紧固接触,必须保证接触面不涂油漆。 4 地铁车辆中、低压系统的保护接地 车辆的中、低压系统主要为列车空调、空压机组、列车照明、控制电路、车门、车载信号与通信设备等提供电源,特别是列车控制系统主要是由DC110V供电,若低压系统发生接地故障,势必造成短路事故。短路电流可能会导致对应的DC110V供电断路器跳闸,列车将失去DC110V控制电源,影响重要的控制系统,如制动系统的控制电源,严重情况下还可能影响行车安全。因此,车辆的中、低压系统必须要做好保护接地。 4.1 中压母线保护接地的改进 地铁车辆的中压380V保护接地一般是将中压母线中的N线与车体相连,在采用中压交流并网供电运行时,为了减小中压负载发生短路故障时对中压母线的影响,要求对短路故障进行在线检测和隔离。一般情况下,每个中压负载都带有过流保护开关,当发生短路故障时,过流保护开关应该断开故障负载和中压母线的连接,以确保中压母线不受影响。当短路点无法通过线路空气开关进行切除时,为确保中压母线不受影响,需要对中压母线供电电路进行优化。通过在中压母线上设置3个母线接触器,将辅助电源与中压母线进行隔离。正常情况下,通过列车控制和管理系统(TCMS)给控制电路发出闭合指令,将母线接触器闭合,此时所有的辅助电源处于并联供电模式。当中压母线发生短路故障时,TCMS负责短路的定位和故障支线的隔离,此时母线接触器将被断开,确保至少有1台空压机可以正常工作。

地铁车辆故障及维修技术分析 唐善辉

地铁车辆故障及维修技术分析唐善辉 发表时间:2019-09-21T22:52:15.203Z 来源:《基层建设》2019年第19期作者:唐善辉 [导读] 摘要: 地铁在各大城市中作为主要的交通工具之一,为人们上班、出行带来了极大的便利,其在应用过程中具有无拥堵、速度快等优势。 东莞市轨道交通有限公司运营分公司广东东莞 523000 摘要: 地铁在各大城市中作为主要的交通工具之一,为人们上班、出行带来了极大的便利,其在应用过程中具有无拥堵、速度快等优势。然而,地铁车辆故障问题是需要被广泛关注内容,其会产生巨大的不良影响。,本文主要阐述地铁车辆故障及维修技术。 关键词:地铁车辆;故障处理;维修技术 引言 地铁作为城市交通的重要组成部分,其运行条件、运行区域均具有一定的特殊性,若地铁出现故障,会严重影响城市交通,甚至会带来一定的安全隐患,造成巨大的生命财产损失。有关部门需给予地铁故障高度重视,重视日常的运维工作,对各类故障产生的原因等进行分析,消除地铁车辆的故障隐患,优化城市化交通系统。 1 地铁运行过程中常见故障 1.1 按现象分类 地铁车辆的故障分类与普通车辆的基本相同,有材料零件引起的故障,还有电路控制有关的故障,另外还有动力方面的故障等。材料和零件引起的故障主要表现为材料结构损坏、零件磨损严重或变形等;电路控制有关的故障主要表现为控制异常或失效;动力方面的故障主要有噪音过大、输出不稳定等。 1.2 按性质分类 按照性质的不同,可以将地铁故障分为破坏性故障、劣化性故障和不规则故障三种。破坏性故障是指由车辆中的零件出现较严重的损坏,或者出现较大的变形,导致其不能发挥其原有功能,影响车辆的正常行驶,比如齿轮磨损严重、轮毂出现裂缝等都属于常见的破坏性故障;劣化性故障指车辆的某些功能降低,这类问题有些可以忽略但有些必须引起重视,需要根据实际故障进行综合分析;不规则故障主要表现在与电路控制有关的故障,如车门控制系统失灵、PIS 不能正常显示信息等。 1.3 按范围分类 按照范围的不同可以将故障分为局部故障和系统故障2种类型。局部故障顾名思义就是车辆的某个局部出现故障,但不影响其他部位正常运行,只需要对这一局部故障进行相应的维修处理,比如车门不能正常打开。而相对的系统性故障则是该类故障一旦发生会影响其他部位或者整个车辆无法运行,但是这类故障发生的概率较大,维修时具有相当大的难度。 2 地铁车辆故障诊断 现阶段,对地铁车辆的故障诊断时最常用的就是FMEA诊断技术。使用该技术进行诊断时一般分为三部分:①确定需要诊断的故障部位。地铁车辆的故障相当的复杂并且具有一定的分散性,人工分析并解决故障将消耗大量的时间,因此需要借助该技术快速确定故障目标,并掌握故障信息,从而制定合理的故障维修方案。②确定故障类型。该技术含有特定的故障诊断框架,能够快速确认故障的类型,大大提高了故障诊断的效率。③全面分析故障可能产生的影响。通过该技术明确故障目标并诊断出类型后,还要了解故障所带来的危害,这样有利于维修人员全面掌握故障的信息,规划维修的进度,尽可能地保护车辆系统,并在最短时间内恢复车辆的安全可靠运行。 3 地铁车辆故障维修技术 3.1 地铁车辆故障维修模式 地铁车辆故障维修模式指的是该城市中全部的地铁维修,有利于维修部门、管理部门能够有效的实施监管。目前,我国采取的地铁故障维修模式为全效维修,也就是对地铁进行检修时首先分为若干个独立的维修模块,防止人流高峰时可调度车辆不足,另外还能够节约维修资源和时间,大大提升了地铁车辆维修的效率。 3.2 地铁车辆故障维修技术 无论何种故障都应当采取有效的维修措施进行修复处理,因此合理的维修技术是消除故障的核心。当确定故障类型后,应当从以下几个方面着手解决:①分析故障的状态,了解故障对维修技术的相关要求,从而不断优化维修方案,确保维修措施的可行、有效。②利用全维修模式进一步确定故障维修的范围,有时不同的维修模块间有一定的关联性,因此必须合理分配维修内容,尽可能的使维修简单化。维修技术只有应用到相应的故障中才能发挥其价值,因此还要有针对性的选择维修技术进行故障的处理。③维修人员应当全面搜集故障信息,并综合分析各模块的类型,合理分配人员,快速、准确地实施维修,对于较为复杂的故障还应当制定合理的维修周期,从而进一步提升地铁车辆的安全性能。④实施地铁车辆的维修时,应当结合相应的故障级别选取合适的维修措施,并结合数字模型提供的信息进一步确定故障维修的技术措施。⑤由于地铁故障存在一定的特殊性,在维修时往往涉及到重组,这就需要利用全维修模式中的相互制约性,在确保维修质量的同时尽可能地降低维修成本。 3.3 维修技术效益评估 维修技术效益评估时需要从维修方案、维修技术、维修成本等多方面展开评估。故障维修人员进行维修前还应当充分结合以往的维修记录,不断调整优化当前故障的维修方案,并全面记录维修信息,同时还要不断总结故障的类型并提高维修技术,不仅丰富了地铁车辆维修的技术要点,还在一定程度上保证了车辆长期处于安全状态。 3.4 故障车辆的救援 救援方式有两种:①通过正常的地铁车辆救援;②通过专门的工程救援车救援。当使用前者方式救援时,应当根据正常车辆和故障车辆的相对位置选取救援方法,有正常车辆前面牵引或者从故障车辆后面推送的方式。如果是正常车辆后面推送时,前面的故障车辆要有司机和有关的乘务人员进行相应的控制和观察,并随时与后面的正常车辆保持联系。无论是牵引还是推送都需要充分发挥正常车辆的牵引制动力,如果有自动车钩,则根据故障地铁车辆的相对位置,打开连接处的塞门,然后向内通入空气,达到一定压力后故障车辆的停放制动就会自动消失。如果是半自动的车钩,则应当在通入一定压力的空气后,手动连接故障车辆的风管,接着打开塞门,消除故障车辆的停放制动。当通过工程救援车进行救援时,一般选取工程内燃机车辆,但是这种车辆的牵引制动性能较差,所以这种救援方式的效率不高,在

车载弓网在线监测系统在地铁车辆中的应用研究

车载弓网在线监测系统在地铁车辆中的应用研究 摘要:弓网系统是地铁车辆牵引供电系统的关键环节之一,对其实时在线监测 能有效保证地铁车辆的安全运营。本文从地铁车辆检修需求出发,研究了弓网在 线监测系统在地铁车辆中的配置需求,最大限度地减少工程投资的同时,对地铁 车辆的检修提供指导作用。 关键词:弓网,监测系统,地铁,检修 1引言 受电弓是我国城市轨道交通常用的一种受流装置,通过特定材质的碳滑板从接触网取电,为地铁车辆提供动力能源,弓网关系如图1所示。但基于不同的受电弓和接触网设计特性, 一般的弓网问题主要有碳滑板偏磨、接触网异物及燃弧等[1]。目前地铁主要采用DC1500V的大电流供电特性,弓网故障可能会引起供电系统的跳闸或车辆损坏,直接影响运营可靠性及 安全。弓网在线监测系统是一种对弓网的匹配性及可靠性的实时监测设备,根据监测数据进 行分析处理,及时对故障信息进行报警[2],保障弓网故障不被扩大和恶化。 2车载弓网在线监测系统设计 2.1系统介绍 车载弓网在线监测系统是一种车载受电弓实时自动化、动态综合监测系统,在地铁车辆 运行时,无需接触,即可自动检测弓网状态和主要工作参数,系统除了对弓网各种状态以沈阳地铁4号线一期工程地铁车辆为例,分析地铁车辆中弓网在线监测系统的功能配 置需求情况。沈阳地铁4号线一期工程选择2列车的其中一个受电弓,配置了如图2中的所 有功能,前列车的另一个受电弓不再配置针对接触网状态的监测功能;除前列车外,其余列 车的每个受电弓加装摄像头装置,可以根据监控视频及图片,有效分析弓网接触状态、异物 情况及燃弧等。这样既减小了巨大的工程投资,还可以满足运营检修需求,为故障排除提供 了可靠的保障。 2.3对车辆检修的指导意义 车辆段无线终端设备是对监测的数据进行分析、统计,对受电弓和接触网的故障信息进 行记录等。调度及检修人员可通过远程监控服务器,实时访问弓网的在线运行数据,获取报警、警告信息,及时处理故障,从而避免事故的发生。同时设备借助于大数据分析,可以对 常规故障信息分类整理,为检修人员提供技术指导,减少检修人员工作量。 3结语 我国城市轨道交通地铁车辆项目普遍采用刚性接触网,供电电流采用DC 1500V,使得列 车以低压大电流运行,车辆的受流情况较恶劣,弓网匹配和故障监测内容发生较多的变化。 隧道内车辆载客运营的安全性和可靠性要求很高,对弓网监测定位精度均有严格的要求。故 充分发挥弓网在线监测系统的实时、远距离非接触动态监测的优势,依靠受电弓检测系统的 稳定运行,及时地发现受电弓突发的故障,可有效避免弓网事故的发生,保证地铁安全运营。

相关文档
最新文档