(整理)钢管柱脚计算手册

(整理)钢管柱脚计算手册
(整理)钢管柱脚计算手册

圆形底板刚接柱脚压弯节点技术手册

根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。

软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第二版)中的相关条文及规定,并对相关计算过程自行推导。

设计注意事项

刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。

为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强措施;

(2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有15%~20%的富裕量,软件一般按20%考虑。

(3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜控制在5~8kN/cm2的范围,作为预加拉力的施工方法,宜采用扭角法。

(4)柱脚底板下部二次浇灌的细石混凝土或水泥砂浆,将给予柱脚初期刚度很大的影响,因此应灌以高强度微膨胀细石混凝土或高强度膨胀水泥砂浆。通常是采用强度等级为C40的细石混凝土或强度等级为M50的膨胀水泥砂浆。

一般构造要求

刚性固定露出式柱脚,一般均应设置加劲肋(加劲板),以加强柱脚的刚度;当荷载大、嵌固要求高时,尚须增设锚栓支承托座等补强措施。

圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚度不应小于柱子较厚板件的厚度,且不宜小于30mm。

通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相

对于柱子截面的边端距离),每侧不宜超过底板厚度的倍。

当底板尺寸较大时,为在底板下二次浇灌混凝土或水泥砂浆,并保证能紧密充满,应在底板上开设直径80~105mm的排气孔数个,具体位置可根据柱脚的构造来确定。

一般加劲肋(加劲板)的高度和厚度,应根据其承受底板下混凝土基础的分布反力,按下文具体要求确定。其高度通常不宜小于250mm,厚度不宜小于12mm,并应与柱子的板件厚度和底板厚度相协调。

由于锚栓支承托座加劲肋或锚栓加劲肋时对称地设置在柱周,锚栓支承托座加劲肋或锚栓加劲肋的高度和厚度,应取其承受底板下混凝土基础的分布反力和锚栓拉力两者中的较大者,按下文具体要求确定。通常其高度不宜小于300mm,厚度不宜小于16mm,并应与柱子的板件厚度和底板厚度相协调。

锚栓支承托座顶板和锚栓垫板的厚度,一般取底板厚度的0.5~0.7倍。

锚栓支承托座加劲肋的上端与支承托座顶板的连接宜刨平顶紧。

锚栓在柱脚端弯矩作用下承受拉力,同时作为安装过程的固定之用。因此,其直径和数目应按下文要求确定。但无论如何,尚须按构造要求配置锚栓。锚栓的数目在垂直于弯矩作用平面的每侧不应小于2个,同时尚应与钢柱的截面形式和大小,以及安装要求相协调;其直径一般可在30~76mm的范围内采用,且不宜小于30mm。

锚栓应设置锚板和锚梁,此时锚栓的锚固长度均不宜小于25d。具体长度可参照《钢结构连接节点设计手册》(第二版)中锚栓表进行选取。

柱脚底板和锚栓支承托座顶板的锚栓孔径,宜取锚栓直径加5~10mm;锚栓垫板的锚栓孔径,取锚栓直径加2mm。

在柱子安装校正完毕后,应将锚栓垫板与底板或锚栓支承托座顶板相焊牢,焊脚尺寸不宜小于10mm;锚栓应采用双螺母紧固,为防止螺母松动,螺母与锚栓垫板尚应进行点焊。

为使锚栓能准确的锚固于设计位置,应采用刚强的固定架,以避免锚栓在浇灌混凝土过程中移位。

加劲肋(加劲板)、锚栓支承加劲肋、锚栓支承托座加劲肋,以及锚栓支承托座顶板,与柱

脚底板和柱子板件等均采用焊缝连接。其焊缝形式和焊脚尺寸一般可按构造要求确定;当角焊缝的焊脚尺寸满足时[],可参考下表采用。

细部设计计算

柱脚底板的外径,应根据设置的加劲肋等补强板件和锚栓的构造特点,按下列公式先行确定,并应符合有关要求。

参数说明:为圆柱的截面直径,;

为底板直径方向补强板件或锚栓支承托座板件的尺寸,可参照下文表格的数值确定;

为底板直径方向的边距,一般取mm;

刚性固定露出式柱脚在柱脚端弯矩、轴心压力和水平剪力共同作用下,应按下文所

列公式和要求,分别计算底板下混凝土基础的受压应力、受拉侧锚栓的总拉力或锚栓的总有效面积、水平抗剪承载力。

当柱脚的水平抗剪承载力时,应在柱脚底板下设置抗剪件或在柱脚处增设抗剪插筋并局部浇灌细石混凝土。

圆形底板半径,受偏心的压力作用,受拉锚栓面积定义为,锚栓近似认为距底板

边缘,受拉侧锚栓的总拉力,底板下混凝土最大压应力,混凝土受压区长度。(一)底板出现受拉区,分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力时:

如上图所示,通过0点弯矩平衡,,据此可列平衡方程。下面介绍平衡方程的

具体列法,及各部分公式的算法含义。

偏心压力和锚栓总拉力对0点形成弯矩方向相同,可得:

底板下混凝土压应力形成对0点的弯矩方向与上式相反,利用积分方法可求得:

整理后即得:

积分公式中为宽度范围内的区域的长度。根据受压区位于左侧半圆范围内时求得,该算式同样适用于受压区延伸至右侧半圆范围内时,因

不受正负号的影响。

积分公式中为所在位置(距0点距离)的底板下混凝土压应力值,根据与位置的受压区三角形等比例关系求得。

积分公式中的为所在位置距离0点的距离;为区域宽度。

因与合弯矩为0,方向相反,所以数值上,即:

令:

令:

令:

上式写成:

则:(1)

根据竖向合力平衡,,得:

代入、得:

(2)

利用(1)(2)式方程组,约去,可得:

(3)

根据几何协调,可得:

(4)

根据应变物理,可得:

定义为钢材的弹性模量与混凝土弹性模量之比,,则:

(5)

利用(4)(5)式方程组,约去,可得:

(6)

利用(3)(6)式方程组,约去,可得:

(7)

代入、、后,可利用方程(7)求得混凝土受压区计算长度。

将代入(1)、(2),约去,可求得底板下的混凝土最大受压应力:

将、代入公式(1)或(2),可求得受拉侧锚栓的总拉力:

水平抗剪承载力:

(二)底板全截面受压,所有锚栓均不产生拉力时:

如上图所示,通过0点弯矩平衡,,据此可列平衡方程。下面介绍平衡方程的具体列法,及各部分公式的算法含义。

偏心压力对0点形成弯矩方向相同,可得:

底板下混凝土压应力形成对0点的弯矩方向与上式相反,利用积分方法可求得:

整理后即得:

积分公式中为宽度范围内的区域的长度。根据受压区位于左侧半圆范围内时求得,该算式同样适用于受压区延伸至右侧半圆范围内时,因

不受正负号的影响。

积分公式中为所在位置(距0点距离)的底板下混凝土压应力值,根据与、间的受压区梯形形等比例关系求得。

积分公式中的为所在位置距离0点的距离;为区域宽度。

因与合弯矩为0,方向相反,所以数值上,即:

即:

令:

令:

令:

上式写成:

则:(8)根据竖向合力平衡,,得:

即:

代入、得:

(9)

利用(8)(9)式方程组,约去,可得:

即:

代入、、,由得:

整理后得:

即:,此时圆形柱底板全截面受压。

利用(1)(2)式方程组,约去,可得:

即:底板混凝土最大受压应力为

受拉侧锚栓的总拉力:

水平抗剪承载力:

(三)底板出现受拉区,但分布较小,所有锚栓均不产生拉力时:

如上图所示,通过0点弯矩平衡,,据此可列平衡方程。下面介绍平衡方程的具体列法,及各部分公式的算法含义。

偏心压力对0点形成弯矩方向相同,可得:

底板下混凝土压应力形成对0点的弯矩方向与上式相反,利用积分方法可求得:

整理后即得:

其中

积分公式中为宽度范围内的区域的长度。根据受压区位于左侧半圆范围内时求得,该算式同样适用于受压区延伸至右侧半圆范围内时,因

不受正负号的影响。

积分公式中为所在位置(距0点距离)的底板下混凝土压应力值,根据与位置的受压区三角形等比例关系求得。

积分公式中的为所在位置距离0点的距离;为区域宽度。

因与合弯矩为0,方向相反,所以数值上,即:

即:

令:

令:

令:

上式写成:

(10)

根据竖向合力平衡,,得:

代入、得:

(11)

利用(10)(11)式方程组,约去,可得:

当时,求得的边界条件一:

当时,求得的边界条件二:

其中

因此:当时,底板出现受拉区,但所有锚栓均不产生拉力。联立(10)(11)方程,约去后可列出关于的方程:

(12)

代入、、后,可利用方程(12)求得混凝土受压区计算长度。

将代入(10)或(11)中,可求得底板下的混凝土最大受压应力:

受拉侧锚栓的总拉力:

水平抗剪承载力:

综上三种情况,类同于矩形柱底板计算情况,可将圆形底板分成三种情况:(1)底板出现受拉区,且分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力;(2)底板全截面受压,所有锚栓均不产生拉力;(3)底板出现受拉区,但分布较小,所有锚栓均不产生拉力。

(1)底板出现受拉区,且分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力时:

当时,底板出现受拉区,一侧锚栓受拉。

(2)底板全截面受压,所有锚栓均不产生拉力时:

当时,底板全截面受压,锚栓均不产生拉力。

(3)底板出现受拉区,但分布较小,所有锚栓均不产生拉力时:

当时,底板出现受拉区,但所有锚栓均不产生拉力。

节点验算:

底板下的混凝土最大受压应力:

受拉侧锚栓的总有效面积:

水平抗剪承载力当时,不需设置抗剪件即满足抗剪要求;

当时,需另外设置抗剪件以满足抗剪要求。

参数说明:为偏心距,;

为底板下混凝土的轴心抗压强度设计值;

为底板下混凝土局部承压时的轴心抗压强度设计值提高系数,因软件无法判定基础与柱

底板的相对关系,所以按最不利情况考虑,取;当用户有可靠依据时,可按下列条文确定的数值:

为混凝土局部受压面积;

为混凝土局部受压的计算底面积(局部受压面积需与计算底面积按同心原则确定),按

下图采用:

为受拉侧锚栓的总拉力;

为底板底面与混凝土或水泥砂浆之间的摩擦力;

为锚栓的抗拉强度设计值,按下表采用(Q235钢为140;Q345钢为180):

为受拉侧锚栓的总有效面积,根据总有效面积,可按《钢结构连接节点设计手册》(第二版)第九章表9-75(458页)确定锚栓的直径和数目(下表):

为由受拉侧底板边缘至受拉锚栓中心的距离(见上文图);

为底板受压区的长度;

为钢材的弹性模量与混凝土弹性模量之比,。

柱脚底板的厚度,应同时符合下列公式的要求,而且不应小于柱较厚板件厚度,且不宜小于30mm。

参数说明:为根据柱脚底板下的混凝土基础反力和底板的支承条件,分别按悬臂板、三边支承板、两相邻支承板、四边支承板、周边支承板、两相对边支承板计算得到的最大弯矩,其值可按以下要求确定:

①对悬臂板:

——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得;

——底板的悬臂长度。

②对三边支承板和两邻边支承板:

——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得;

——计算区格内,板的自由边长度;对两邻边支承板,按下文表中示意的斜边长确定;

——与有关的系数,按下表采用:

注:当时,按悬伸长度为的悬臂板计算。

③对四边支承板:

——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得;

——计算区格内,板的短边长度;

——与有关的系数,按下表采用:

④对圆形周边支承板(一般不出现在此区域内部):

——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得(计算区格内,非整个底板的最大反力);

——圆形板的半径。

⑤对两对边支承板:

——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得;

——两相对边支承板的跨度。

为一个锚栓所承受的拉力,;

为单侧锚栓布置数目;

为从锚栓中心至底板支承边的距离,如下图所示:

为锚栓的孔径;

为钢材的抗拉、抗压和抗弯强度设计值,根据计算点处钢板材质、厚度不同而取不同数值,按下文表格中数值采用:

当锚栓拉力由两个或三个支承边承受时,锚栓拉力相应地由各支承边分担,而每个支承

钢结构的柱脚设计

第八章基础设计 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面: ⒈基础形式 基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般

只存在轴向力N和水平力V,对于刚接柱脚,除存在轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故

基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规也规定了锚栓埋入长度。 ⒋基础设计容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度

柱脚节点计算

M N ???--2 233102.20361027.1416

mm f M t 7.15205 8495 66=?=≥ 满足要求 取,30mm t ∴ ③区段内底板下平均反力 2min max /45.12 85 .004.22 mm N =+= += σσσ ③区按三边支承板:mm a 178 2= mm b 2002= 124.1178 200 22==a b 查表得118 .0=β N a M 1260717846.3115.022 22=??==σβ mm y 6903 480 100950=- -= 锚拴受力为 KN y Na M Nt 25.680690 31592.36100.4813=?-?=-= 采用4个M45的锚拴,Nt=182.8*4=731.2KN 满足要求 2、Z2柱脚

0.1=c kN 82.954 cc c f βcc c f β= 查表得060.0=β N a M 2368026562.5060.022 22=??==σβ mm f M t 9.21295 23680 66=?=≥ 满足要求 取,30mm t ∴ ③区按三边支承板:mm a 178 2= mm b 2002= 124.1178 200 22==a b 查表得118.0=β N a M 2047717862.5115.022 22=??==σβ mm f M t 4.20295 20477 66=?=≥ 满足要求 取,30mm t ∴

mm y 7493 100950=- -= 锚拴受力为 KN N 14422.1/24.10482/36.1138=+= 223/6.9/77.4756 400101442mm N mm N bl N c <=??==σ ○ 1区段内底板下平均反力

大直径钢管混凝土柱柱脚安装施工工法

大直径钢管混凝土柱柱脚安装施工工法 工法目录 第一章前言 第二章工法特点 第三章适用范围 第四章工艺原理 第五章施工工艺流程及操作要点 第六章材料及主要机具设备 第七章质量控制 第八章安全措施 第九章环保措施 第十章效益分析 第十一章应用实例

大直径钢管混凝土柱柱脚安装施工工法 1 前言 随着建筑技术的发展和社会进步,大直径钢管混凝土柱因结构稳定性好、刚度大、建筑美学效果好等特点,作为主要承重构件被越来越多的应用于建筑工程中。但由于安装精度要求高、施工难度大,对工程的质量及工期具有重要影响,尤其是柱脚的安装质量更为突出,如何采取安全、优质、经济、高效的措施加以保证,是施工技术管理的一个重要课题。 本工法所述关键技术,利用钢板带定位环及普通脚手架钢管作为柱脚锚栓承重、定位构件,利用单螺母进行柱脚标高的调节、控制,可有效保证柱脚安装的质量,降低措施投入,提高施工效率,社会效益明显,具有广泛推广的应用价值。 现以重庆新闻传媒中心工程为例对本工法进行介绍。 2工法特点 2.1 采用钢板带定位环技术,使安装更精准快捷,施工质量更可靠。 2.2 利用普通脚手架钢管作为柱脚锚栓定位的主要承重、定位构件,固定牢靠,取材方便,经济环保。 2.3 通过单螺母调节并控制钢管混凝土柱柱脚标高,精度高,操作便捷,劳动强度低,绿色环保。 3 适用范围 本工法适用于工业与民用建筑中大直径钢管混凝土柱柱脚的施工。 4 工艺原理 利用钢板带作为定位环,对钢管柱柱脚锚栓的位置进行定位,保证位置精确,而后采用钢管支架固定钢板带的方式进行钢管柱柱脚锚栓的空间定位,使之形成一个独立稳定的结构,待柱脚下部混凝土浇筑完成后,通过锚栓中单螺母调节并控制柱脚的标高,保证钢管混凝土柱柱脚的安装精准度。

刚接柱脚计算书

端部设计类型: 箱形柱刚接柱脚(1); 此类端部个数:4 节点抗震设计抗震调整系数按<建筑抗震设计规范(GB 50011-2001)>取值 端部所在节点号: 113; 111; 524; 526; 端部所在单元号: 56; 55; 886; 887; 截面名称:焊接矩形截面□500×400×16×16; 相关杆件单元: 截面名称:; 下面的计算结果由这4个端部在计算模型中所有荷载组合中轴力,剪力,弯矩的最大,最小值经计算得到 构件抗拉强度(N/mm2):310.00 构件抗剪强度(N/mm2):180.00 焊缝抗剪强度(N/mm2):200.00 钢材牌号: Q345 接触面处理方法: 喷砂 高强螺栓类型: 摩擦型 螺栓等级: 10.9级 锚栓信息: 直径d0(mm): 30 锚栓排列: 3 行 3 列 行间距: 775.00 列间距: 500.00 底板抗拉强度设计值(N/mm2):265.00 锚栓抗拉强度设计值(N/mm2):180.00 砼轴心抗压强度设计值(N/mm2):11.90 锚栓最大拉应力(N/mm2):8.96 砼最大压应力(N/mm2): 3.86 砼轴心抗压强度设计值提高系数:1.22 最大水平剪力(N):128925.03 抗剪承载力(N):452293.82 底板区格最大弯矩(N.mm): 93563.31 连接板信息: 板号板长(mm) 板宽(mm) 板厚(mm)

1 1670 1120 46 板号板长(mm) 板宽(mm) 板厚(mm) 2 430 360 36 板焊缝高度(mm): 14 板号板长(mm) 板宽(mm) 板厚(mm) 3 430 360 36 板焊缝高度(mm): 14 端部设计类型: 箱形柱刚接柱脚(1); 此类端部个数:21 节点抗震设计抗震调整系数按<建筑抗震设计规范(GB 50011-2001)>取值 端部所在节点号: 115; 121; 123; 135; 143; 147; 151; 155; 161; 131; 145; 149; 153; 157; 159; 163; 179; 181; 183; 165; 185; 端部所在单元号: 57; 60; 61; 66; 70; 72; 74; 76; 79; 895; 71; 73; 75; 77; 78; 80; 88; 89; 90; 81; 91; 截面名称:焊接矩形截面□350×350×10×10; 相关杆件单元: 截面名称:; 下面的计算结果由这21个端部在计算模型中所有荷载组合中轴力,剪力,弯矩的最大,最小值经计算得到 构件抗拉强度(N/mm2):310.00 构件抗剪强度(N/mm2):180.00 焊缝抗剪强度(N/mm2):200.00 钢材牌号: Q345 接触面处理方法: 喷砂 高强螺栓类型: 摩擦型 螺栓等级: 10.9级

钢管柱脚计算手册DOC

圆形底板刚接柱脚压弯节点技术手册 根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。 软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第二版)中的相关条文及规定,并对相关计算过程自行推导。 设计注意事项 刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。 为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强措施; (2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有15%~20%的富裕量,软件一般按20%考虑。 (3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜控制在5~8kN/cm2的范围,作为预加拉力的施工方法,宜采用扭角法。 (4)柱脚底板下部二次浇灌的细石混凝土或水泥砂浆,将给予柱脚初期刚度很大的影响,因此应灌以高强度微膨胀细石混凝土或高强度膨胀水泥砂浆。通常是采用强度等级为C40的细石混凝土或强度等级为M50的膨胀水泥砂浆。 一般构造要求 刚性固定露出式柱脚,一般均应设置加劲肋(加劲板),以加强柱脚的刚度;当荷载大、嵌固要求高时,尚须增设锚栓支承托座等补强措施。 圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚度不应小于柱子较厚板件的厚度,且不宜小于30mm。 通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相 对于柱子截面的边端距离),每侧不宜超过底板厚度的倍。

柱脚计算书

设计结果文件:StsLink.out 日期:2015/05/27 时间:17:37:44 ------------------------------------------------------------------------------------ 圆管固接柱脚连接类型: 外露式柱脚无锚栓支承托座 柱编号= 1 采用钢截面: 圆管377X12 柱脚混凝土标号: C30 柱脚底板钢号: Q235 柱脚底板尺寸B x H x T = 650 x 650 x 20 锚栓钢号: Q235 锚栓直径D = 27 锚栓垫板尺寸B x T = 70 x 14 环向锚栓数量= 8 柱底混凝土承压计算: 控制内力: N=50.00 kN,Mx=30.00 kN*m,My=50.00 kN*m 柱脚混凝土最大压应力σc:2.31 N/mm2 柱脚混凝土轴心抗压强度设计值fc:14.30 N/mm2 σc=2.31 <= fc=14.30,柱底混凝土承压验算满足。 锚栓抗拉承载力校核: 控制内力: N=50.00 kN,Mx=30.00 kN*m,My=50.00 kN*m 单个锚栓所受最大拉力Nt:46.00 kN 单个锚栓抗拉承载力设计值Ntb:64.32 kN Nt=46.00 <= Ntb=64.32,锚栓抗拉承载力验算满足。 柱底板厚度校核(按混凝土承压最大压应力计算): 区格1,圆管内侧圆形板,计算底板弯矩:6240.59 N*mm 区格2,底板内圈三边支撑板,计算底板弯矩:3534.45 N*mm 区格3,底板外侧悬挑板,计算底板弯矩:486.10 N*mm 底板厚度计算控制区格:区格1 底板反力计算最小底板厚度: Tmin1 = 14 mm 锚栓拉力(悬臂)计算最小底板厚度: Tmin2 = 16 mm 柱底板构造最小厚度Tmin = 20 mm (最后控制厚度应取以上几者的较大值并规格化后的厚度!) 柱脚底板厚度T = 20 mm 底板厚度满足要求。

钢管混凝土施工方案

钢管混凝土柱的施工方案 一、工程概况 钢管混凝土柱设计直径为720mm。钢管壁厚一2~10层为14mm,11~30层为12mm,采用Q235A钢板按设计尺寸卷制。按现场施工条件,确定2个楼层作为一个组合件依次对接,钢管制作长度~8.4m。 二、钢管混凝土柱施工 1.钢管柱的制作 钢管柱要求各部件的制作、焊接的尺寸、位置、标高准确。为减少现场工作量,保证质量,钢管及各部件制作、组焊集中在工厂完成,经检验合格运至现场安装。 2.钢管柱与基础底板的连接 柱基础设计为在混凝土底板面下落300mm预埋外径1170mm、内径620mm钢板圆环(图 5-53)。为保证位置、标高的准确及平整度小于2mm要求,在底板钢筋绑扎完后,按预埋板规格做成一个稳定的支架,按垫层上放线位置直接落于垫层。在预埋钢板上钻洞,让锚固筋穿过孔洞,调整标高及板面平整度后,进行塞焊焊接。底板混凝土浇筑时,两侧对称浇筑,防止位移。 3.钢管柱的现场安装 (1)吊装设备与方法吊装利用现场施工用的TL-150型塔式起重机,塔式起重机臂长50m,钢管柱吊装在40m范围内,单根柱最大重量,塔式起重机起重量能满足要求,起吊方法采用两点捆绑垂直起吊。 (2)首节钢管柱的安装安装前先清理预埋钢板面,按柱安装方向(应与柱身划线方向吻合)划出十字线,在线上标出柱半径,焊定位板。安装时,调整柱身划线与预埋钢板划线重合,柱外皮与柱半径标点重合后,塞紧定位板。利用顶拉杆调整垂直度,顶拉杆一端焊于预埋钢板上,一端焊于柱身钢管上。垂直度调整好后,将柱脚与肋板焊牢。 (3)钢管柱现场对接钢管柱从地下室至顶层无变径,只存在同径连接。将吊起的上节柱按母线位置缓慢地插入下节柱内衬管上,上下线稍有偏移时,可采用特制厚钢板抱箍钳调整。上节柱插入内衬管过程中,由于内衬管与钢管内壁局部存在摩擦,导致就位困难,可在上下柱接口处设顶拉杆,相互垂直方向各设1根,待顶拉到位后,再利用顶拉杆调整垂直度。符合要求后,焊接防变形卡板(图5-54)。卡板对称设4块,然后进行钢管对接焊施工,防变形卡板和顶拉杆在对接焊完成后拆除,并将其焊点打磨平整。 (4)垂直度控制用2台经纬仪在相互垂 直的两个方向观测,为方便观测,先行安装角部钢管柱。观测时,经纬仪对中于柱轴线,十字竖丝对准柱脚处柱外边线点,观测者由柱脚从下向上观测柱身母线,同时指挥安装人员调整顶拉杆,直至柱顶母线与经纬竖丝重合。另外,对接环缝焊接好后,卸去卡板,对柱身垂直进行复核,并做好垂直度偏差值记录,以便下次安装调整,防止出现累积误差。 (5)对接焊施工现场对接焊采用人工焊,接口焊缝为熔透二级焊缝,分次焊满。焊接工程中,易产生较大的焊接残余变形,导致垂直度偏差。因此,采取措施如下: 1)每根柱从下至上固定焊工,以明确责任。 2)对称施焊,即分段反向对称顺序施焊。 3)严格控制同类型焊机及焊接电流等参数。 4)对接前根据上节柱安装偏差值,计算后在管口实行机械打磨,保持焊缝间隙基本一致。 5)增设防变形卡板。

外露式刚接柱脚计算书

外露式刚接柱脚计算书 项目名称____xxx_____ 日期_____________ 设计_____________ 校对_____________ 一、柱脚示意图 二、基本参数 1.依据规 《钢结构设计规》(GB 50017-2003) 《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002) 2.柱截面参数 柱截面高度h b =500mm 柱翼缘宽度b f =500mm 柱翼缘厚度t f =14mm 柱腹板厚度t w =14mm 3.荷载值 柱底弯矩M=350m kN 柱底轴力N=500kN 柱底剪力V=50kN 4.材料信息 混凝土C25 柱脚钢材Q235-B 锚栓Q235 5.柱脚几何特性 底板尺寸a=75mm c=100mm b t=85mm l t=75mm

柱脚底板长度 L =800mm 柱脚底板宽度 B =800mm 柱脚底板厚度 t =30mm 锚栓直径 d =39mm 柱腹板与底板的焊脚高度 h f1 =10mm 加劲肋高度 h s =210mm 加劲肋厚度 t s =10mm 加劲肋与柱腹板和底板的焊脚高度 h f2 =10mm 三、计算过程 1. 基础混凝土承压计算 (1) 底板受力偏心类型的判别 3 6t l L +=800/6+75/3=158.333mm 偏心距 N M e ==350×1000/500=700mm 根据偏心距e 判别式得到: abs(e)>(L/6+lt/3) 底板计算应对压区和拉区分别计算 (2) 基础混凝土最大压应力和锚栓拉力 a. 6/0L e ≤< 锚栓拉力 0a =T )/61(max L e LB N +=σ b.)3/6/(6/t l L e L +≤< 锚栓拉力 0a =T ) 2/(32max e L B N -=σ c. )3/6/(t l L e +> 若d <60mm 则: 2max 6L B M L B N ??+?=σ 2 min 6L B M L B N ??-?=σ 柱脚底板的受压区长度 x n =m in m ax m ax σσσ-?L 若mm 60≥d 则: 解下列方程式得到柱脚底板的受压区长度x n : 0))(2/(6)2/(3n t t a e 2n 3n =---+--+x l L l L e B nA x L e x 其中,A e a 为受拉区锚栓的有效面积之和,n =E s /E c 。 ) 3/()2/(2n t n t max x l L x B l L e N --?-+?=σ

钢管混凝土柱

摘要:介绍了钢管混凝土结构的特点、研究现状及其工程应用,探讨了钢管混凝土结构研究方向。 关键词:钢管混凝土 近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

钢柱计算

圆形底板刚接柱脚压弯节点技术手册 2011年10月28日16:13先闻公司15次阅读共有评论0条 根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。 软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第二版)中的相关条文及规定,并对相关计算过程自行推导。 设计注意事项 刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。 为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强措施; (2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有15%~20%的富裕量,软件一般按20%考虑。 (3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜控制在5~8kN/cm2的范围,作为预加拉力的施工方法,宜采用扭角法。

(4)柱脚底板下部二次浇灌的细石混凝土或水泥砂浆,将给予柱脚初期刚度很大的影响,因此应灌以高强度微膨胀细石混凝土或高强度膨胀水泥砂浆。通常是采用强度等级为C40的细石混凝土或强度等级为M50的膨胀水泥砂浆。 一般构造要求 刚性固定露出式柱脚,一般均应设置加劲肋(加劲板),以加强柱脚的刚度;当荷载大、嵌固要求高时,尚须增设锚栓支承托座等补强措施。 圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚度不应小于柱子较厚板件的厚度,且不宜小于30mm。 通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相 对于柱子截面的边端距离),每侧不宜超过底板厚度的倍。

柱脚锚栓设计计算书

柱脚锚栓设计计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、基本参数 锚栓号M1 弯矩M(kN·m) 50 轴力N(kN) 100 底板长L(mm) 700 底板宽B(mm) 300 锚栓至底板边缘距离d(mm) 650 11.9 混凝土强度等级C25 混凝土轴心抗压强度设计值fc (N/mm2) 单侧锚栓个数n 4 锚栓直径de(mm) 21 锚栓材质Q235 锚栓抗拉强度设计值fta (N/mm2) 140 计算简图: σm ax=N/(B*L)+M/(B*L2/6)=100×103/(300×700)+50×106/(300×7002/6)=2.517N/mm2≤fcc=0

.95*fc=0.95×11.9=11.305N/mm2 满足要求! σmin=N/(B*L)-M/(B*L2/6)=100×103/(300×700)-50×106/(300×7002/6)=-1.565N/mm2 压应力分布长度:e=σmax/(σmax+|σmin|)*L=2.517/(2.517+|-1.565|)×700=431.627mm 压应力合力至锚栓距离:x=d-e/3=650-431.627/3=506.124mm 压应力合力至轴心压力距离:a=L/2-e/3=700/2-431.627/3=206.124mm 锚栓所受最大拉力: Nt=(M-N×a)/x=(50-100×206.124/1000)/(506.124/1000)=58.064KN≤n×π×de2/4×fta=4×3.142×212/4×140=193.962KN 满足要求!

钢管混凝土柱施工方案

钢管混凝土柱施工方案 (一) 工艺流程: 下料→刨坡口→压头→曲圆→组焊→校形→超声波检测→筒节间组焊→衬管、封顶板与钢管组焊→层间牛腿与钢管组焊→构件检验→标识→出厂。 (二) 钢管长度: 最下层按埋深+地下二层层高+出楼面1m即5.32m进行加工,一层- 、- 、- 三根柱按3.6m和3m分两段加工,- 、- 按3.3m两段加工,其余各层按楼层层高分段加工,每段均超出楼面1m。以每段每根作为一个完整的组合件(包括缀件)在厂房内集中加工成形。具体每段钢管长度和尺寸详附图1和附图2。 (三) 钢管制作: 1. 钢管由钢板卷制焊接而成,卷制钢管前根据图样要求,采用刨边机将板端开好坡口,然后采用压头胎具在滚床上将板两端预压头,并采用圆弧样板检查弧度正确性,间隔不得大于1.5mm,以确保卷制成形后的圆度。 2.纵环缝焊接采用全焊透焊接,坡口开在内边,采用CO2气体保护焊(焊丝牌号为H08Mn2SiA或ER50-6),内焊缝焊完后,外焊缝用碳弧气刨清根,然后采用自动埋弧焊(焊丝牌号为H10Mn2)或CO2气体保护焊施焊。 3.钢管对接时,在小型滚胎上进行,组装前先调整滚胎上、下、左、右位置,让滚轮与钢管的切线在同一直线上,以确保组装与焊接后肢管平直,焊接前除控制几何尺寸外还应注意焊接变形对肢管的影响,CO2气体保护焊宜采用分段退焊,对称施焊,肢管对接间隔宜放大0.5~2.0mm,以抵消收缩变形。 4.钢管对接焊接前,钢管外壁可采用定位板和临时固定,定位板示意图如下,沿周边均匀布置,然后采用定位焊,定位点间距与固定点相同定位焊长度约25mm,在内焊缝连续焊完后放割掉定位板,并将焊缝位置打磨平整。 5.钢管对接焊接完后进行层间牛腿组装,组装时需仔细检查标高后再划线定位组焊。 6.钢管构件经外形、尺寸和焊缝检验合格后(自检、互检、安质员专检三检),在钢管外表面沿圆周4等分划上中心线并分别在管端及管中用洋冲打上标记,以便安装时定位和检查垂直度。 7.对检验合格的构件进行标识,标识内容包括构件编号、拟安装位置等。 8.钢管制作时的注意事项: (1) 原材料必须有出厂合格证和材质证明书,钢板必须平直,不得使用表面锈蚀或受过冲击的钢板。 (2) 下料及坡口加工时,严格控制下料的长、宽及对角线尺寸误差,确保坡口与管轴线垂直。 (3) 钢板卷管方向与钢板压延方向一致。 (4) 所有焊接必须由持有“上岗证”的人员施焊,均要求采用分段退焊,对称施焊,以减少构件变形。 (5) 多层焊接时需连续施焊,每一层焊道焊完后应及时清理检查,清除缺陷后再焊。 (6) 焊缝的质量要满足《钢结构工程施工及验收规范》(GB5205-95)二级质量标准要求。 三、钢管柱的安装: (一)工艺流程:安装埋设预埋件及柱脚螺栓→检查预埋件标高及水平度→安装柱脚段,将钢管柱焊在柱脚上→验收现场焊缝→焊接并验收→逐段安装上段→找正→焊接并验收→成品检验→交工验收。 1. 地下二层柱的安装 (1) 轴线和标高复核:基础砼施工完后,根据设计轴线位置和标高对预埋件进行复测,如测量偏差超过验收标准,则需另行处理。 (2) 为保证安装精度,柱脚牛腿采用现场焊接,将柱脚板放置于预埋件上并用螺帽固定,再将地下二层柱放置于柱脚板上,将柱身上的洋冲点(中心线)与底板上中心线重合,用四个正反丝丝杠在轴线方向将柱身与底板临时连接并调整垂直度达到要求。 (3) 垂直度调节完后即将柱身、底板、牛腿用定位焊固定,再由两名焊工采用对称分段焊法施焊。 2. 上部柱安装 (1) 上部柱的安装要在下层梁板砼浇完后进行,安装前先将控制轴线引测至楼面上,并标明在钢管柱出楼面1m 高范围内。 (2) 用塔吊吊装就位后在轴线方向用四个正反丝丝杠将上层柱与下层柱临时固定,在纵横轴两个方向上架设经纬

柱脚设计习题

钢结构轴心受压柱柱脚的计算与设计 轴心受压柱轴心压力设计值1450N kN =,柱脚钢材选用Q345B ,柱子采用热轧H 型钢,截面为HW200×204×12×12,基础混凝土采用 C20,29.6/c f N mm =。试设计该柱的柱脚。 解: 选用带靴梁的柱脚,如图: 1、底板尺寸 锚栓采用d=20mm ,锚栓孔A 0约为5000mm 2,靴梁厚度取t=10mm ,悬臂c=3d=60mm ,则需要的底板面积为: 32 02 52 14501050009.6/1.5610c N N A B L A mm f N mm mm ?=?=+=+=?1222002(1060)B a t c mm mm mm =++=++ 340mm = 5 1.5610459340 A L mm B ?===,取为500mm 。 采用B×L=340mm×500mm 。 底板承受的均匀压应力: 3202 1450103405005000=8.79N N q B L A mm mm mm N mm ?== ?-?- 四边支撑板(区格 )的弯矩为:

200 1.176170b mm a mm == 查表插值得0.061α=, 22220.0618.79/17015496/M q a N mm mm N mm mm α=??=??=? 三边支撑板(区格②)的弯矩为: 11800.4200b mm a mm ==,查表得0.042β=, 222210.0428.79/20014767/M q a N mm mm N mm mm β=??=??=? 悬臂板(区格③)的弯矩为: 222211 8.79/6015822/22 M q c N mm mm N mm mm = ?=??=? 各区格板的弯矩值相差不大,最大弯矩为: max 15822/M N mm mm =? 底板厚度为: 17.9t mm ≥ == 取底板厚度为18mm 。 2、靴梁与柱身间竖向焊缝计算 连接焊缝取mm h f 10=,则焊缝长度w L 为: 32 14501025960=60040.740.710200/w f w f f N N L mm h mm h f mm N mm ?===

钢管混凝土柱新型柱脚节点的试验研

钢管混凝土柱新型柱脚节点的试验研究* 摘要:对新型钢管混凝土柱脚节点进行了静力加载和低周反复加载试验研究。给出了静力荷载下的荷载-变形曲线、低周反复荷载下的荷载-变形滞回曲线以及关键部位的应变数据。试验证明:此型柱脚节点工作性能可靠,具有良好的耗能能力。 关键词:钢管混凝土、节点、抗震 随着建筑结构技术的发展,钢管混凝土结构在建筑结构中的应用越来越广泛。钢管混凝土结构具有良好的承载力和延性,因而具有良好的工作性能。影响钢管混凝土应用的主要因素是其节点构造一般比较复杂。钢管混凝土梁柱节点已经有很多研究,但柱脚节点的研究却不多见。本文介绍的节点,是梁启智教授在其梁柱节点的基础上设计而成。此节点应用锚拴连接钢管混凝土柱与基础,克服了插入式节点影响基础钢筋布置的缺点。节点形式构造简单,传力明确。 1.试验概要 1. 2. 律; 3. 4. 板、 材料 板10mm

1000kN 顶的加载能力均为 2. 2.1单向加载 轴力300kN, 分级施加,荷载- 横向荷载施加到 曲。最大横向荷载 间裂缝最大宽度 延伸过Y轴15mm 40.04mm。 试验中,没有测得位移-变形曲线的下降段。钢管柱达到极限荷载时,试件X轴正向第二(108mm处)和第三排(212.5mm处,见图4)锚栓达到屈服。 从锚栓应变图4中可以看出:锚栓群的中性轴在试件X轴-100mm(即第二排锚栓)

附近,底板受压区扇形截面高度在横向荷载比较小时(<150kN),大约和半径一致。随着横 向荷载的增加,中性轴向外移动,但移动范围不大。横向荷载比较小时,锚栓群应变基本符 合平截面假设,随着荷载的增加,螺栓群变形逐渐偏离平截面假设。这是由于肋板、托板以 及底板变形影响的结果。 图5显示:达到极限荷载时,托板最大受力处没有达到屈服。 达到极限荷载时,受压区肋板的应变远大于受拉区肋板(见图6)。 由于受压区肋板设计强度偏小,以至于底板环向应变比较大(见图7)。 当横向荷载至300kN时,底板与基座之间出现 裂缝,并且达到试件中轴,试件最大横向荷载 394kN,试验达到极限荷载时裂缝宽度0.7mm。 试件破坏为钢管混凝土柱压弯破坏。试件底部两 侧均有胀鼓现象。 荷载-变形滞回曲线有轻微的“捏缩”现象 (见图8),这是因为当横向荷载达到一定水平 时,边缘锚栓达到屈服,而使节点的横向刚度退 化以及试件和固定装置之间的轻微滑移引起。 3.结束语 本节点设计时作为固定节点考虑,从试验结果可以看出:试件破坏形式为钢管混凝土柱 压弯破坏,节点部分的应变水平远小于柱本身。可见节点刚度大于钢管混凝土柱,节点可以 看作固定节点。锚栓群的变形在塑性阶段偏离平截面假设,在实际节点设计时应予以考虑。 总的来说:节点设计是安全可靠的,具有良好的耗能能力。 参考文献: [1]王国周,瞿履谦。《钢结构原理与设计》。清华大学出版社,1993,11 [2]骆伟。《高层建筑钢管混凝土柱新型节点的试验研究及有限元分析》。华南理工大学硕士学位论文,1999,3 [3]邱元。《高层建筑钢管混凝土新型梁柱节点的试验研究及有限元分析》。华南理工大学硕士学位论文,2000,3 [4]钟善桐。《钢管混凝土结构》。黑龙江科学技术出版社,1994,1 [5]钟善桐。《高层钢管混凝土结构》。黑龙江科学技术出版社,1999,1

钢结构柱脚设计要点

第八章基础设计 房屋建筑设计总体上分为上部结构设计和下部结构设计两大部分,轻型钢结构建筑也不例外,前面几章已介绍了其上部结构,本章对其下部结构——基础作一些讨论。 众所周知,在房屋建筑中,基础造价约占整个建筑物的30%左右,对于轻钢结构而言,最大优点就是重量轻,从而直接影响基础设计,与其它结构型式的基础相比,轻钢结构基础尺寸小,可以减少整个建筑物造价,另外对于地质条件较差地区,可优先考虑采用轻钢结构,这样容易满足地基承载力方面的要求。那么轻钢结构基础与砼结构基础有什么不同?轻钢结构基础是如何设计的?在轻钢结构基础设计时应注意哪些方面?本章针对这些问题进行探讨,而不涉及基础本身设计的有关内容。 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于

砼结构柱脚均为刚接,即同时存在轴向力N、水平剪力V和弯矩M,故基础尺寸较大,轻钢结构常见的柱脚型式有刚接和铰接两种(图8-1),其受力是不同的,对于铰接柱脚,只存在轴向力N和水平力V,对于刚接柱脚,除存在轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,此时除基础底部配置钢筋外,基础上部也应配筋,避免因上部受拉而出现开裂现象。轻钢结构基础除上述内容以外,还须进行柱底板设计和锚栓设计,至于这两部分设计归于上部结构还是下部结构,也存在一些争议,柱底板尺寸是根据柱与基础连接部位砼的局部承压来确定的,与基础砼参数有关,但其制作又与上部结构连在一起,按照常规柱底板设计归入上部结构;锚栓在上部结构和基础之间起桥梁作用,但基础施工时应将锚栓埋入,故属于基础部分。本章避开这个问题,就锚栓和底板设计分别进行讨论。 ⒌与上部结构连接 基础与上部结构是二次施工完成的,其间存在连接问题。对于砼结构的基础,通过预留插筋的方式连接上部结构(图8-2a),而对于轻钢结构基础,则通过预埋锚栓的方式进行连接(图8-2b)。

景观桥柱脚计算书

“箱形柱外露刚接”节点计算书 ==================================================================== 计算软件:TSZ结构设计系列软件 TS_MTSTool v4.6.0.0 计算时间:2017年04月24日 14:19:26 ==================================================================== 一. 节点基本资料 设计依据:《钢结构连接节点设计手册》(第二版) 节点类型为:箱形柱外露刚接 柱截面:BOX-200*10,材料:Q235 柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板; 底板尺寸:L*B= 540 mm×540 mm,厚:T= 30 mm 锚栓信息:个数:6 采用锚栓:双螺母焊板锚栓库_Q235-M27 方形锚栓垫板尺寸(mm):B*T=70×20 底板下混凝土采用C30 节点前视图如下: 节点下视图如下:

二. 荷载信息 设计内力:组合工况内力设计值 组合工况1 315.0 5.0 -5.0 8.0 10.0 否组合 工况2 46.0 0.0 -8.0 12.0 76.0 否组合工况3 160.0 -3.0 -15.0 30.0 -5.0 否 三. 验算结果一览 最大压应力(MPa) 6.52 最大14.3 满 足受拉承载力(kN) 52.9 最大64.3 满足底板厚度(mm) 30.0 最小29.9 满足等强全截面 1 满足板件宽厚比 12.8 最大14.9 满足板件剪应力(MPa) 14.9 最大180 满足焊缝剪应力(MPa) 16.1 最大200 满足焊脚高度(mm) 10.0 最小8.22 满足焊脚高度(mm) 10.0 最大16.8 满足板件宽厚比 12.8 最大14.9 满足板件剪应力(MPa) 24.3 最大180 满足焊缝剪应力(MPa) 26.5 最大200 满足焊脚高度(mm) 10.0 最小8.22 满足焊脚高度(mm) 10.0 最大16.8 满足基底最大剪力(kN) -126 最大0 满足绕x轴抗弯承载力(kN*m) 155 最小140

钢管混凝土柱柱脚锚固检验批质量验收记录

钢管混凝土柱柱脚锚固检验批质量验收记录 注:本表内容的填写需依据《现场验收检验批检查原始记录》。本检验批质量验收的规范依据见本页背面。

填写说明 一、填写依据 1 《钢管混凝土工程施工质量验收规范》GB50628-2010。 2 《建筑工程施工质量验收统一标准》GB50300-2013。 二、检验批划分 检验批的划分可参考主体结构分部-混凝土结构子分部、钢结构子分部、钢管混凝土结构子分部、铝合金结构子分部等,按工作班、楼层结构、施工缝或施工段划分为若干检验批。 三、GB50628-2010规范摘要 主控项目 4.3.1 埋入式钢管混凝土柱柱脚的构造、埋置深度和混凝土强度应符合设计要求。 检查数量:全数检查。 检验方法:观察检查、尺量检查、检查混凝土试件强度报告。 4.3.2 端承式钢管混凝土柱柱脚的构造及连接锚固件的品种、规格、数量、位置应符合设计要求。柱脚螺栓连接与焊接的质量应符合设计要求和现行国家标准《钢结构工程施工质量验收规范》GB50205的有关规定。 检查数量:全数检查。 检验方法:观察检查,检查柱脚预埋钢板验收记录。 一般项目 4.3.3 埋入式钢管混凝土柱柱脚有管内锚固钢筋时,其锚固筋的长度、弯钩应符合设计要求。 检查数量:全数检查。 检验方法:检查施工记录、隐蔽工程验收记录。 4.3.4 端承式钢管混凝土柱柱脚安装就位及锚固螺栓拧紧后,端板下应按设计要求及时进行灌浆。 检查数量:全数检查。 检验方法:观察检查,检查施工记录。 4.3.5 钢管混凝土柱柱脚安装允许偏差应符合表4.3.5的规定。 检查数量:同批构件抽查10%,且不少于3处。 检验方法:尺量检查。 表4.3.5 钢管混凝土柱柱脚安装允许偏差(mm)

外露式刚接柱脚计算书

外露式刚接柱脚计算书项目名称____xxx_____ 日期_____________ 设计_____________ 校对_____________ 一、柱脚示意图 二、基本参数 1.依据规范 《钢结构设计规范》(GB 50017-2003) 《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002) 2.柱截面参数 柱截面高度h b =500mm 柱翼缘宽度b f =500mm 柱翼缘厚度t f =14mm 柱腹板厚度t w =14mm

3.荷载值 柱底弯矩M=350m kN 柱底轴力N=500kN 柱底剪力V=50kN 4.材料信息 混凝土C25 柱脚钢材Q235-B 锚栓Q235 5.柱脚几何特性 底板尺寸a=75mm c=100mm b t=85mm l t=75mm 柱脚底板长度L=800mm 柱脚底板宽度B=800mm 柱脚底板厚度t=30mm 锚栓直径d=39mm 柱腹板与底板的焊脚高度h f1 =10mm 加劲肋高度h s=210mm 加劲肋厚度t s=10mm 加劲肋与柱腹板和底板的焊脚高度h f2 =10mm 三、计算过程 1. 基础混凝土承压计算

(1) 底板受力偏心类型的判别 3 6t l L +=800/6+75/3=158.333mm 偏心距 N M e ==350×1000/500=700mm 根据偏心距e 判别式得到: abs(e)>(L/6+lt/3) 底板计算应对压区和拉区分别计算 (2) 基础混凝土最大压应力和锚栓拉力 a. 6/0L e ≤< 锚栓拉力 0a =T )/61(max L e LB N +=σ b.)3/6/(6/t l L e L +≤< 锚栓拉力 0a =T ) 2/(32max e L B N -=σ c. )3/6/(t l L e +> 若d <60mm 则: 2 max 6L B M L B N ??+?=σ 2min 6L B M L B N ??-?=σ 柱脚底板的受压区长度 x n =m in m ax m ax σσσ-?L 若mm 60≥d 则: 解下列方程式得到柱脚底板的受压区长度x n : 0))(2/(6)2/(3n t t a e 2n 3n =---+--+x l L l L e B nA x L e x 其中,A e a 为受拉区锚栓的有效面积之和,n =E s /E c 。 )3/()2/(2n t n t max x l L x B l L e N --?-+?=σ 锚栓拉力 3 /)3/2/(n t n a x l L x L e N T --+-?= 综上解得: 基础混凝土的最大压应力 ==max c σσ 4.88 N/mm 2c f l β≤=11.9 N/mm 2 柱脚底板的受压区长度 x n =476.19mm 锚栓拉力 T a =405.045kN 2. 锚栓的强度校核 柱脚中部的锚栓主要起到安装定位作用,承受拉力较小,忽略其抗拉贡献。

相关文档
最新文档