磁致伸缩传感器

超磁致伸缩驱动器

电子雕刻机雕刻头的使用及发展 发布:2008-9-6 10:29:08 来源:模具网编辑:佚名 摘要:介绍了电子雕刻机雕刻头的研究现状与发展。目前成熟应用的主要是电磁驱动式的,分为摆动式和直动式,具有雕刻频率高、雕刻质量好的特点;同时介绍了工作原理不同于电磁式雕刻头的电子束雕刻和激光雕刻,尤其激光雕刻,具有强大的发展潜力;以及正在研究和发展的压电陶瓷和超磁致伸缩驱动器,这些功能材料的应用研究为雕刻头的发展提供了很好的参考 方向。 关键词:雕刻头电磁驱动;激光雕刻;电子束雕刻;压电陶瓷;超磁致伸缩驱动器 凹版印刷以其印品墨层厚实、颜色鲜艳、饱和度高、印版耐印力高、印刷速度快等优点在图文出版和包装印刷领域内占据重要的地位。目前,电雕凹版因技术先进、成本低、制版质量高且稳定、适应范围广、利于环保等优点已在凹版制造中占主导地位,一直是近年来的主流雕刻方法。印版的好坏是决定印刷质量的一个关键因素,凹版电子雕刻效率的高低直接影响到整个凹版制版的进程。印版是电雕系统根据数字化的图文信息驱动雕刻头在版辊上雕刻网穴后处理而成,因此,雕刻头的驱动装置在整个制版过程中起着重要作用。从上个世纪60年代开始,此领域的科技人员不断探索,希望能提高电子凹版雕刻的效率及质量,雕刻效率及质量可以从多方面提高,提高电子雕刻机的雕刻频率是一种最有效最直接的途径。德国、美国、瑞土和日本在电子雕刻技术方面处领先地位,我国在这方面的研究基本为空白「5」。文中主要介绍了电子雕刻头的研究现状及发展方向。 1 电子机械雕刻 电子机械雕刻是由电·机械转换器驱动雕刻刀,在滚筒上雕刻出网穴的一种方法,其关键在于电·机械转换器的工作性能。 1.1 常用结构的原理及特点 一般而言,磁钢产生稳恒磁通,控制线圈产生控制磁通,二者差动叠加产生驱动衔铁运动的电磁力,带动衔铁运动。 1.2 转动式电磁铁 结构原理如图1所示「2」,磁钢在气隙中产生稳恒磁场,在控制线圈未加电时,通过装配时的调试,衔铁处于相对平衡位置;当控制线圈加电时,衔铁被极化,产生磁力拉动衔铁转动,图中显示了衔铁的一种极化方式。当控制线圈加以高频变化的电流或电压时,衔铁便产生高频摆动,带动雕刻刀进行雕刻工作。

超磁致伸缩执行器

超磁致伸缩执行器 .1 超磁致伸缩材料的介绍 1.1 微机械的发展现状 随着科学技术研究向微小领域的深入,诞生了微W纳米科学与技术(Micro/Nano Science and Technology),以形状尺寸微小或操作尺度极小为特征的微机械已成为人们在微观领域认识和改造自然的一种高新技术。微机械是基于广泛的现代科学技术,并作为整个微/纳米科学技术的重要组成部分的一项崭新研究课题。其必须具备的基本要求是: ⑴体积小,精度高,重量轻; ⑵性能稳定,可靠性高; ⑶能耗低,灵敏度和工作效率高; ⑷多功能和智能化; ⑸适于大批量生产,制造成本低廉。 微机械发展很快,近几年,已成功开发出微驱动器、微传感器、微控制器等,并由这些不同的微机械器件集成许多具有精巧功能的集成机构IM(Integrated Mechansim)。相对完备的微电子机械系统MEMS逐渐形成,整个系统的尺寸可以缩小到几毫米甚至几百微米。如美国贝尔实验室开发出直径为400μm的齿轮,加州大学伯克利分校试制出直径为60μm的静电电机,直径为50μm的旋转关节,以及齿轮驱动的滑块和灵敏弹簧,美国斯坦福大学研制出直径20μm,长度150μm 的铰链连杆机构,210μm×100μm的滑块机构,转子直径200μm的静电电机和流量为20ml/min的液体泵,日本东京大学工业研究院研制成1cm3大小的爬坡微型机械装置。 我国许多高校和研究所也取得不少进展。如上海冶金研究所研制出直径为400μm的多晶硅齿轮、气动涡轮和微静电电机等。这些微型机械不少已有具体的应用。MEMS的研究和开发正得到世界各发达国家的广泛重视,尤其是集微机械、微电子等综合技术为一体的微机器人,由于其在工业、生物医学、军事和科研等领域的广泛应用前景而倍受青睐,随着智能

磁致伸缩液位计检修维护规程

磁致伸缩液位计检修维护规程 7.1概述 磁致伸缩液位计是近几年来国内外发展的新一代高科技产品,具有测量精度高、安装高度方便、使用寿命长、信 号输出多(一台界位计可同时测量14个界面+6个温度信号)待特点,而广泛应用在石油、化工等工业领域过程控制液位的连续测量。 磁致伸缩液位计主要由不导磁的探测杆、磁致伸缩线(波导)、浮球及变送器组成,见下图。安装在探测杆内的磁致 伸缩线与电路模块相连,电路模块中的 磁致伸缩液位计原理图

1-变送器;2-法兰;3-浮球;4-挡环;5-探测杆;6-波导线 脉冲发生器所产生的电流脉冲沿着波导线传播,当浮球随液位上升或下降时,其内部的磁钢随之同步变化,磁钢的固有磁场与导波线周围由起始脉冲所产生的磁场矢量叠加,并形成螺旋磁场,产生瞬时扭力,使波导线扭动并产生张力脉冲,这个脉冲以固定的速度沿波导线传回,由线圈转换器转换成感应电动势,并整形为窄脉冲,此脉冲经放大后,由信号处理电路计算起始脉冲与终止脉冲的时间差,再经过变送器信号处理、放大后转换成4?20mA信号输出。 现以UPM100型为例加以说明,其他同类型的仪表可参 照使用。 7.2主要技术指标 7.2.1测量范围:0?22m < 6m,选用钢性探测杆; >6m选用柔性探测杆。 7.2.2工作压力:依赖所选浮子耐压情况 软管w 1.89MPa;

硬管w 6.5MPa。 723工作温度:-40?125Co 724测量精度:0.5mmo 7.2.5 供电:24V DCo 7.2.6输出信号:4?20mA DC (其中智能式带HART信号)。 7.2.7负载电阻:额定负载电阻250Q ;最大负载电阻600 Q (24V DC 时)° 7.2.8环境温度:-20?60 C。 7.2.9介质密度:液位》0.45g/cm 3;界位》0.15g/cm 3。 7.2.10介质粘度:1ST(10,m2/s) 7.2.11防爆标志隔爆型dn CT5;本安型ib n CT1?6° 7.2.12本安型敷设电缆分布参数:电感w 2mH电容w 0.08uF ° 7.3检查校验 7.3.1检查 7.3.1.1仪表铭牌各数据、校验单等要齐全。

5、磁致伸缩液位计常见故障及处理方法

K-tek磁致伸缩液位计相关知识 一、磁致伸缩液位计接线图 磁致伸缩液位计是两线制变送器, 如图1所示:信号+:接在“+POWER”端子; 信号-:接在“-METER,-POWER”端子 图1 二、写保护设置 在变送器模块的左上角有两个跳线开关,如下图2所示: 右侧跳线开关为写保护跳线,当跳线短接环接在上端时,写保护关,变送器可以改变组态;当跳线短接环接在下端时,写保护开,变送器不可以改变组态。 三、故障模式设置 在变送器模块的左上角有两个跳线开关,如下图2所示:

左侧跳线开关为故障模式跳线,当跳线短接环接在上端时,为“FAIL LOW”模式;当跳线短接环接在下端时,为“FAIL HIGH”模式。 在“FAIL LOW”模式下,当变送器处以故障模式时电流输出为3.6mA; 在“FAIL HIGH”模式下,当变送器处以故障模式时电流输出为21mA; 图2 四、量程设置 1、用按键设置(不带液晶屏的模块)

设置4mA输出点,把磁浮子移动到探杆的零点位置,同时按“▲”和“▼”键一秒钟,然后按“▼”键一秒钟,设定4mA输出点; 设置20mA输出点,把磁浮子移动到探杆的满量程位置,同时按“▲”和“▼”键一秒钟,然后按“▲”键一秒钟,设定20mA输出点。 2、用带液晶屏的模块设置 设置4 mA输出点,按“▲”“▼”键,翻滚菜单选项,当菜单显示“CAL”时,按“select”键进入校验模式,再翻菜单选项至“Lower Range Value”,按“select”键进入量程下限设置选项,用“▲”“▼”键调整量程下限值。 设置20 mA输出点,按“▲”“▼”键,翻滚菜单选项,当菜单显示“CAL”时,按“select”键进入校验模式,再翻菜单选项至“Upper Range Value”,按“select”键进入量程上限设置选项,用“▲”“▼”键调整量程上限值。 五、门槛电压设置 在模块下面的底板上,有一个电位器用于调整门槛电压,具体位置在模块的右下角缺口的对应底板上。门槛电压的测量可以用万用表串联到图2所示的模块右上角的两个针孔底座中,来测量门槛电压。 六、常见故障及处理办法

磁致式位移传感器

磁致伸缩位移传感器 一、概述磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精 确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的;该传感器的高精度和高可靠性已被广泛应用于成千上万的实际案例中。 由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损, 可以大大地提高检测的可靠性和使用寿命。 二、工作原理 磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况更无需定期重标。 三、产品特点及应用领域 产品特点 *内部非接触式测量 *性能价格比高 *多种输出方式可供选择 *防浪涌、防射频干扰

磁致伸缩线性位移传感器

磁致伸缩线性位移传感器 一、概述 磁致伸缩线性位移(液位)变送器(简称磁尺),是采用磁致伸缩原理制造的高精度、长行程绝对位置测量的位移变送器。不但可以测量运动物体的直线位移,同时给出运动物体的位置和速度模拟信号或液位信号,根据输出信号的不同,分为模拟式和数字式两种。灵活的供电方式和极为方便的多种接线方法和多种输出形式可满足各种测量、控制、检测的要求;由于采用非接触测量方式,避免了部件互相接触而造成磨擦或磨损,因此很适合应用于环境恶劣、不需定期维护的系统工程或场合。不仅仅是传感器的性能优良,更重要的是工作寿命长、良好的环境适应性、可靠性、能有效和稳定的工作,与导电橡胶位移传感器、磁栅位移传感器、电阻式位移传感器等产品相比有明显的优势。而且安装、调试方便,再加上有极高的性能价格比;及时周到的售后服务,足可让用户更加放心地使用。 二、工作原理 磁致伸缩线性位移(液位)变送器主要由测杆、电子仓和套在测杆上的非接触的磁环(浮球)组成。测杆内装有磁致伸缩线(波导丝)。工作时,由电子仓内的电子电路产生一起始脉冲,此起始脉冲在波导丝中传输时,同时产生了一沿波导丝方向前进的旋转磁场。当这个磁场与磁环(浮球)中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,产生扭动脉冲(或称“返回”脉冲)。这一扭动脉冲被安装在电子仓内的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两脉冲起始和返回之间的时间差,即可精确测出被测的位置和位移。 三、安装 安装前注意事项 认真阅读全部安装说明,防止安装的环境温度、冲击、振动及压力超出传感器的允许范围;不可使测杆弯曲;切勿使变送器的电子部件端或最末端承受大的冲击;传感器不可用于有化学反应或其它对传感器有损害的易燃、易爆、腐蚀、蒸气和液体等场合;传感器的电子部件防溅但不可浸没,切不可让液体浸至六方形基座上方。安装完毕,应对测杆进行保护处理。 安装方法 (1)有附件时的安装方法 对测量范围小于是1000mm的传感器,建议选用MK-1安装附件;大于1000mm的,选用MK—2安装附件。 1.用传感器支架将传感器卡住,并用锁紧螺母将支架固定在传感器的螺纹上。 2.将开口磁环用两个防松垫圈#6和两个专用螺钉M3×12固定在磁环支架上,当将磁环装在测杆时,螺钉头部应朝向六方基座侧;磁环应尽量与测杆同心且无接触,但

扭矩传感器

扭矩传感器 1.概述 扭矩又叫转矩,是反映转动设备输出力的大小的重要参数。扭矩在物理学中用下面的公式计算。 其中:P表示转动设备的输出功率,单位千瓦(k W);M表示转动设备的输出扭矩,单位牛米(N·m);N表示转动设备的转速,单位转/分钟(r/min)。从公式可以看出,扭矩是一个与功率和转速相关的物理量,它反映了转动设备输出功率和转速的比值关系。如果知道了转动设备的输出功率和转动速度,就可以利用公式计算出转动设备的扭矩。但实际生产中,功率的测量是不容易的,而扭矩可以利用较简单的装置把扭矩转化为力和磁的测量,对于力和磁这两个物理量的检测,我们有许多成熟工具,这样扭矩的测量就变得相对简单了。 2.常见的扭矩传感器分类 常见的扭矩传感器包括电阻应变式、磁电相位差式、光电式、磁弹性式、振 3.几种常见的扭矩传感器原理 (1)电磁齿栅式转矩传感器

电磁齿(栅)式转矩传感器的基本原理是通过磁电转换,把被测转矩转换成具有相位差的两路电信号,而这两路电信号的相位差的变化量与被测转矩的大小成正比。经定标并显示,即可得到转矩值。齿(栅)式传感器的工作原理如图1所示。 图 1电磁式转矩传感器原理图 电磁式转矩传感器在弹性轴两端安装有两只齿轮,在齿轮上方分别有两条磁钢,磁钢上各绕有一组信号线圈。当弹性轴转动时,由于磁钢与齿轮间气隙磁导的变化,信号线圈中分别感应出两个电势。再外加转矩为零时,这两个电势有一个恒定的初始相位差,这个初始相位差只与两只齿轮在轴上安装的相对位置有关。在外加转矩时,弹性轴产生扭转变形,在弹性变形范围内,其扭角与外加转矩成正比。在扭角变化的同时,两个电势的相位差发生相应的变化,这一相位差变化的绝对值与外加转矩的大小成正比。由于这一个电势的频率与转速及齿数的乘积成正比,因为齿数为固定值,所以这个电势的频率与转速成正比。在时间域内,感应信号S1,S2是准正弦信号,每一交变周期的时间历程随转速而变化,测出他们之间的相差Φ即可得到扭矩值。由材料力学可知: Φ 式中Φ——弹性轴的扭转角; ——转矩; ——弹性轴材料的剪切弹性模量; ——弹性轴直径; ——弹性轴工作长度。 其中,、、都是常数,令 则有 Φ 因此,扭矩的测量就转换成相位差的测量。而S1、S2是准正弦信号,其相位的测量需要用高频脉冲插补法,即用一组高频脉冲来内插进被测信号,然后对高频脉冲计数。

超声换能器用途解析

超声换能器的用途 超声波常用的换能器由振动激励方式区分分为磁致伸缩换能器和电致伸缩换能器 . 20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。1917年,法国物理学家朗之万用天然压电石英制成了夹心式超声换能器,并用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 二、超声换能器 超声诊断仪是依靠超声换能器产生入射超声波(发射波)和接收反射的超声波(回波)的.所以在医用超声诊断仪中超声换能器又称为探头. 超声换能器的机械振荡是由高频电能激励产生的.反射回来的超声能量又通达超声换能器转换为电脉冲.探头能将电能转换为声能,又能将声能转换成电能,故有换能器之称. (一)压电效应 1、正压电效应 在晶体或陶瓷的一定方向上,加上杌械压力,使其变形,晶体或陶瓷的两个受力面上, 产生符号相反的电荷;变形方向相反,两面的电荷极性随之变换.电荷密度同施加的机械力成正比.这种因机械力作用而激起表面的电荷效应,称为正压电效应. 2.逆压电效应 在晶体或陶瓷表面沿轴方向施加电压,在电场作用下引起几何应变,电压方向改变,机械应变方向亦随之改变,形变与电场成比例.这种因电场作用而引起的形变效应,称为逆压电效应.超声诊断仪探头在发射超声波时是逆压电效应.接收超声回波时产生压电效应. (二)压电材料和压电振子 具有压电效应的材料很多,如石英、酒石酸钾钠等晶体,有钛酸钡、钛酸铅、铌酸锂、铌酸钡、钛酸锂、锆钛酸铅等陶瓷都是具有压电效应的材料;压电材料有压电效应就有逆压电效应.自锆钛酸铅问世以来,医用超声换能器所用的压电材料就由锆钛酸铅代替了. 在压电体的正反表面上进行极化,覆盖上一层激励电极后,就成为压电振子,就具有正压电效应和逆压电效应. 换能器的压电振子相当于一个电容(具有容抗作用),在超声发射电路中与线圈形成并联谐振,得到高频激励电压,产生机械振动和超声波.压电换能器上施加的交变电压的频率与换能器的压电振子的固有频率相等时,才能获得最大的机械振动. (三)诊断用超声换能器的基本结构形式 1.基本单元换能器 根据临床诊断的要求,换能器有许多种不同结构形式,而单元换能器是基本的结构.单元换能器它由主体和壳体两部分组成. (1)主体:包括:①压电振子,它是产生压电效应的元件.

磁致伸缩液位计常见故障及处理方法

K-tek磁致伸缩液位计相关知识一、磁致伸缩液位计接线图 磁致伸缩液位计是两线制变送器, 如图1所示:信号+:接在“+POWER”端子; 信号-:接在“-METER,-POWER”端子

图1 二、写保护设置 在变送器模块的左上角有两个跳线开关,如下图2所示: 右侧跳线开关为写保护跳线,当跳线短接环接在上端时,写保护关,变送器可以改变组态;当跳线短接环接在下端时,写保护开,变送器不可以改变组态。 三、故障模式设置 在变送器模块的左上角有两个跳线开关,如下图2所示:

左侧跳线开关为故障模式跳线,当跳线短接环接在上端时,为“FAIL LOW”模式;当跳线短接环接在下端时,为“FAIL HIGH”模式。 在“FAIL LOW”模式下,当变送器处以故障模式时电流输出为3.6mA; 在“FAIL HIGH”模式下,当变送器处以故障模式时电流输出为21mA; 图2 四、量程设置 1、用按键设置(不带液晶屏的模块) 设置4mA输出点,把磁浮子移动到探杆的零点位置,同时按“▲”和“▼”键一秒钟,然后按“▼”键一秒钟,设定4mA输出点; 设置20mA输出点,把磁浮子移动到探杆的满量程位置,同时按“▲”和“▼”键一秒钟,然后按“▲”键一秒钟,设定20mA输出点。 2、用带液晶屏的模块设置 设置4 mA输出点,按“▲”“▼”键,翻滚菜单选项,当菜单显示“CAL”时,按“select”键进入校验模式,再翻菜单选项至“Lower Range Value”,按“select”键进入量程下限设置选项,用“▲”“▼”键调整量程下限值。 设置20 mA输出点,按“▲”“▼”键,翻滚菜单选项,当菜单显示“CAL”时,按“select”键进入校验模式,再翻菜单选项至“Upper Range Value”,按“select”键进入量程上限设置选项,用“▲”“▼”键调整量程上限值。五、门槛电压设置

磁致伸缩位移传感器

磁致伸缩位移传感器研究报告 概述 磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的;该传感器的高精度和高可靠性已被广泛应用于成千上万的实际案例中。 由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 工作原理 磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。 技术参数 测量对象:位置、速度(绝对速度),可测量1~2个位置 测量范围:50 mm~8000mm 零点可调范围:100%F.S 输出方式:

磁致伸缩液位计

《磁致伸缩液位计》国家标准编制说明 1.任务来源 根据国家标准化管理委员会计划函(2003)106号文下达的《2003第二批制修订国家标准项目计划》安排,北京航天神舟测控仪器有限公司为《磁致伸缩液位计》国家标准制订的负责单位,项目编号为:20032600-T-604。任务起止年限为2003~2004。 2.编制原则 本标准根据GB/T1.1-2000和GB/T1.2-2002《标准化工作导则》的规定编写。同时,坚持与现行有关标准协调、一致。 本标准的编制参考了国内外大量相关产品的技术资料和说明书,本着通用性的原则,对相关产品的基本指标、技术性能、试验方法进行分析和归类。提取其共性,分析其差异,以满足现有产品的技术统一性和兼容性。使得标准满足现有大多数产品的需要。同时充分考虑国内外相关技术发展趋势,使得本标准满足技术先进性的要求。 3.工作简况 负责单位接到下达的计划以后,于2004年初行文至有关单位及专家,要求落实标准制订工作组成员。在有关单位及专家的大力支持下,于2004年4月组成了《磁致伸缩液位计》国家标准制订工作组。其组成单位有:北京航天神舟测控仪器有限公司、上海工业自动化仪表研究所、沈阳仪表科学研究院、机械工业仪器仪表综合技术经济研究所、北京航天计量测试技术研究所、中国石油化工销售公司计量站。标准主要起草人:潘年茂、程言峰、李永清、徐秋玲、李竞武、冯晓升、金丽辉、缪寅宵、宋伟。 标准工作组于2004年9月17~19日在北京召开了首次工作会议。会议着重对本标准制订工作进行了深入细致的讨论与研究,确定了制订方案,形成了“草案稿”。并发往工作组每个成员征求意见。在汇集各方意见的前提下,经过多次更改,形成“第4稿草案”。 标准工作组于2005年1月20~21日在北京召开了第二次工作会议。会议对“草案4”诸多细节问题进行了全方位的探讨,确立了标准的结构框架及基本内容,由程言峰执笔,拟定出了“征求意见稿”。 4.项目情况综述 磁致伸缩液位测量技术是当今世界兴起的一项新技术。因其材料特性和结构特点,使其具备比其它原理的液位计更出色的优势: 1)在一个液位计测杆上可同时嵌入多路温度或压力传感器,可安装多个浮子用 于液面、界面、密度的测量,从而实现多参数测量。 2)通过测量声波在固体中的传播时间的方法来实现位置测量的目的。声波在固

超声波换能器的基本原理

. 超声波换能器的基本原理 压电式换能器:压电式换能器利用了某些单晶材料的压电效应和某些多晶材料的电致伸缩效应。 超声波压电效应 某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的变化(形变)会破坏原来宏观表现为电中性的状态,产生极化电场(电极化),所产生的电场(电极化强度)与应变的大小成正比。这种现象称为正压电效应,它是由居里兄弟于1880年发现的。随后,在1881年又进一步发现这类单晶材料还具有逆压电效应,即具有正压电效应的材料在受到外加电场作用时,会有应力和应变产生,其应变与外电场的大小成正比。压电效应是晶体结构的一个特性,它与晶体结构的非对称性有关,而压电效应的大小及性质则与施加的应力或电场对晶体结晶轴的相对方向有关。具有压电效应的单晶材料种类很多,最常用的如天然石英(SiO2)晶体,以及人工单晶材料如硫酸锂(Li2SO4)、铌酸锂(LiNbO3)等等。 2电致伸缩效应 某些多晶材料中存在有自发形成的分子集团,即所谓“电畴”,它具有一定的极化,并且沿极化方向的长度往往与其他方向的长度不同。当有外加电场作用时,电畴会发生转动,使其极化方向与外加电场方向趋于一致,从而使该材料沿外加电场方向的长度将发生变化,表现为弹性应变。这种现象称为电致伸缩效应。 3.磁致伸缩式换能器 磁致伸缩式换能器利用了磁致伸缩效应,这时特定合金材料结晶结构的物理特性,即某些铁磁体及其合金,以及某些铁氧体中的磁畴,在其自发磁化方向上的长度可能与其它方向上的不同。当有外加磁场作用时,由于这种磁畴将发生转动,使其磁化方向尽量与外磁场方向趋于一致,从而使该材料沿外磁场方向的长度将发生变化,表现为弹性应变(当然,这种变形引起的应变是很小的,约在10-5~10-6之间)。这种现象即是磁致伸缩效应。相反,具有磁致伸缩效应的材料在经受外加应力或应变时,其磁化强度也会发生改变,此即为逆磁致伸缩效应。这样,在对磁致伸缩材料施以交变磁场时,该材料将沿磁力线方向发生磁致形变,从而可以在与它表面紧密接触的介质中激发出机械振动波-[1]。同样,利用逆磁致伸缩效应则可达到接收超声波的目的:施加到磁致伸缩材料上的应变(弹性应力-超声波作用力)将使处在外加磁场中的该材料其磁场的磁通密度发生变化(此即所谓磁弹性效应),从而使位于该材料表面上的检测线圈中将因磁通密度变化而产生感应电势,可以用作磁弹性效应的信号,达到接收超声波的效果(注意磁场方向应和应力方向-超声波产生的质点振动方向一致)。根据磁致伸缩的变化状态,可以分为: [1]线型磁致伸缩:在发生应变时,材料的体积不变,但在长度方向上伸缩变化的程度大,这是磁致伸缩式换能器主要应用的类型。但是,它只能在居里温度以下的情况发生,若温度超过居里点后将只能存在体积型磁致伸缩。 [2]体积型磁致伸缩:在发生应变时,材料的体积也会发生变化。磁致伸缩式换能器主要用于低频大功率的场合,这与其频率受限制和受磁性材料特性参数限制的因素有关,它特别是在功率超声应用领域中有着广泛应用,其特点主要是机械强度高,性能稳定,水密要求低(不会水解)。但是,它的涡流和磁滞损耗较大,电声转换效率不如压电式换能器,而且通常需要有较大的激励电能以用于大功率场合。需要注意的是,在施以交变磁场时,由于趋肤效应

磁致伸缩位移传感器位移测量研究与实现

磁致伸缩位移传感器位移测量研究与实现 李庆山 潘日敏 戴曙光 杨永才 (上海理工大学光学与电子信息工程学院 上海 200093) 摘要 基于磁致伸缩位移传感器的位移测量原理,讨论了位移测量的方法与实现:通过测量发射脉冲与回波脉冲的时间差计算活动磁铁的位置。基于F PG A器件设计了数字移相脉冲计数方式对时间进行精确测量,该方法对于提高测量位移精度,降低测量系统对高频的要求,对提高系统稳定性和抗干扰能力有重要意义。 关键词 磁致伸缩 数字移相 时间测量 F PG A Research and Realization of the Displacement Measurement for Magnetostric-tive Displacement Sensor Li Qing shan Pan Rimin Dai Shuguang Yang Yong cai (College of Op tical and Electr onics I nf or mation Eng ineer ing, Univ er sity of Shanghai f or S cience and T echnology,Shanghai200093,China) Abstract Basing on t he measurement principle of magnetostritive displacement sensor,the method and realiza-tion of displacement measurment are int roduced.M easurement on the interval betw een t rigger impulse and re-turn impulse corresponds t o the position of t he moving magnet.T he precise time int erval measurement with digi-tal phase shift count ing is designed by using FPG A device.T his method can enhance t he systemat ic precision, reduce the syst emat ic demand on high frequency.It has great significance in promot ing syst em st ability and anti-jamming. Key words M agnet ostrict ive Digital phase shif t T ime measurement FPGA 1 引 言 磁致伸缩位移传感器是一种以磁致扭转波为传播媒介的传感器,这种传感器安装简单、方便,能承受高温、高压和高振荡的环境。广泛应用于易爆、易燃、易挥发、有腐蚀的场合,但在国内设计和应用的都比较少。文中基于磁致伸缩位移传感器的原理,阐述了一种可以提高磁致伸缩位移传感器精度的位移测量方法。 2 磁致伸缩位移传感器的原理 磁致伸缩位移传感器(M agnet ostrict ive Posit ion Sensor)如图1所示,主要由波导钢丝1,位置磁铁4,波检测器3和电子系统5组成。位置磁铁通常装在一个运动部件A上,而传感器主体则装在一个固定的部件B上。传感器工作时,电子信号和处理系统5以时间间隔为T1发给磁致波导钢丝1的激励脉冲电流i e 。该脉冲电流将产生一个围绕波导钢丝1的旋转磁场。位置磁铁4也产生一个固定的磁场。在这两个磁场的正交作用下,波导钢丝产生磁致弹性伸缩,形成一个磁致旋转波2。该旋转波沿着波导钢丝以2800m/s的速度向两边传播。当它传到波导钢丝一端的波检测器3时被转换成电信号u a。通过测量磁致旋转波从位置磁铁4传到波检测器3的时间T0就能确定位置磁铁和波检测器之间的距离。这样,当部件A和B产生相对运动,通过磁致旋转波位移传感器就可以确定部件A的位置和速度。 3 位移测量原理和常规方法分析 磁致伸缩位移传感器的位移计算非常简单,将所 第26卷第8期增刊 仪 器 仪 表 学 报 2005年8月

磁致伸缩位移传感器工作原理分析

油缸磁致伸缩位移传感器 品牌:Germanjet磁致伸缩位移传感器 性能参数: 结构特征:外壳材料:铝,经阳极化处理/外保护管为,法兰盘为不锈钢精密制造。外部为耐压外管与六角法兰为100%不锈钢。电子部分与耐压外管为模块组装设计。

一、油缸磁致伸缩位移传感器实物图

二、磁致伸缩位移传感器原理图 三、磁致伸缩位移传感器工作原理 利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。 测量过程是由传感器的电子室内产生电流脉冲,电流脉冲(也称“询问信号”)沿着传感器内以磁致伸缩材料制造的波导管以声音的速度运行,从而在波导管外产生一个圆周磁场,波导管发生磁致伸缩现象(铁磁性物质在外磁场作用下,其尺寸伸长或缩短,去掉外磁场后,其又恢复原来的长度),产生一个应变脉冲。应变脉冲(也称“返回信号”)很快便被电子头的感测电路探测到。 测量时,电子仓中的激励模块在敏感检测元件(磁致伸缩波导丝)两端施加一查询脉冲,该脉冲以光速在波导丝周围形成周向安培环形磁场,该环形磁场与游标磁环的偏置永磁磁场发生耦合作用时,会在波导丝的表面形成魏德曼效应扭转应力波,扭转波以声速由产生点向波导丝的两端传播,传向末端的扭转波被阻尼器件吸收,传向激励端的信号则被检波装置接收,电子仓中的控制模块计算出查询脉冲与接收信号间的时间差,再乘以扭转应力波在波导材料中的传播速度(约2830m/s),即可计算出扭转波发生位置与测量基准点间的距离,也即游标磁环在该瞬时相对于测量基准点间的绝对距离,从而实现对游标磁环位置的实时精确测量。 从产生询问信号的一刻到返回信号被探测到所需的时间周期乘以固定的声音速度,我们便能准确的计算出磁铁的位置变动。这个过程是连续不断的,所以每当活动磁铁被带动时,新的位置很快就会被感测出来。由于输出信号是一个真正的绝对值,而不是比例的或需要再放大处理的信号,所以不存在信号漂移或变值得情况,更不必像其他位移传感器一样需要定期重标。

磁致伸缩材料在超声波发生器

磁致伸缩材料在超声波发生器中的应用

关键词:智能材料超磁致伸缩材料超声波发生器 智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。 磁致伸缩材料(magnetostrictive material),具有显著磁致伸缩效应的、可将电能转换为机械能或将机械能转换为电能的金属、合金以及铁氧体等的一种智能材料。 磁致伸缩现象早在19世纪中叶就被发现,利用镍、坡莫合金、铁氧体等磁性材料的磁致伸缩效应制作的音响变换振子(超声波发生器)等器件,也早有实际应用,但由于其磁致伸缩量小,从而被以PZT (代表性的压电材料由Pb(Zr,Ti)O3 构成的陶瓷材料)为代表的压电材料占据主导地位。开发具有更大磁致伸缩效应的材料,提高磁致伸缩材料应用范围一直是人们追求的目标。20世纪7O年代在重金属Tb,Dy等单晶体中发现了很高的磁致伸缩现象。随后开发出室温下磁致伸缩系数高达(1~2)×10的三次方的TbFe 金属间化合物,这种巨大的磁致伸缩现象称为超磁致伸缩效应。 在现有的超声传感器中,主要有基于压电效应的压电传感器和基于磁致伸缩效应的磁致伸缩传感器。机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜材料的出现,使得压电传感器在工业上的应用最为广泛,压电式超声传感器效率高但对温度比较敏感,热的、机械的及化学的性能也不稳定,限制了在某些领域的应用;磁致伸缩式超声传感器和压电陶瓷、人工压电单晶、压电半导体等相比,超磁致伸缩材料具有下列优点:磁致

伸缩应变λ 比纯Ni大50倍,比PZT材料大5~25倍,比纯Ni和N 卜Co合金高400 ~800倍,比PZT材料高14~30倍;磁致伸缩应变时产生的推力很大,直径约为10 mm 的Tb-Dy-Fe的棒材,磁致伸缩时产生约200 kg的推力:能量转换效率(用机电耦合系数K。。表示)高达70 ,而Ni基合金仅有162/5,PZT材料仅有40~60 ;其弹性模量随磁场而变化,可调控;响应时间(由施加磁场到产生相应的应变λ 所需的时间称为响应时间)仅为百万分之一秒,比人的思维还快;频率特性好,可在低频率(几十至1 000 Hz)下工作,工作频带宽;稳定性好、可靠性高,其磁致伸缩性能不随时间而变化;无疲劳、无过热失效问题。 原理:磁致伸缩式超声传感器是利用材料的磁致伸缩效应及其逆效应进行工作的。当铁磁材料置于磁场中时,它的几何尺寸会发生变化,这种现象称为磁致伸缩效应。在超声技术中最常用的铁磁材料有镍或它的合金。根据铁磁材料在磁场中的几何尺寸变化的形式不同,磁致伸缩效应可分为纵向效应、横向效应、扭转效应和体积效应等。 如果在圆柱形磁致伸缩材料中,既有沿长度方向即圆柱轴向的磁场B1,同时又有绕轴的周向磁场B2,那么合成的磁场将是螺旋形的,当其中任何一个磁场变化时,将产生沿螺旋方向的伸缩并激发出扭转波,这就是维德曼(Wiedeman)效应;若在圆柱形磁致伸缩材料中,有一恒定的轴向磁场B2,当施加变化的轴向磁场B 时,将沿轴向激发出纵波,也就是焦尔效应。当扭转波或纵波在磁致伸缩材料中传播,将在磁致伸缩材料中激发出磁场,这就是磁致伸缩逆效应,分别称为

KTEK磁致伸缩液位计

K-tek磁致伸缩液位计 一、工作原理 磁致伸缩液位传感器部分是基于磁致伸缩原理设计的,它由敏感元件波导丝(管)、活动磁铁及发射电脉冲信号和接收返回信号的电子部件构成。当电子探头中脉冲发生器产生的电脉冲沿钢管内的波导丝传递时,电脉冲同时伴随产生一个垂直于波导丝的环形磁场以光速沿波导丝传递。当脉冲环形磁场与浮子固有磁场相遇时,二者的磁场矢量相叠加形成螺旋磁场,产生瞬时扭力并在波导丝上形成一个机械扭力波以声速传递返回到电子探头,使线圈两端产生感应脉冲。通过测量出发电脉冲与扭力波返回产生的感应脉冲之间的时间差,就可以精确地计算出被测液面高度。同时将温度传感器置于测杆内,便可连续测定介质温度。 二、磁致伸缩液位计接线图 磁致伸缩液位计是两线制变送器, 如图1所示:信号+:接在“+POWER”端子; 信号-:接在“-METER,-POWER”端子

图1 三、写保护设置 在变送器模块的左上角有两个跳线开关,如下图2所示: 右侧跳线开关为写保护跳线,当跳线短接环接在上端时,写保护关,变送器可以改变组态;当跳线短接环接在下端时,写保护开,变送器不可以改变组态。 四、故障模式设置 在变送器模块的左上角有两个跳线开关,如下图2所示: 左侧跳线开关为故障模式跳线,当跳线短接环接在上端时,为“FAIL LOW”模式;当跳线短接环接在下端时,为“FAIL HIGH”模式。 在“FAIL LOW”模式下,当变送器处以故障模式时电流输出为3.6mA; 在“FAIL HIGH”模式下,当变送器处以故障模式时电流输出为21mA;

图2 五、量程设置 1、用按键设置(不带液晶屏的模块) 设置4mA输出点,把磁浮子移动到探杆的零点位置,同时按“▲”和“▼”键一秒钟,然后按“▼”键一秒钟,设定4mA输出点; 设置20mA输出点,把磁浮子移动到探杆的满量程位置,同时按“▲”和“▼”键一秒钟,然后按“▲”键一秒钟,设定20mA输出点。 2、用带液晶屏的模块设置

磁致伸缩位移传感器故障处理

磁致伸缩位移传感器的故障处理 电压和电流输出的负载是不一样的,电压的负载时要求电阻越大越好,一般不要小于1,000Ω,太小时就相当于短路了,会损坏产品;电流的负载是要求电阻越小越好,一般不要大于1,000Ω,太大时就相当于开路了,没有电流流通。所以电流输出的负载和电压输出的负载限制是不一样的而且一定要注意:电压输出时,负载不能短路,否则会使负荷太大,烧毁电路;而电流输出时,负载不能开路,否则会使负载增加而烧毁电路。这两点一定要清楚。至于电压输出和电流输出,到了机器上最终的用途还是一样的,电压输出直接用电压信号,电流信号流过电阻,在电阻上有电压,也是取用电压信号。 安装接线:磁致尺对电压的波动可以接受,可以使用12V~36V的电源,当然稳定的供电电源还是对产品的精度更有好处,但对静电还是要采取一些措施。除线路板内部采取了很多措施外,传输线有屏蔽线(双重屏蔽:编织网和锡包层,可以抗高、低频干扰),还有接地端子,必须保证可靠接地(抗静电干扰)。上述几项措施缺一不可。 一般情况下,客户的产品替换下来,可能了解原来的产品是电流型还是电压型,但订了货却不知道如何安装。如:原来的电压型是五线甚至七线的,而我们的四线的(电源+、-、信号线、地线)一般棕色或红色是直流电源正极,蓝色或黑色是负极,可以用万用表的电压档位测可能的正、负极之间的电压值,如果没有把握,就可以在可能的正、负极之间接一个1000Ω的电阻,再测量电阻之间的电压值,确认正负极性后,用正极分别去短路剩下的几根线,同时看电脑显示是否出现稳定的最大值,如果是,再用负极去短路刚才验证的那根线,同时看电脑显示是否出现稳定的最小值,如果是,就是信号线了。这就确定了+、-、和信号线了。如果信号线非常难以确定,上述方法行不通,可能就是该传感器的电源与电脑的电源没有共地,没有共地,就没有一个基准值,该传感器的电源相对电脑电源就是浮动电压值。因此,必须将该传感器的电源负极与电脑的电源负极短接。上述问题自然解决。这很容易出现在维修设备的过程中。其它的几根线不要管,用电工胶绑起即可。 如果是电流型输出的传感器,就不能这样实验了。因为,电流型输出负载不能开路,否则,容易过载损坏传感器。对于,三线制输出的恒伸传感器,应该先在恒伸传感器信号线与负极之间先接一个电阻1000Ω短路,以免误操作时过载。在预先弄清楚正负极的情况下,接好恒伸传感器的正负极接线,再将信号线分别与其余几根线短路,看有无稳定的显示。如有,可确定信号线的接线。然后在停电的情况下,取下原来短接的那个电阻,再接好线,然后才能送电。注意信号线一定不能开路。 对于传输距离较长,但是电脑有需要电压输出信号,可以选用电流输出信号进行传输,到了电脑边再将电流信号转换成电压信号,方法很简单,只需要在输出与电源负极之间接入一个标准的高品质电阻就可以。 由于磁致伸缩位移传感器的原理,从机械上讲,因为是无接触、无磨损的,所以出现故障的机会不多,除非机械损坏,磁环脱落,这从外观就容易判断。如果是装在油缸内部,磁环突然脱落,显示数值将没有变化。如果是停机好久才脱落,开机上电时好像在靠近电子仓端出现了一个磁环,即:正逻辑尺将会出现最小显示数值,负逻辑尺会出现最大显示数值。

磁致伸缩液位计

磁致伸缩液位计 1、概述 磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的;高精度和高可靠性是该液位传感器的两大特点。 由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩液位计在世界范围内广泛应用于过程容器的精确液位测量。高精度和免维护成为选择这种产品的两个重要原因。拥有温度高达427℃和压力达207bar的可选等级。磁致伸缩液位变送器几乎适合所有的应用条件。HART和HONEYWELLDE通讯协议选项使磁致伸缩液位计和大多数的控制系统可以更加方便的进行数字连接。内置LCD可以提供4-20mA,百分比和其他工程单位显示。 当用于储罐时,考虑到高精度,低维护和合理的价格,用户乐意在他们的储罐上安装高精度磁致伸缩变送器。由于具有可以方便地安装到最大23米高罐的能力,所以可以解决几乎所有的液体存储应用问题:一些常用液体包括水,酸液,腐蚀剂,丙烷,氨水,油,燃剂,药剂,废液等。可以在卧罐或球罐内提供精确的输出。磁致伸缩液位计可用于替代浮筒。在动态处理时大多数浮筒液位计都在操作中重复发现如下问题:大多数输出误差是由重力改变,扭力管渗漏,过程介质黏结在扭力管和转换器上产生的。磁致伸缩液位计可以插入现有的过滤器浮筒或者新的外浮筒精心测量,可以改善上述不足。精度也可以实现巨大的提高。另外,这是一个更新气动过滤变送器的非常方便的办法。 磁致伸缩液位计可以用于界面测量。并且是目前最好的液位界面测量和控制的技术。磁致伸缩液位计可以提供两个独立输出:一,界面;二,总体液位。可以适用于比重差最小为0.02S.G.的情况。常用于油水界面的测量,和其它包括酸罐,丙烷容器,除盐器和污水池等。 硫酸装置汽包液位LT-401现在用的就是磁致伸缩液位计,属于克隆KMR系列,该系列仪表由一个电子单元、一套外壳和杆式或缆

相关文档
最新文档