不等式解法举例

不等式解法举例
不等式解法举例

第一课时 知识清单:

1、解含绝对值的不等式,关键是去掉绝对值符号,进而转化为不含绝对值的不等式求解。

2、去绝对值得方法主要有:

(1)公式法: x a a x a ?<-或x a >

(2)平方法:当0a >时,22x a x a ?>. (3)零点分段法.

3、含绝对值不等式的等价变形:

(1)()(0)()f x a a f x a >>?>或()f x a <-;()a f x a -<<

(2)()(0)f x a a <>?()a f x a -<<;

(3)[][]22()()()()()()()()f x g x f x g x f x g x f x g x >?>?+-g ;

(4)()()()()f x g x f x g x >?>或()()f x g x <-;

(5)()()()()()f x g x g x f x g x

1、 解不等式2

320x x -->; 2、解不等式213x +>; 3、解不等式317x +<; 4、解不等式3110x +>; 5、解不等式211x -≤;

6、解不等式2311x x -+>;

7、解不等式113x x ++->;

8、解不等式234x x --+>;

9、解不等式211x x +>-;

10、解不等式233x x x ++>4+;

11、解不等式

2341x x x --<+;

第二课时 知识清单:

1、解分式不等式,首先要把它等价变形为整式不等式.共有如下几种类型:

(1)()0()()0()f x f x g x g x >?>g ; (2)()0()()0()

f x f x

g x g x

()f x g x f x f x g x g x g x ≥?≥??>?≠?g g 或()0f x =; (4)

()()0()0()()0,()0()0()f x g x f x f x g x f x g x g x ≤?≤??<=?≠?g g . 2、数轴穿根法解不等式的步骤是:

(1)等价变形后的不等式一边是零,一边是各因式的积(未知数系数一定是正数);

(2)把各因式的根标在数轴上;

(3)用曲线“从上往下同时从左向右”穿根(奇次根穿透,偶次根不穿透);

(4)看图象写出解集.

简记为:变形、标根、穿根、写解集.

习题:

1、解不等式

201x x

+<-; 2、解不等式122

x x +≤-; 3、解不等式21031

x x ->+; 4、解不等式2301

x x +<-; 5、解不等式23901

x x +>+; 6、解不等式121

x x ->0+; 7、解不等式107

x x -<-; 8、解不等式112

x x -<+; 9、解不等式123x x +>-; 10、已知0a <,解关于x 的不等式

12

ax x >-;

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

不等式及其解法练习题

不等式的练习题 一、填空题 1、不等式2654x x +<的解集是 . 2 不等式-4≤x 2-3x <18的整数解为 . 3、如果不等式21x 同时成立,则x 的取值范围是 4.不等式x x ->+512的解集是 5.不等式x x x x ->-11的解是 6.函数x x x y -+= )21 (的定义域是 7.不等式331≤--x x 的解集为 . 13、函数22--=x x y 的定义域 是 . 14.不等式:(1)x x 1 <的解为 . 15、321>++-x x 的解为 .

16.使不等式a x x <-+-34有解的条件是 . 17.已知关于x 的方程ax 2 +bx+c <0的解集为{x |x <-1或x >2}.则不等式ax 2 -bx+c >0的解集为 . 二、解不等式: 1、302x x -≥- 2、21 13 x x ->+ 3、22 32023x x x x -+≤-- 4、221 02x x x --<- 5、()()() 3 22 1603x x x x -++≤+ 6、()2 309x x x -≤- 7、 101x x <-< 8、 . 0)25)(-4-( 2 2<++x x x x

9 、 (2 1x -)(2 68x x -+)≤0 10 、 22 41 1372 x x x x -+≥-+ 11 、 12 、x x x 211322 +>+-

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

不等式的解法及其应用

综合滚动练习:不等式的解法及其应用 一、选择题(每小题3分,共24分) 1.若a >b ,则下列不等式一定成立的是( ) A.b a <1 B.b a >1 C.-a >-b D.a -b >0 2.不等式x 2-x -13 ≤1的解集是( ) A.x ≤4 B.x ≥4 C.x ≤-1 D.x ≥-1 3.关于x 的不等式2x -a ≤-1的解集是x ≤-1,则a 的值是( ) A.0 B.-3 C.-2 D.-1 4.(2017·遵义中考)不等式6-4x ≥3x -8的非负整数解有( ) A.2个 B.3个 C.4个 D.5个 5.要使4x -3 2 的值不大于3x +5的值,则x 的最大值是( ) A.4 B.6.5 C.7 D.不存在 6.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 含量及购买这两种原 现配制这种饮料10千克,要求至少含有4200单位的维生素C.若所需甲种原料的质量为x 千克,则x 应满足的不等式为( ) A.600x +100(10-x )≥4200 B.8x +4(100-x )≤4200 C.600x +100(10-x )≤4200 D.8x +4(100-x )≥4200 7.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ) A.m >-54 B.m <-54 C.m >54 D.m <5 4 8.某商店老板销售一种商品,他要以不低于进价20%的利润出售,但为了获得更多的利 润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( ) A.82元 B.100元 C.120元 D.160元 二、填空题(每小题4分,共24分) 9.(2017·海南中考)不等式2x +1>0的解集是 . 10.如果关于x 的不等式2(x -1)

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

不等式及解法典型题目

七年级下册不等式专题测练 训练一 不等式及其解集 1.下列式子中,不等式的个数为( ) ①20-<;②34x y +>;③21x +=;④x y +;⑤6a ≠. A 、2个 B 、3个 C 、4个 D 、5个 2.当3x =-时,下列不等式成立的是( ) A 、58x ->- B 、1303 x +> C 、3(3)3x ->- D 、32x x > 3.用不等式表示图1中的不等式的解集,其中正确的是( ) A 、2x >- B 、2x <- C 、22x -<< D 、2x > 4.哥哥今年6岁,弟弟今年4岁,以下说法正确的是( ) A 、比弟弟大的人,一定比哥哥大; B 、比哥哥小的人,一定比弟弟小; C 、比哥哥大的人可能比弟弟小; D 、比弟弟小的人决不会比哥哥大. 5.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x 、?y 分别表示“●”、“▲”的重量,写出符合题意的不等式是_________. 6.先根据文字语言列出不等式,并想出不等式的解集,然后再在数轴上表示出其解集. (1)x 减去4-的差是正数; (2)a 的3倍小于6-. 训练二 不等式的性质 1.如果x y >,那么下列结论错误的是( ) A 、33x y ->- B 、44x y > C 、2255 x y > D 、x y ->- 2.若0m n >>,那么下列各式中正确的是( ) A 、mp np > B 、2n mn < C 、 11m n > D 、()()m p n p -->+- 3.如果(3)3a x a +>+的解集为1x <,那么a 必须满足( ) A 、0a < B 、3a > C 、3a >- D 、3a <- 4.设0x y <<,用不等号连接下列各项中的式子:2x - 2 y -, 2x 2y . 5.式子22x -,当x 时,该式子的值是正数;当x 时,该式子的值是负数;当x 时,该式子的值小于2.

含参不等式的解法复习课教案

含参不等式的解法复习课教案 授课内容:含参不等式的解法复习课 教学目标 1.通过复习使学生进一步掌握一些简单的含有参不等式的基本解法;并让学生了解使用分类讨论方法的起因. 2.培养学生分析、概括能力及运算能力. 3.提高学生思维的严谨性和深刻性. 教学重点与难点 教学重点:含有字母系数不等式的求解基本模式的形成. 教学难点:分类讨论方法的正确使用. 教学设想:先通过一组基础题的讨论练习,使学生从中体会含参不等式的解法,树立分类讨论的意识,然后再通过典型例题的分析讲解,使学生进一步掌握解含参不等式的基本解法,明确分类讨论的依据和标准,最后再通过练习加以强化。 教学过程: 一、基础题组练习 解下列关于x的不等式 1. 2.

3. 4. 设置本组练习旨在唤醒学生的解题意识及方法,使其对解含有参数的不等式有一个初步的体会和认识。 学生分组解答、交流结果,之后教师订正。 二、 典型例题分析 例1 解关于x 的不等式: 分析:本题为含有参数的绝对值不等式,移项后得: , 此时,要脱去绝对值符号,就必须要对 的值进行讨论。 分析清楚后由学生合作完成。 例2 已知函数 b ax x x f +=2)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 2=3, x 2=4.(1)求函数f(x)的解析式; (2)设k>1,解关于x 的不等式;x k x k x f --+<2)1()(. 分析:本题第二问为含参的分式不等式,需要对参数进行讨论,要根据条件正确划分分类标准,确保穷尽所有可能情形。 分析完后学生先做,之后教师进行订正,并强调注意事项。 例3 解关于x 的不等式: 分析:该不等式的基本类型为含参的分式不等式,可通过移项通分调整系数数轴标根几步完成,但在调整系数及标根时,涉及到对

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

不等式及其解法

一元二次不等式及其解法(文科学案) 编者:赵学磊审核:刘丽娟 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神。 【教学重点】 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 【教学难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 1.一元二次不等式的概念 形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式,用文字语言表述为:,叫做一元二次不等式.2.一元二次不等式与一元二次方程、二次函数的联系 (1)将原不等式化为一般式. ax2+bx+c≥0与ax2+bx+c≤0(a>0) (2)判断?的符号. (3)求方程的根. (4)根据图象写不等式的解集. 写不等式解集的规律是:大于零取小于零取。

三、典型讲解: 题型一、解一元二次不等式 例1、求下列不等式的解集. (1)2230x x -+-> (2)2 4410x x -+> (3)x 2+28≥11x; (4)x 20; (2)3x 2+5x -2>0; (3) x 2-4x +5>0.; (4)9x 2-6x +1>0; 题型二、含有参数一元二次不等式的解法 例2解下列含有参数的一元二次不等式:2x 2 +ax+2>0 变式2、 x 2-(a+a 2)x+a 3>0

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

相关文档
最新文档