第一章误差分析的基本概念

第一章误差分析的基本概念
第一章误差分析的基本概念

第一章 误差分析的基本概念

§ 1误差的来源

1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。

2. 产生误差的主要原因

① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。

② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。这种由观察产生的误差称为观 测误差。

③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。这个被舍的高阶无穷小量正是截断误差。

④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。

3. 举例说明

例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为

t 时的长度计算值,并建立一个数学模型: I t

L °(1「.t ),其中a 是由实验观察得到的

常数:-二

(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。

为了计算近似值,可取前面有限项计算?如取前面五项计算,计算过程中与计算结果都取五位小数得

e ~

1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为

~ =2.71828,于是截断误差为:

□0

' —:2.71828 -2.7083 = 0.00995 n

n !

这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。

例3. n =3.1415926, ;

、2 =1.41421356,,在计算机上运算时只能用有限位小数,如果我们取小数

点后四位小数则:

几=n -3.1416 =-0.0000074 , ;

?2

2 -1.4142=0.00001

3 ,就是舍入误差。另外值得

一提的是十进制数转化为二进制数时有时也引起循环小数,因计算机上浮点数存储位数限制而舍弃尾部部 分小数,如 0.1 10 =

0.0001100110 011……2存储时会引起舍入误差。这个数制转化问题表明:只要计

算机内部采用二进制运算,无论计算机发展的多完善,这个舍入误差理论问题永远存在。

总的来说,误差一般有:模型误差;观测误差;截断误差;舍入误差。在计算方法这门课程中,截断

误差和舍入误差是误差的主要研究对象,讨论它们在计算过程中的传播和对计算结果的影响,并找出误差 的上下界,对分析和改进算法都有重大的实际意义。

§ 2 绝对误差相对误差有效数字

定义1:设x 为准确数,x *为x 的近似值,记e * =x-x *称e *为x 与x *的误差,也叫x 与x *的绝对 误差。显然,x= x * + e *即近似值加误差就是准确值,因此把 e *也叫做近似值 x *的修正值,或者说近

似值加上修正值就是准确值。

误差可正可负,且有量纲单位,当误差为负时,近似值偏大,叫做“强近似” ,当误差为正时,近似 值偏小,叫做

“弱近似”

例2已知e x

在x=0处展开的泰勒级数为:

QO n

-0

n

X n!

现在引入有效数字的概念。如果近似值 *的误差限是某一位上的半个单位,该位*的第一位非零

数字共有 n 位,我们就说 x *有“ n 位有效数字”,或者说 x *准确到该位。用四舍五入法取准确值的前 n 位

作为近似值x *,则x *有n 位有效数字。

就称近似值x 具有n 位有效数字.

利用定义3,由有效数字位数 n 和近似值x *可以确定误差限: 注意,首先需要特别指出的是,在有效数字的记法中,有效数字 别的,前者只有三位有效数字,后者却有四位有效数字;其次,如果只知道

x * =300000的绝对误差限不超

过500= 2 103,则应把它写成 300 X 103或3.00 X 105,如果仍记为300000,则表示它的误差限不超过 0.5 , 这是因为前者有三位有效数字, 后者有六位有效数字; 再次,还需要指出的是,一个准确数字的有效位数, 例2若x * =3587.64是x 的具有六位有效字的近似值,那么它的误差限为

\x 「x * \ J 10 4

- = 1

10 - =0.005

2 2

为近似值x *的相对误差。相对误差无量刚。相对误差可正可负。我们把相对误差绝对值的上界叫做相对误 差限,记作;;=* /\x *\,其中:是x *的误差限(;*也叫绝对误差限)。

推论 1.近似数 x = ±0.% a ? ..O n 汉 10 P (n 、q 及 p 为整数,1w a ! < 9; 0< a i

< 9, 2< i < n )有 n 位有效数字,则其相对误差

限为:

気一兰丄"0^4)

\x \ 2二

证明:由于X * = 0 .〉1〉2... :-n 10 p 有n 位有效数字,故x *与x 的绝对误差限应为

\ x - x * \_ 1 10 p j

以下观察有效数字的位数

n 与误差限之间的关系

\ -? _ x ; \ = 0.00159265

< 1 X10 -= 0.005 3

位有效数字

3 .1 4

2

3 2 1

\ - _ x 5 \ - 0.00000735

< 1 X 10 '=0.00005 5

位有效数字 3. 14 16

_ 2

5 4 3 2 1

\ - _ x ; \= 0 .00000265

<丄 X10 - = 0.000005

6

位有效数字

3 .14159

2

6

5 4 3 2 1

疋乂 3 :右用x 表示 X 的近似值,并将X *表示成X * :

=± 0 .「1「2「3 * **

t

:-n 10

8 兰 9;0 兰 8 < 9 , 2 乞i 乞n )若其误差限为

1 <

|x _x* \<^2 10 P _n

P

, ( :-i 及p 为整数,

1

10p —n

2 。

3

3

0.123 X 10-和 0.1230 X 10-是有区

应当说有无穷多位。例如对于

1/4=0.25不能说只有两位有效数字。

定义4 :称e *

—=心乩 为近似值x *的相对误差,当

x x

e ;比较小时,有时也把

2 由相对误差限的定义得:

1 p n

10 一

x|

* p r 1 2 n

x = 10 r 10 …? 2 1°'…:叱n 10 -

*p* 1 2 n p 1

|X |=10 ! 10「:叱2 10 一…吒n 10,:':::;/.1 1° -

丄10p』

占* —p』-心―1』

| x | 2。1 2o(1

由此可以看出,有效数字位数越多,相对误差限就越小。

推论2:若近似数x * = ±0 心 1 g…a n x 10 p( n,a i 及p 为整数,1 < a 勺< 9; 0 W g < 9, 2 < i < n) 的相对误差限满足:则x *至少有n位有效数字。

证明:* * * *

1 1 n

| X — X冃X |务斗X |——1——X10 一2(8

+1)

X* - _0 ... :-n 10 p(高位进1,舍去尾数,其值变大)

=10 P [% 10 丄::二2 10 2 -…::?' -n 10』

|x—x*| 乞:,110p」一1——101」=l10p』

2(ot i +1 ) 2

由定义3知道:近似数x* =「0再 1 6... : n 10 p有n位有效数字。证毕。

例3 用x* =2.72来表示e具有三位有效数字的近似值,相对误差限是多少?

解:X* =2.72 =0.272 X 10 , n=3 , p=1 ,宀=2 . 由推论1 得:

名;兰-^x10 < =0.0025 2X2

例4.为了使,20的近似值的相对误差小于0.1 %,问至少要取几位有效数字?

解:由推论2 ;r< 110』-..20 = 0.4... 10 故:?1 =4

r 2(些+1 j

按题目要求Z* <0.1 % =10」

令. 1 10 1 J <10 则有10』:::10」即n至少要取为4

2(% +1 )

取n=4查数学用表20 :4.472,其相对误差小于0.1%

§ 3.和差积商的误差

1. 和差积商的误差

设x*是x的近似值,y*是y的近似值,用x* _ y*来表示x _ y的近似值,则它的误差为(x ±0-(x * iy*)=(x-x *) ±y-y *) (1-3-1)

于是有如下结论:

结论1:和的误差是误差之和,差的误差是误差之差。

|(x 当)-(x ±y)| W|x-x | +|y-y | (1-3-2)

结论2:两个数和或差的绝对误差限不超过各数绝对误差限之和。

X -X

_n

2 :1 1

10 1 _n

设 u=xy 贝U Inu=lnx+lny dinu=dlnx+dlny

于是有如下结论:

结论5 乘积的相对误差是各乘数的相对误差之和。

设 u=x/y 贝U lnu=lnx-lny dlnu=dlnx-dlny 于是有如下结论: 结论6: 商的相对误差是被除数的相对误差减去除数的相对误差。

结论7:

任意多次连乘,连除所得计算结果的相对误差限不超过各乘数和除数的相对误差限之和。

证明: 设 w=(uv)/(xy) 则 lnw=lnu+lnv-lnx-lny ; dinw=dInu+dlnv-dlnx-dlny

|dlnw| < |dlnu|+|dlnv|+|dlnx|+|dlny|

证毕。

例1设 y=f(x)

y 二f x 则y 的相对误差是

d In y = - — dx

f (x )

例2设 y = x 则In y = n ln x ,因此d ln y = n d ln x ?x 的相对误差疋 x 的相对误差的n 倍。

2 ?一般数值运算的误差估计

2,

■■■x n 的近似值依次是x 1,x 2, ;X ;,把近似值

代入函数

y=f ( x 1,x 2, ,x n )运算得y

y *的误差、相对误差如何估计?如果函数 y=f ( x 1 ,x 2, ,x n )在(x ;,x 2,…;x ;)

y *的误差可用多元函数在(X 1,X 2;「X n )处的泰勒展开式得到。

按相对误差定义,y 的相对误差为:

(1-3-5) 例3测得某桌面的长 a 的近似值a =120cm ,宽b 的近似值b *=60cm ,若已知|a-a *|< 0.2cm , |b-b *| < 0.1cm ,试求近

似面积s *=a *b *的绝对误差限与相对误差限。

解: 因为 s=ab ,二=b,

s

=a ,由(1-3-4 )和(1-3-5)式 ;a

: b

*

*

" s * " s * * *

* *

e (s ) :” "s

e(a ) e(b ) =b e(a ) ' a e(b ) c a c b

* 2

|e (s*)| < |60 0.2|+|120 0.1|=24cm

设 X_! ,X y 的近似值, 的二阶偏导数,函

数值

,显然y 是 附近有连续

=f (X 1 , X 2 , /X n

)丄(x ; -xj 丄

_ X 1

'X 2

f

(X 2 —X 2 ) (X CX n

— X n ) O(|X —x

|)

令? :X i =X i —X i i ,」:y =y —y 于是y 的误差:

-y

X 1

X

:X 2

;:X 2

(1-3-4)

e ;(y)」 乞

X f (X 1 ,X 2 , ";X n ) X

i

岀 L.

::x 2 士 L

f (X 1 ,X 2 , -;X n ) X 2

::X n

X 2

■=Xn

X n

f (X 1 , X 2, ■; X n )

X

n

f X i

* :f

e r (y)

e r (X i )-

&1 f (X 1 ,X 2 , “;X n )

e ;(X 2)+ /

X f (X !,X 2,'/X n )

x

2

X

n

■e r (X n )

JX n f (X 1 , X 2,…;X n )

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

第六章 测量误差的基本知识

工 程 测 量 理论教案 授课教师:谢艳 使用班级:13-1、13-2、 13-3、13-4、13-5

教师授课教案 课程名称:公路工程测量2013年至2014年第二学期第次课 班级:13-1、13-2、13-3、13-4、13-5 编制日期:20 14 年月日 教学单元(章节) 第六章测量误差的基本知识 目的要求 1、了解测量误差的概念。 2、掌握测量误差产生的原因 3、了解测量误差的分类及其相应的处理方式。 4、掌握评定观测精度的标准及其相应的计算方式。 知识要点 1、测量误差概念 2、测量误差产生的原因 3、测量误差的分类 4、评定观测精度的标准 技能要点 分析问题能力 教学步骤 介绍测量误差的概念,了解测量误差的产生的原因、测量误差的分类。介绍评定观测精度的标准。练习中误差、容许误差、相对误差的计算方法。 教具及教学手段 多媒体课件教学。 作业布置情况 3题 教学反思 授课教师:谢艳授课日期:2014年月日

教学内容 第六章测量误差的基本知识 一、情境导入 用PPT播放工程实例图片及其测量误差产生的原因,让学生对测量误差有一个微观上的了解。 讲解测量误差的来源:每一个物理量都是客观存在,在一定的条件下具有不以人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差 二、新课教学 第一节概述 1、测量误差概念:真值与观测值之差 测量误差(△)=真值-观测值 如:测量工作中的大量实践表明,当对某一客官存在的量进行多次贯彻时,不论测量仪器多么的精密,贯彻进行的多么的细致,所得到的各观测值质检总是存在差异。同一量各观测值质检,以及观测值与其真实值(简称为真值)质检的差异,称为建筑测量误差。 2、误差产生的原因: 仪器设备、观测者、外界环境 测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。 具体来说,测量误差主要来自以下四个方面: (1) 外界条件主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。 (2) 仪器条件仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。 (3) 方法理论公式的近似限制或测量方法的不完善。 (4) 观测者的自身条件由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。 3、测量误差分类 系统误差 在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差一般具有累积性。 系统误差产生的主要原因之一,是由于仪器设备制造不完善。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005 m,则每量尺,就带有+0.005 m的误差(“+”表示在所量距离值中应加上),丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。 再如,在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为l*i″/ρ″(ρ″=206265″,是一弧度对应的秒值),它与水准仪至水准尺之间的距离l成正比,所以这种误差按某种规律变化。 系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响。

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

误差-基本概念.

误差的基本概念 测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。 基本概述 【英文】: an error; inaccuracy deviation 【中文拼音】: wù chā 【基本解释】: 一个量的观测值或计算值与其真值之差;特指统计误差,即一个量在测量、计算或观察过程中由于某些错误或通常由于某些不可控制的因素的影响而造成的变化偏离标准值或规定值的数量 释义 误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。 设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε 误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。从实验的原理,实验所用的仪器及仪器的调整,到对物理量的每次测量,都不可避免地存在误差,并贯穿于整个实验始终。 测量值与真值之差异称为误差。 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播 一、判断题: 1.舍入误差是模型准确值与用数值方法求得的准确值产生的误差。 ( ?) 2. 用1-2 2 x 近似表示cos x 产生舍入误差。 (? ) 3. 任给实数a 及向量x ,则||||||||x x a a =。 (?) 二、填空题: 1.设* 2.40315x =是真值 2.40194x =的近似值,则* x 有(3)位有效数字。 2. * x 的相对误差的 1 2 倍。 3. 为了使计算 3 2)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达式改写 为 ,为了减少舍入误差,应将表达式 1999 2001-改写为 。 (1 1 ,))64(3(10-= -++=x t t t t y , 199920012+;) 4. 7 22 , 141.3,142.3分别作为π的近似值有 , , 位有效数字。(4 ,3 ,3;) 5. π的近似值3.1428是准确到 近似值。答: 2 10- 6. 取 3.142x =作为 3.141592654x =┅的近似值,则x 有 位有效数字.答:4 7. 近似值* 0.231x =关于真值229.0=x 有( 2 )位有效数字; *x 的相对误差的( 3 1)倍; 9. 计算方法主要研究( )误差和( )误差;(截断,舍入) 10.近似数x*=0.0310,有( )位有数数字。解:3位 11. 按四舍五入原则数 2.7182818与8.000033具有五位有效数字的近似值分别为 和 。( 2.7183 和 8.0000) 12. 、,则A 的谱半径 = ,A 的= ( ) 11.计算取,利用( )式计算误差最小。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

精度检测基本概念

精度检测基本概念 内容概要:主要论述几何量精度检测的基本理论,包括测量的基本概念、计量单位、测量器具、测量方法、测量误差和测量数据处理等。 教学要求:在掌握机械精度设计的基础上,对其检测技术方面的基础知识有一个最基本的了解,并能运用误差理论方面的知识对测量数据进行处理后,正确地表达测量结果。 学习重点:测量误差和测量数据的处理。 学习难点:测量误差的分析。 习题 一、判断题(正确的打√,错误的打×) 1、直接测量必为绝对测量。( ) 2、为减少测量误差,一般不采用间接测量。( ) 3、为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。( ) 4、使用的量块数越多,组合出的尺寸越准确。( ) 5、0~25mm千分尺的示值范围和测量范围是一样的。( ) 6、用多次测量的算术平均值表示测量结果,可以减少示值误差数值。( ) 7、某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。( ) 8、测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。( ) 9、选择较大的测量力,有利于提高测量的精确度和灵敏度。( ) 10、对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。( ) 二、选择题(将下面题目中所有正确的论述选择出来) 1、下列测量中属于间接测量的有_____________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。 D、用游标卡尺测量两孔中心距。 E、用高度尺及内径百分表测量孔的中心高度。 2、下列测量中属于相对测量的有__________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。

定位误差的分析与计算

华北航天工业学院教案 教研室:机制工艺授课教师:陈明

第十章机床夹具的设计原理 第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用?D表示。 一、定位误差的组成 1.基准不重合误差 如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。因此选择定位基准时应尽量与设计基准相重合。当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。 设计夹具时,应当使定位基准与工序基准重合。当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用?B表示。工序基准与定位基准之间的尺寸就称为定位尺寸。 2.基准位移误差 工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用?Y表示。 基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。 当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即 ?Y = ?i 当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即 ?Y = ?i cos a 二、各种定位方式下定位误差的计算 1.定位误差的计算方法 如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。计算时,先分别算出?B和?Y,然后将两者组合而成?D。组合方法为:如果工序基准不在定位基面上:?D =?Y + ?B 如果工序基准在定位基面上:?D = ?Y±?B 式中“+”、“-”号的确定方法如下: 1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。 2)2)当定位基面直径作同样变化时,设定位基准的位置不变动,分析工序基准的变动方向。 3)3)两者的变动方向相同时,取“+”号,两者的变动方向相反时,取“-”号。 2.工件以圆孔在心轴(或定位销)上定位 (1)(1)定位副固定单边接触 当心轴水平放置时,工件在重力作用下与心轴固定单边接触,此时

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差? 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件 为与定位基准接触的支承板的工作表面,不记形状误差,则有 所以槽底尺寸h 的定 位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图3.27所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图3.26中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1 点到O 2点的距离。在ΔO 1CO 2中,2 2212 α =∠= O CO T CO d ,,根据勾股定理求得 2 21sin 2α d jw T O O E = =?=? (2)分别计算图3.27三种情 况的定位误差 ①图a )中1L 尺寸的定位误差 ②图b )中2L 尺寸的定位误差 需要说明的是2L 尺寸定位误差dw ?的合成问即外圆直径的变化 题。由于jb ?和jw ?中都含有d T ,要判别二者合成时 同时引起jb ?和jw ?的变化,因而 的符号。当外圆直径由大变小时,设计基准相对定位基准向上偏移,而当此圆放入V 形块中定位时,因外圆直 径的变小,定位基准相对调刀基准是向下偏移的,二者变动方向相反。故设计基准相对对刀基准的位移是二者之差,即 ③图c )中3L 尺寸的定位误差 与②类似,只是当外圆直径由大变小时jb ?和jw ?的变动方向相同,故jb ?和jw ?合成时应该相加,即 L 2 L 3 L 1 d T d -φ b 图3.27 V 形块定位外圆时定位误差的计算 图3.25 内键槽槽底尺寸定位误差计算 图3.26 V 形块定位外圆时 基准位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径

精度检测基本概念

第五章精度检测基本概念 内容概要:主要论述几何量精度检测的基本理论,包括测量的基本概念、计量单位、测量器具、测量方法、测量误差和测量数据处理等。 教学要求:在掌握机械精度设计的基础上,对其检测技术方面的基础知识有一个最基本的了解,并能运用误差理论方面的知识对测量数据进行处理后,正确地表达测量结果。 学习重点:测量误差和测量数据的处理。 学习难点:测量误差的分析。 习题 一、判断题(正确的打√,错误的打×) 1、直接测量必为绝对测量。( ) 2、为减少测量误差,一般不采用间接测量。( ) 3、为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。( ) 4、使用的量块数越多,组合出的尺寸越准确。( ) 5、0~25mm千分尺的示值范围和测量范围是一样的。( ) 6、用多次测量的算术平均值表示测量结果,可以减少示值误差数值。( ) 7、某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。( ) 8、测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。( ) 9、选择较大的测量力,有利于提高测量的精确度和灵敏度。( ) 10、对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。( ) 二、选择题(将下面题目中所有正确的论述选择出来) 1、下列测量中属于间接测量的有_____________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。 D、用游标卡尺测量两孔中心距。 E、用高度尺及内径百分表测量孔的中心高度。 2、下列测量中属于相对测量的有__________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。

知识笔记-2.1测量误差的基础知识1-基本概念

第二章 误差理论 § 2.1测量误差的基础知识 § 2.1.1基本概念 一、误差 1、真值:指该物理量在测量进行的时间和空间条件下的真实量值。 2、实际值:在每一级比较中,都以上一级标准所体现的值当作准确无误的值,通常称为实际值,也叫做相对真值。 3、标称值:测量器具上标定的数值为标称值。由于制造和测量精度不够以及环境等因素的影响,标称值不一定等于它的真值或实际值。 4、示值:测量器具指示的被测量的量值,包括数值和单位。 5、测量误差:测量仪表的测得值与被测量的真值之间的差异。 6、等精度测量和非等精度测量:在测量条件不发生变化的前提下对同一被测量进行多次重复测量,叫等精度测量。 二、误差的表示方法 1、绝对误差 (1)定义:由测量所得到的被测量值x 与其真值A 0的差。即△x=x- A 0 A 0可用实际值A 代替:△x=x- A 绝对误差是有单位有符号的量 (2)修正值(校正值):与绝对误差的绝对值大小相等,但符号相反的量值称为修正值,用C 表示。 * 测得值与被测量实际值间的偏离程度和方向通过绝对误差来体现,但仅用绝对误差,通常不能说明测量的质量。 2、相对误差 (1)定义:测量的绝对误差与被测量的真值之比。A 0可用实际值A 代替 实际相对误差:100%x A γA ?=? 示值相对误差:100%x x x γ?=? (2)满度相对误差 (引用误差):100%m m m x x γ?=? * 我国电工仪表的准确度等级S 就是按满度误差分级的,可划分为0.1、0.2、0.5、1.0、 1.5、 2.5、5.0七级。 注意:1)在同一量程内,测得值越小,示值相对误差越大。

最新定位误差计算解析

323 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工 序图则是设计专用夹具的主要依据。 由于在夹具设计、制造、使用中都不可能做到完美精确, 故当使用夹具装夹加工一批工件时, 不可避免地会使工序的加工精度参数产生误差, 定位误 差就是这项误差中的一部分。 判断夹具的定位方案是否合理可行, 夹具设计质量是否满足工 序的加工要求,是计算定位误差的目的所在。 1. 用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设 计图上确定几何要素的位置所依据的基准; 工艺基准是指在工艺过程中所采用的基准。 与夹 具定位误差计算有关的工艺基准有以下三种: (1) 工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单 地理解为工序图上的设计基准。 分析计算定位误差时所提到的设计基准, 是指零件图上的设 计基准或工序图上的工序基准。 (2) 定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹 具定位元件定位工作面接触或配合的表面。 为提高工件的加工精度,应尽量选设计基准作定 位基准。 (3) 对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工 刀具位置所依据的基准。 必须指出,对刀基准与上述两工艺基准的本质是不同, 它不是工件 上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等) 。 如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图 3.3中,刀具的高 度尺寸由对导块 2的工作面来调整,而对刀块2工作面的位置尺寸 7.85土 0.02是相对夹具体 4的 上工作面(相当支承板支承工作面)来确定 的。夹具体 4的上工作面是对刀基准, 它确定了 刀具在高度方向的 位置,使刀具加工出来的槽底 位置符合设计的要求。图 3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴 线, 对刀基准 则为夹具上定位圆柱销的轴线。再如图 3.21所 示,轴套件以内孔定位, 在其上加工一直径为 0 d 的 孔,要求保证0 d 轴线到左端面的尺寸 L 1及 孔中心线对 内孔轴线的对称度要求。尺寸 L 1的 设计基准是工件左端面 A 对刀基准是定位心 轴的台阶面A ; 0 d 轴线对内孔轴线的对称度的 设计基准是内孔轴 线, 对刀基准是夹具定位心轴 2的轴线00。 2. 定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起 该批工件某加工精度参数(尺寸、位置) 的加工误差, 称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计 算,其值为设计基准在加工精度参数方向上 的最大变动 量,用."■:dw 表示。 a) b 图3.21 钻模加工时的基准分析

第1章 误差分析

第1章误差分析 利用计算机进行数值计算几乎全都是近似计算:计算机所能表示的数的个数是有限的,我们需要用到的数的个数是无限的,所以在绝大多数情况下,计算机不可能进行绝对精确的计算。 定义:设x *为某个量的真值,x为x *的近似值,称x *- x为近似值x的误差,通常记为e(x),以表明它是与x有关的量。 与误差作斗争是时计算方法研究的永恒的主体,由于时间和经验的关系,我们仅对这方面的只是做一个最基本的介绍。1.1 误差的来源 误差的来源是多方面的,但主要来源为:描述误差,观测误差,截断误差和舍入误差。 1描述误差 为了便于数学分析和数值计算,人们对实际问题的数学描述通常只反映出主要因素之间的数量关系,而忽略次要因素的作用,由此产生的误差称为描述误差。对实际问题进行数学描述通常称为是建立数学模型,所以描述误差也称为是模型误差。 2观测误差 描述实际问题或实际系统的数学模型中的某些参数往往是通过实验观测得到的。由试验得到的数据与实际数据之间的误差称为观测误差。 比如我们用仪表测量电压、电流、压力、温度时,指针通常会落在两个刻度之间,读数的最后一位只能是估计值,从而也产生了观测误差。 3.舍入误差 几乎所有的计算工具,当然也包括电子计算机,都只能用一定数位的小数来近似地表示数位较多或无限的小数,由此产生的误差

称为舍入误差。 4.截断误差 假如真值x*为近似值系列{x n}的极限,由于计算机只能执行有限步的计算过程,所以我们只能选取某个x N作为x*的近似值,由此产生的误差称为截断误差。 我们可以通过函数的泰勒展式来理解截断误差:设f(x)可以在x=x0处展开为泰勒级数,记f N(x)为前N+1项的和,R N(x)为余项,如果用f N(x)近似表示f(x),则R N(x)就是截断误差。 提示:在我们的课程中,重点是考虑尽可能减小截断误差,尽可能消除舍入误差的副作用。 1.2 误差基本概念 1.绝对误差与相对误差 定义:设x*为某个量的真值,x为x*的近似值,我们称|x*- x|为近似值x的绝对误差;称|x *- x|/|x*|为近似值x的相对误差。 注释:我们在实际进行误差分析时,所讨论的误差几乎全都是绝对误差,所以在口语中,我们也把绝对误差简称为误差。 提示:在实际应用中,我们通常是用|x *- x|/|x|来表示x的相对误差,这样会使得有关的计算和理论分析更简单一些。 2 误差限的概念 由于在绝大多数情况下我们无法确定出真值x*,所以近似值x 的误差、相对误差、以及绝对误差也都是无法确定的,但是我们总有办法估计出它们的范围。这就是误差限的概念。 定义设x为真值x* 的近似值: 若e>0满足条件|x*-x|≤e,则称e为x的绝对误差限(或误差限);若e r>0满足条件|x*-x|/|x|≤e r,则称e r为x的相对误差限. 提示:由绝对误差限和相对误差限的定义可知,它们满足关系

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 122 h jb T D +?= ? 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件为与定位基准接触的支承板的工作表面,不记形状误差, 则有 0=?jw 所以槽底尺寸h 的定位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1点到O 2点的距离。在ΔO 1CO 2中,2 2212α =∠= O CO T CO d ,,根据勾股定理求得 《 2 21sin 2α d jw T O O E = =?=? (2)分别计算图三种情况的 定位误差 ①图a )中1L 尺寸的定位误差 2 )(2 sin 2sin 20 1αα d L dw d jw jb T T E B = ?= ?=?=?=? $ L 2 L 3 L 1 0d T d -φb 图 V 形块定位外圆时定位误差的计算 图 内键槽槽底尺寸定位误差计算 @ 图 V 形块定位外圆时基准 位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径 B A α/ 2 1 C 3 2 @ O O

误差的基本概念

第六节、误差的基本概念 由于人们认识能力的局限,科学技术水平的限制,以及测量数值不能以有限位数表示(如 圆周率∏)等原因,在对某一对象进行试验或测量时,所测得的数值与其真实值不会完全相等,这种差异即称为误差。但是随着科学技术的发展,人们认识水平的提高,实践经验的增加,测量的误差数值可以被控制到很小的范围,或者说测量值可更接近于其真实值。 一,真 值 真值即真实值,是指在一定条件下,被测量客观存在的实际值。真值通常是个未知量,一般所说的真值是指理论真值、规定真值和相对真值。 理论真值:理论真值也称绝对真值,如平面三角形三内角之和恒为18O0。 规定真值:国际上公认的某些基准量值,如1960年国际计量大会规定“1m等于真空中氪86原子的2P10和5d5能级之间跃迁时辐射的1650 763.73个波长的长度”。1982年国际计量局召开的米定义咨询委员会提出新的米定义为“米等于光在真空中1/299792458 秒时间问隔内所经路径的长度”。这个米基准就当作计量长度的规定真值。规定真值也称约定真值。 相对真值:计量器具按精度不同分为若干等级,上一等级的指示值即为下一等级的真值,此真值称为相对真值)例如,在力值的传递标准中;用二等标准测力机校准三等标准测力计, 此时二等标准测力机的指示值即为三等标准测力计的相对真值。 二、误 差 根据误差表示方法的不同,有绝对误差和相对误差。 1.绝对误差 绝对误差是指实测值与被测之量的真值之差,即 但是,大多数情况下,真值是无法得知的;因而绝对误差也无法得到。一般只能应用一种更精密的量具或仪器进行测量,所得数值称为实际值,它更接近真值,并用它代替真值计算误差。 绝对误差具有以下一些性质: (1)它是有单位的,与测量时采用的单位相同; (2)它能表示测量的数值是偏大还是偏小以及偏离程度; (3)它不能确切地表示测量所达到的精确程度。 2.相对误差 相对误差是指绝对误差与被测真值(或实际值)的比值,即: 相对误差不仅表示测量的绝对误差,而且能反映出测量时所达到的精度。相对误差具有以下一些性质: ‘~。,。 (1)它是元单位的,通常以百分数表示,而且与测量所采用的单位元关,而绝对误差则不然,测量单位改变,其值亦变; (2)能表示误差的大小和方向,因为相对误差大时绝对误差亦大; (3)能表示测量的精确程度。当测量所得绝对误差相同时,则测量的量大者精度就高。因此,通常都用相对误差来表示测量误差。 三、误差的来源 在任何测量过程中,无论采用多么完善的测量仪器和测量方法,也无论在测量过程中怎样 细心和注意,都不可避免地存在误差、产生误差的原因是多方面的,可以归纳如下。 1;装置误差 主要由设备装置的设计制造、安装、调整与运用引起的误差。如试验机示值误差,等臂天

数值分析第一章实验 误差分析

1. 计算1 1 n x n I e x e dx -=? (n=0,1,2,……)并估计误差。 由分部积分可得计算n I 的递推公式 1111 01,1,2,e 1.n n x I nI n I e dx e ---=-=???==-???……. (1) 若计算出0I ,代入(1)式,可逐次求出 1 2,,I I … 的值。要 算出0I 就要先算出1e -,若用泰勒多项式展开部分和 21 (1)(1)1(1),2!! k e k ---≈+-+++ … 并取k=7,用4位小数计算,则得10.3679e -≈,截断误差 14711 |0.3679|108!4 R e --=-≤

从表1中看到8I 出现负值,这与一切0n I >相矛盾。实际上,由积分估值得 111110001011 (im )(max)11 x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++?? (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就 是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n n E I I =- 满足关系 1,1,2,n n E nE n -=-=…. 由此容易推得 0(1)!n n E n E =-, 这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。例如,n=8,若 4 01||102 E -= ?,则80||8!||2E E =?>。这就说明8I 完全不能近似8I 了。它表明计算公式(A )是数值不稳定的。 我们现在换一种计算方案。由(2)式取n=9,得 1911010 e I -<<, 我们粗略取1 *9911()0.068421010 e I I -≈+==,然后将公式(1)倒过来算,即 由*9I 算出*8I ,*7I ,…,* 0I ,公式为 * 9** 10.0684()1(1),98n n I B I I n n -?=? =?=-=?? , ,…,1; 计算结果见表1的*n I 列。我们发现* 0I 与0I 的误差不超过410-。记

误差的基本概念.

实验一误差的基本概念 一、实验目的 通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。 二、实验原理 1、误差的基本概念 所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 (一)绝对误差 某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 (二)相对误差 绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 (三)引用误差 所谓引用误差指的是一种简化和使用方便的仪器仪表表示值的相对误差,它以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得的比值称为引用误差。 引用误差=示值误差/测量范围上限 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 精度可分 ⅰ准确度它反映测量结果中系统误差的影响程度

ⅱ精密度它反映测量结果中随机误差的影响程度 ⅲ精确度它反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度来表示。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下: ①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。 2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进 行凑整。 四、实验报告 运行编制的程序,分析运行结果,并写出实验报告。

第一章误差分析的基本概念

第一章 误差分析的基本概念 § 1误差的来源 1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。 2. 产生误差的主要原因 ① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。 ② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。这种由观察产生的误差称为观 测误差。 ③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。这个被舍的高阶无穷小量正是截断误差。 ④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。 3. 举例说明 例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为 t 时的长度计算值,并建立一个数学模型: I t L °(1「.t ),其中a 是由实验观察得到的 常数:-二 (0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。 为了计算近似值,可取前面有限项计算?如取前面五项计算,计算过程中与计算结果都取五位小数得 e ~ 1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为 ~ =2.71828,于是截断误差为: □0 ' —:2.71828 -2.7083 = 0.00995 n 总 n ! 这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。 例3. n =3.1415926, ; 、2 =1.41421356,,在计算机上运算时只能用有限位小数,如果我们取小数 点后四位小数则: 几=n -3.1416 =-0.0000074 , ; ?2 2 -1.4142=0.00001 3 ,就是舍入误差。另外值得 一提的是十进制数转化为二进制数时有时也引起循环小数,因计算机上浮点数存储位数限制而舍弃尾部部 分小数,如 0.1 10 = 0.0001100110 011……2存储时会引起舍入误差。这个数制转化问题表明:只要计 算机内部采用二进制运算,无论计算机发展的多完善,这个舍入误差理论问题永远存在。 总的来说,误差一般有:模型误差;观测误差;截断误差;舍入误差。在计算方法这门课程中,截断 误差和舍入误差是误差的主要研究对象,讨论它们在计算过程中的传播和对计算结果的影响,并找出误差 的上下界,对分析和改进算法都有重大的实际意义。 § 2 绝对误差相对误差有效数字 定义1:设x 为准确数,x *为x 的近似值,记e * =x-x *称e *为x 与x *的误差,也叫x 与x *的绝对 误差。显然,x= x * + e *即近似值加误差就是准确值,因此把 e *也叫做近似值 x *的修正值,或者说近 似值加上修正值就是准确值。 误差可正可负,且有量纲单位,当误差为负时,近似值偏大,叫做“强近似” ,当误差为正时,近似 值偏小,叫做 “弱近似” 例2已知e x 在x=0处展开的泰勒级数为: QO n -0 n X n!

相关文档
最新文档