常见的几种厌氧发酵工艺分类汇总

常见的几种厌氧发酵工艺分类汇总
常见的几种厌氧发酵工艺分类汇总

常见的几种厌氧发酵工艺分类汇总

厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于禽畜粪污、废水、有机固体垃圾处理等领域。厌氧发酵工艺类型较多,从不同的角度可以将厌氧发酵工艺分为以下几类:根据发酵温度的不同可分为常温、中温和高温发酵;按照投料运转方式可分为连续和序批式发酵;按照发酵物料中固含量的多少可分为湿式和干式厌氧发酵;按照反应是否在同一反应器进行分为单相和两相厌氧发酵。

一、常温、中温和高温发酵

温度主要是通过影响对厌氧微生物细胞内某些酶的活性而影响微生物的生长速率和微生物对基质的代谢速率,从而影响厌氧生物处理工艺中污泥的产量,有机物的去除速率,反应器所能达至的处理负荷,有机物在生化反应中的流向,某些中间产物的形成,各种物质在水中的溶解度,及沼气的产量和成分等。

常温发酵一般是物料不经过外界加热直接在自然温度下进行消化处理,发酵温度会随着季节气候昼夜变化有所波动。常温发酵工艺简单造价低廉,但是其缺点是处理效果和产气量不稳定。

中温发酵温度在30℃~40℃之间,中温发酵加热量少,发酵容器散热较少,反应和性能较为稳定,可靠性高,如果物料有较好的预处理,会提高反应速度和气体发生量;受毒性抑制物阻害作用较小,受抑制后恢复快,会有浮渣、泡沫、沉砂淤积等问题,对浮渣、泡沫、沉砂的处理是工艺难点,其诸多优点使其得到广泛的应用并有很多的成功案例。

高温发酵温度在50℃~60℃之间,需要外界持续提供较多的热量,高温厌氧消化工艺代谢速率、

有机质去除率和致病细菌的杀灭率均比中温厌氧消化工艺要高,但是高温发酵受毒性抑制物阻害作用大,受抑制后很难恢复正常,可靠性低;高温厌氧产气率比中温厌氧稍有提高,提高的是杂质气体的量,但沼气中有效成分甲烷的含量并没有提高,限制的高温厌氧的应用;高温发酵罐体及管路需要耐高温耐腐蚀性能好的材料,运行复杂,技术含量高。

二、连续发酵和序批式发酵

连续发酵是从投加物料启动以后,经过一段时间发酵稳定以后,每天连续定量的向发酵罐内添加新物料和排出沼渣沼液。序批式发酵就是一次性投加物料发酵,发酵过程中不添加新物料,当发酵结束以后,排出残余物再重新投加新物料发酵,一般进料固体浓度在15%~40%之间。

研究表明,对于处理高木质素和纤维素的物料,若在动力学速率低、存在水解限制时,序批式反应器比全混式连续反应器处理效率高。且序批式发酵水解程度更高,甲烷产量更大,投资连续式进料系统减少约40%。虽然序批式进料处理系统占地面积比连续进料处理系统大,但由于其设计简单、易于控制、对粗大的杂质适应能力强,投资少,适合于在发展中国家推广应用。

三、湿式发酵和干式发酵

湿式发酵是以固体有机废物(固含率为10%~15%)为原料的沼气发酵工艺。干式发酵是以固体有机废物(固含率为20%~30%)为原料,没有或几乎没有自由流动的条件下进行的沼气发酵工艺,是一种新生的废物循环利用方法。

湿式发酵系统与废水处理中污泥厌氧稳定化处理技术相似,但在实际设计中有很多问题需要考虑,特别是对于城市生活垃圾,分选去除粗糙的硬垃圾,及将垃圾调成充分连续的浆状的预处理过程等。为达到既去除杂质,又保证有机垃圾正常处理,需要采用过滤、粉碎、筛分等复杂的处理。这些预处理过程会导致15%~25%的挥发性固体损失。浆状垃圾不能保持均匀的连续性,因为在消化过程中重物质沉降,轻物质形成浮渣层,导致反应器中形成两种明显不同密度的物质层,重物质在反应器底部聚集可能破坏搅拌器,必须通过特殊设计的水力旋流分离器或者粉碎机去除。

干式发酵系统的难点在于:

其一,生物反应在高固含率条件下进行;

其二,输送、搅拌;

其三,反应启动条件苛刻,在运行中存在着很高的不稳定性。

但是在法国、德国己经证明对于机械分选的城市生活有机垃圾的发酵采用干式系统是可靠的。且与湿式发酵相比,又有明显的优势:

其一,干发酵TS通常在15%以上,含水量较少,使得有机质浓度也较高,从而提高了容积产气率;其二,节约用水;

其三,后处理容易,几乎没有废水的排放,且发酵后的剩余物中只有沼渣,可直接作为有机肥利用;产生的沼气中含硫量低,无需脱硫,可直接利用;

其四,运行费用低,过程稳定。干发酵工艺不会存在如湿法发酵中出现的浮渣、沉淀等问题。

干式发酵技术受到了国内外广大研究者的关注,使其在处理城市生活垃圾和农林残余物等方面得到了广泛的重视。也使得干式发酵技术成为厌氧发酵研究的热点。

四、单相发酵和两相发酵

单相发酵工艺是产酸菌和产甲烷菌在同一反应器中进行。两相发酵工艺,实现了生物相的分离,使微生物在各自最佳生长条件下发酵。

单相发酵工艺会受冲击负荷或环境条件的变化的影响,导致氢分压增加,从而引起丙酸积累。而生物相分离后,产酸相可有效去除了大量氢,提高整个两相厌氧生物处理系统的处理效率和运行稳定性。

相对于两相发酵工艺,单相发酵工艺投资少,操作简单方便,因而当前约70%的发酵工艺采用的是单相发酵工艺。但是,两相发酵工艺处理城市生活垃圾有很多的优点,比如,可以单独控制两个不同反应器的条件,以使产酸菌和产甲烷菌在各自最适宜的环境条件下生长;也可以单独控制它们的有机负荷率(OLR)、水力停留时间(HRT)等参数,提高微生物数量和活性,从而缩减HRT,提高系统的处理效率。两相发酵工艺目前的研究多集中在如何将高效厌氧反应器和两相发酵工艺有机的结合,两相发酵工艺的反应器可以采用任何一种厌氧生物反应器,如厌氧接触反应器、厌氧生物滤器、UASB、EGSB、UBI、ABR或其它厌氧生物反应器,产酸相和产甲烷相所采用的反应器形式可以相同,也可以不相同。

目前,实现相分离的途径可以归纳为化学法、物理法和动力学控制法。最简便、最有效,也是应用最普遍的方法是动力学控制法,该方法是利用产酸菌和产甲烷菌在生长速率上的差异,控制两个反应器的有机负荷率,水力停留时间等参数,实现相的有效分离。但必须说明的是:两相的彻底分离是很难实现的。只是在产酸相,产酸菌成为优势菌种,而在产甲烷相,产甲烷菌成为优势菌种。

一般厌氧发酵所涉及到的工艺就是这些了,而关于以上几种厌氧发酵工艺的应用,小沼只是进行了简单的介绍与分析,具体工艺情况还应据实际应用而定。

几种沼气厌氧发酵工艺比较剖析

塞流式工艺 塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。 1.塞流式反应器(PFR) 图1 (1)原理 PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。 (2)特点 优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。 缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。 2. 高浓度塞流式工艺(HCF) (1)原理 HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。 (2)特点 进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

至万吨有机肥生产的工艺流程

1至5万吨有机肥生产的工艺流程加工有机肥原料如下: 1、农业废弃物:比如秸秆、豆粕、棉粕等。 2、畜禽粪便:比如鸡粪、牛羊马粪、兔粪; 3、工业废弃物:比如酒糟、醋糟、木薯渣、糖渣、糠醛渣等; 4、生活垃圾:比如餐厨垃圾等; 5、污泥; 有机肥原料发酵工艺: 机肥全套生产线产品是以鲜鸡粪、猪粪,秸秆,污泥等为主要原料制造成有机肥料,不含任何化学成份。那么该如何操作有机肥生产线生产肥料呢? 下面为大家介绍有机肥生产线 一、设施:地面堆放 二、设备:铁锹、粪钩、脸盆、称等。 三、操作方法 1、准备工作:将需处理的畜禽粪便(含水量在70%左右)称量分份。准备BM菌剂。 2、生产工艺 (1)将畜禽粪便和BM菌种按1:10000的重量比例进行混合,然后进行搅拌,搅拌2-3遍即可。 (2)搅拌好的发酵物水份应控制在55%-60%,达到手握成团,松手既散的效果即可。 (3)把搅拌好的发酵物堆放到平地上面,高度不小于1m,宽度不小于1.5m。长度不限。 (4)发酵24-48小时,温度可过到55℃以上,最高达70℃以上,三天可达到除臭效果。 (5)堆放发酵10—15天后达到无公害和国家有机肥规范,可作基肥和专用肥使用。 步骤一:拌匀发酵剂。 1~1.5吨干鸡粪(鲜鸡粪约2.5~3.5吨)加一公斤鸡粪发酵剂,每公斤的发酵剂平均加5~10公斤M糠或玉M、麸皮,搅拌均匀后撒入已准备好的物料中,效果最佳。 步骤二:调剂碳氮比。发酵肥料的碳氮比应保持在25~30:1,酸碱度调到6~8(ph)为宜,因鸡粪的碳氮比偏高,应在发酵时加入一些秸秆、稻草、蘑菇渣等一起发酵。 步骤三:调节鸡粪水分。发酵有机肥料的过程中,水分含量是否适宜非常重要的,不能太高,也不能太低,应保持在60~65%,判断方法:手紧抓一把物料,指缝见水印但不滴水,落地能散开为宜。 步骤四:鸡粪建堆。在做发酵堆时不能做的太小太矮,太小会影响发酵,高度一般在1.5M左右,宽度2M左右,长度在2~4M以上的堆发酵效果较好。 步骤五:拌匀通气。发酵助剂是耗氧性微生物,所以在发酵过程中应加大供氧措施,做到拌匀、勤翻、通气为宜,否则会因为厌氧发酵影响物料发酵效果。 步骤六: 发酵完成。一般在鸡粪堆积48小时后,温度会升至50~60℃,第三天可达65℃以上,在此高温下翻倒一次,一般情况下,在发酵过程中会出现2~3次65℃以上的高温,翻倒2~3次即可完成发酵,正常一周左右可发酵完成,使物料彻底脱臭、发酵腐熟,灭菌杀虫。鸡粪发酵有机肥技术鸡粪经鸡粪发酵剂发酵之后,肥效更好,使用更安全方便,还可提高化肥利用率等。不仅鸡粪可以发酵有机肥,各种动物粪便、秸秆、落叶垃圾、树皮、锯末等均可发酵有机肥,发酵方法基本一样。最后还要提醒大家,无论用什么物料发酵有机肥,都要把握好水分含量,否则会功亏一篑。 5万吨有机肥生产工艺: 1、生产工艺发酵池投放发酵物--均匀撒入菌剂--翻堆发酵--发酵12-15天--出池--分筛--粉碎--予混--(造粒)--烘干--冷却--筛分--包装--出售. 2、生产设备工艺流程 1)、槽式翻堆机采用槽式生物发酵,根据您的生产规模需建9M宽45M长发酵槽三条,将发酵物连续投入发酵池中,每天利用翻堆机向发酵槽另一端移位三M,同时能够起到水分调节和搅拌均匀目的,

化粪池是一种利用沉淀和厌氧发酵的原理

MBR工艺组合 膜生物反应器是一种由膜分离与生物处理技术组合而成的废水生物处理新工艺。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。 1、MBR工艺在国内的研究现状 80年代以来,膜生物反应器愈来愈受到重视,成为研究的热点之一。目前该技术己应用于美国、德国、法国和埃及等十多个国家,规模从6m3/d至13000m3/d不等。 我国对MBR的研究还不到十年,但进展十分迅速。国内对MBR的研究大致可分为几个方面: 1.探索不同生物处理工艺与膜分离单元的组合形式,生物反应处理工艺从活性污泥法扩展到接触氧化法、生物膜法、活性污泥与生物膜相结合的复合式工艺、两相厌氧工艺; 2.影响处理效果与膜污染的因素、机理及数学模型的研究,探求合适的操作条件与工艺参数,尽可能减轻膜污染,提高膜组件的处理能力和运行稳定性; 3.扩大MBR的应用范围,MBR的研究对象从生活污水扩展到高浓度有机废水(食品废水、啤酒废水)与难降解工业废水(石化、印染废水等),但以生活污水的处理为主。

2、MBR工艺的特点 与传统的生化水处理技术相比,MBR具有以下主要特点: 1.高效地进行固液分离,其分离效果远好于传统的沉淀池,出水水质良好,出水悬浮物和浊度接近于零,可直接回用,实现了污水资源化。 2.膜的高效截留作用,使微生物完全截留在生物反应器内,实现反应器水力停留时间(HRT)和污泥龄(SRT)的完全分离,运行控制灵活稳定。 3.由于MBR将传统污水处理的曝气池与二沉池合二为一,并取代了三级处理的全部工艺设施,因此可大幅减少占地面积,节省土建投资。 4.利于硝化细菌的截留和繁殖,系统硝化效率高。通过运行方式的改变亦可有脱氨和除磷功能。 5.由于泥龄可以非常长,从而大大提高难降解有机物的降解效率。 6.反应器在高容积负荷、低污泥负荷、长泥龄下运行,剩余污泥产量极低,由于泥龄可无限长,理论上可实现零污泥排放。 7.系统实现PLC控制,操作管理方便。 3、MBR工艺的组成 通常提到的膜- 生物反应器实际上是三类反应器的总称: 1.曝气膜- 生物反应器(Aeration Membrane Bioreactor, AMBR) ; 2.萃取膜- 生物反应器( Extractive Membrane Bioreactor, EMBR ); 3.固液分离型膜- 生物反应器( Solid/Liquid Separation MembraneBioreactor, SLSMBR, 简称MBR )。 曝气膜 曝气膜--生物反应器(AMBR)采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point)情况下,可实现向生物反应器的无泡曝气。

需氧菌和厌氧菌种类(课件)

需氧菌和厌氧菌种类 细菌种类有哪些? 最佳答案 按细菌的生活方式来分类:分为两大类:自养菌和异养菌,其中异养菌包括腐生菌和寄生菌.按细菌对氧气的需求来分类:可分为需氧(完全需氧和微需氧)和厌氧(不完全厌氧、有氧耐受和完全厌氧)细菌。 按细菌生存温度分类:可分为喜冷、常温和喜高温三类。 需氧菌种类 需氧菌有哪几类?名称(最好附上图) 巴氏消毒法,200次说明~ 最佳答案 需氧菌及兼性厌氧菌包括大肠杆菌、棒杆菌、链球菌、肠球菌、葡萄球菌等 巴氏消毒法是法国微生物学家巴斯德为葡萄酒消毒时发明,并以他的名字来命名的一种消毒方法.指在规定时间内以不太高的温度处理液体食品的一种加热灭菌方法。巴氏消毒是乳品加工中的一个重要环节,它可消灭所有的致病菌、酵母、霉菌和绝大部分其它细菌。但并不能达到灭菌的程度。...感谢

聆听... 此法可以达到消毒目的,又不致损害食品质量。分低温法(60~65℃)灭菌15~30分钟,高温法(70~80℃)消毒5~15分钟。有些不耐高温的液体如牛奶、啤酒和葡萄酒等,不能加热到煮沸的温度(100℃),可采用较低的温度(70~80℃)灭菌,这种灭菌法首先由巴斯德发现,故此得名。因其灭菌的对象范围有限,只适用于杀死无芽孢的肠道细菌。它的主要理论依据是:无芽孢细菌加热到60~65℃,经过15~30分钟可以死亡;而加热到70~80℃,则只需5~10分钟即被杀死。牛奶用巴氏消毒法,用70~75℃或用80℃经几秒钟可达到消毒目的。这样可以杀死致病菌,特别是无芽孢的肠道细菌,保证营养成分不被破坏。巴氏灭菌法应用到啤酒加热约65℃经30分钟,用此法生产的啤酒称为熟啤酒。...感谢聆听... 厌氧菌有哪些? 其他回答共1条 你好! 厌氧菌尚无公认的确切定义,但通常认为这是一类只能在低氧分压的条件下生长,而不能在空气(18%氧气)和(或)10%二氧化碳浓度下的固体培养基表面生长的细菌。按其对氧的耐受程度的不同,可分为专性厌氧菌、微需氧厌氧菌和兼性厌氧菌。

有机肥发酵方法分析

有机肥 有机肥: 主要指各种动物和植物等,经过一定时期发酵腐熟后形成的肥料(其中包括经过加工的菜籽饼,是没有异味的)。 有机肥含有大量生物物质、动植物残体、排泄物、生物废物等物质、施用有机肥料不仅能为农作物提供全面营养,而且肥效长,可增加和更新土壤有机质,促进微生物繁殖,改善土壤的理化性质和生物活性,是绿色食品生产的主要养分来源。堆肥 以各类桔秆、落叶、青草、动植物残体、人畜粪便为原料,与少量泥土混合堆积而成的一种有机肥料。 沤肥 沤肥所用原料与堆肥基本相同,只是在淹水条件下进行发酵而成。 厩肥 指猪、牛、马、羊、鸡、鸭等畜禽的粪尿与秸秆垫料堆沤制成的肥料。 沼气肥 在密封的沼气池中,有机物腐解产生沼气后的副产物,包括沼气液和残渣。 绿肥 利用栽培或野生的绿色植物体作肥料。如豆科的绿豆、蚕豆、草木樨、田菁、苜蓿、苕子等。非豆科绿肥有黑麦草、肥田萝卜、小葵子、满江红、水葫芦、水花生等。 作物秸秆 农作物秸秆是重要的有机肥之一,作物秸秆含有作物所必需的营养元素有N、P、K、 Ca、s等。在适宜条件下通过土壤微生物的作用,这些元素经过矿化再回到土壤中,为作物吸收利用。 饼肥 菜籽饼、棉籽饼、豆饼、芝麻饼、蓖麻饼、茶籽饼等。 泥肥 未经污染的河泥、塘泥、沟泥、港泥、湖泥等。 现在,随着科学技术的不断发展,通过有益菌群的人工纯培养技术,采用科学的提炼,可以生产出多种多样不同品种的生物有机肥,它能改善土质、减少环境污染、增肥增效等。生物有机肥将是未来农业生产用肥的主要发展趋势。 1.发酵作业流程 1.从取料口取出一定量的产品 2.用带式输送机搬运出 3.把定量原料投入到料斗提升机 4.用料斗提升机从投入口投入到发酵槽里 5.根据原料状态有时要添加废粘土

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

有机肥发酵技术

任何一种合格优质的有机肥料的生产都必须经过堆肥发酵过程。堆肥是在一定条件下通过微生物的作用,使有机物不断被降解和稳定,并产出一种适宜于土地利用的产品的过程。堆肥这种古老而简便的处理有机废弃物和制造肥料的方法,随着研究的深入和方法的改进,其应用很受各个国家的重视,因为它有很好的生态意义,也为农业生产带来效益。有许多报道指出,用腐熟堆肥制备种子苗床能抑制土传病害。并且在堆肥过程的高温阶段过后接踵而来的拮抗性细菌,可使菌数达到很高水平;堆肥过程中各有机物在微生物作用下,达到不易分解、稳定、作物易吸收状态;同时微生物作用在一定范围内减少重金属毒害作用。可见,堆肥是制造生物有机肥的简便而有效的方法,有益于生态农业的发展。堆肥为什么产生这样的效果呢?下面我们对堆肥原理进行比较详尽的介绍。 (一)堆肥过程中有机质的转化堆肥中的有机质在微生物作用下进行复杂的转 化 这种转化可归纳为两个过程:一个是有机质的矿质化过程,即把复杂的有机质分解成为简单的物质,最后生成二氧化碳、水和矿物质养分等;另一个是有机质的腐殖化过程,即有机质经分解再合成,生成更复杂的特殊有机质-腐殖质。两个过程是同时进行的,但方向相反,在不同条件下,各自进行的强度有明显的差别。1.有机质的矿化作用⑴不含氮有机物的分解多糖化合物(淀粉、纤维素、半纤维素)首先在微生物分泌的水解酶的作用下,水解成单糖。葡萄糖在通气良好的条件下分解迅速,酒精、醋酸、草酸等中间产物不易积累,最终形成C02 和H20,同时放出大量热能。如果通气不良,在嫌气微生物作用下,单糖分解缓慢,产生热量少,并积累一些中间产物-有机酸。在极嫌气微生物条件下,还会生成 CH4、H2等还原态物质。⑵含氮有机物的分解堆肥中的含氮有机物包括蛋白质、氨基酸、生物碱、腐殖质等。除腐殖质外,大部分容易被分解。例如蛋白质,在微生物分泌的蛋白酶作用下,逐级降解,产生各种氨基酸,再经氨化作用、硝化作用而分别形成铵盐、硝酸盐,可以被植物吸收利用。⑶含磷有机物的转化堆肥中的含磷有机化合物,在多种腐生性微生物的作用下,形成磷酸,成为植物能够吸收利用的养分。⑷含硫有机物的转化堆肥中含硫有机物,经微 生物的作用生成硫化氢。硫化氢在嫌气环境中易积累,对植物和微生物会发生毒 害。但在通气良好的条件下,硫化氢在硫细菌的作用下氧化成硫酸,并和堆肥中的盐基作用形成硫酸盐,不仅消除了硫化氢的毒害,并成为植物能吸收的硫素养料。在通气不良的情况下,发生反硫化作用,使硫酸转变为H2S散失,并对植

厌氧发酵工艺

环化系环测1001 李园方 厌氧发酵 1前言 餐厨垃圾是城市生活垃圾中有机相的主要来源。餐厨垃圾以蛋白质、淀粉类、食物纤维类、动物脂肪类等有机物质为主要成分, 是能源和肥料潜在的资源。餐厨垃圾含水率高达75% ~ 90%, 渗沥液易通过渗透作用污染地下水, 产生出大肠杆菌等病原微生物, 直接危害人体健康[ 1] 。另外, 餐厨垃圾处理过程中也会产生大量的高浓度有机废水, 如果处理不当, 将造成巨大的环境污染和资源浪费。宁波市于2009 年6月建成了一座餐厨垃圾废水厌氧 发酵工程, 经过2个月的调试运转, 于2009年8月开始正式运行。现将该工程情况介绍如下。 2废水概况 餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1602废水概况餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1603工艺流程根据工艺流程, 餐厨垃圾废水制沼气及发电主 要为以下三个步骤。 3-1厌氧发酵调试阶段 活性污泥的培养及驯化对反应器的正常运行至关重要。本项目的

接种污泥取自宁波骆驼沼气站(该沼气站以猪粪为原料)。 ( 1)污泥驯化初期(时间10天)。投入一定量的接种污泥, 再加入稀释后的废水( CODCr < 10 g L- 1 )一起投入改进型升流式厌氧污泥床反应器( UASB )中, 调节pH 至中性, 使污泥恢复活性。 ( 2)污泥驯化中期(时间30天)。投入一定量的接种污泥, 餐厨垃圾废水稀释为50% ( CODC r 40~ 80 g L- 1 ) , 出水水质良好。污泥性质基本稳定,上清液澄清透明。这表明, 活性污泥开始驯化, 适应餐厨垃圾废水。 ( 3)污泥驯化后期(时间20天)。餐厨垃圾废水提高到进料COD 浓度80~ 120 g L- 1, 保持一个 水力停留期。随着餐厨垃圾废水投加量的增加, 出水COD有所提高, 但仍能保持较高的COD 去除率。较长时间稳定的去除率表明, 污泥已基本适应餐厨垃圾废水的特性, 活性污泥驯化完成。 3-2厌氧发酵阶段 该工程采用2000m3 的改进型升流式厌氧污泥床反应器进行厌 氧发酵制沼气, 发酵装置外观见图1。该反应器处理效率高, 耐负荷能力强, 出水水质相对较好, 沼泥生成量小, 具有防堵防爆的特点, 其 结构、运行操作维护管理相对简单, 造价也相对较低。具有良好的沉淀性能和聚凝性能的污泥在下部形成污泥层, 运行一段时间后, 出水悬浮物增加, 需要按时排泥。 该工程设计为连续投料的工业化生产工艺路线。厌氧发酵启动后,

有机肥料发酵原理

有机肥料发酵原理 关键词:有机肥发酵、堆肥、灭菌 一、概述 任何一种合格优质的有机肥料的生产都必须经过堆肥发酵过程。堆肥是在一定条件下通过微生物的作用,使有机物不断被降解和稳定,并产出一种适宜于土地利用的产品的过程。 堆肥这种古老而简便的处理有机废弃物和制造肥料的方法,随着研究的深入和方法的改进,其应用很受各个国家的重视,因为它有很好的生态意义,也为农业生产带来效益。有许多报道指出,用腐熟堆肥制备种子苗床能抑制土传病害。并且在堆肥过程的高温阶段过后接踵而来的拮抗性细菌,可使菌数达到很高水平;堆肥过程中各有机物在微生物作用下,达到不易分解、稳定、作物易吸收状态;同时微生物作用在一定范围内减少重金属毒害作用。可见,堆肥是制造生物有机肥的简便而有效的方法,有益于生态农业的发展。 堆肥为什么产生这样的效果呢?下面我们对堆肥原理进行比较详尽的介绍。 二、有机肥发酵原理 (一)堆肥过程中有机质的转化 堆肥中的有机质在微生物作用下进行复杂的转化,这种转化可归纳为两个过程:一个是有机质的矿质化过程,即把复杂的有机质分解成为简单的物质,最后生成二氧化碳、水和矿质养分等;另一个是有机质的腐殖化过程,即有机质经分解再合成,生成更复杂的特殊有机

质-腐殖质。两个过程是同时进行的,但方向相反,在不同条件下,各自进行的强度有明显的差别。 1.有机质的矿化作用 ⑴不含氮有机物的分解 多糖化合物(淀粉、纤维素、半纤维素)首先在微生物分泌的水解酶的作用下,水解成单糖。葡萄糖在通气良好的条件下分解迅速,酒精、醋酸、草酸等中间产物不易积累,最终形成CO 2和H 2O ,同时放出大量热能。如果通气不良,在嫌气微生物作用下,单糖分解缓慢,产生热量少,并积累一些中间产物-有机酸。在极嫌气微生物条件下,还会生成CH 4、H 2等还原态物质。 ⑵含氮有机物的分解 堆肥中的含氮有机物包括蛋白质、氨基酸、生物碱、腐殖质等。除腐殖质外,大部分容易被分解。例如蛋白质,在微生物分泌的蛋白酶作用下,逐级降解,产生各种氨基酸,再经氨化作用、硝化作用而分别形成铵盐、硝酸盐,可以被植物吸收利用。 ⑶含磷有机物的转化 堆肥中的含磷有机化合物,在多种腐生性微生物的作用下,形成磷酸,成为植物能够吸收利用的养分。 ⑷含硫有机物的转化 堆肥中含硫有机物,经微生物的作用生成硫化氢。硫化氢在嫌气环境中易积累,对植物和微生物会发生毒害。但在通气良好的条件下,硫化氢在硫细菌的作用下氧化成硫酸,并和堆肥中的盐基作用形成硫酸盐,不仅消除了硫化氢的毒害,并成为植物能吸收的硫素养料。在通气不良的情况下,发生反硫化作用,使硫酸转变为H 2S 散失,并对植物产生毒害。堆肥发酵过程中,可以通过定时翻倒措施改善堆肥的通气性,就能消除反硫化作用。

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

有机肥发酵原理

有机肥发酵原理 一、概述 任何一种合格优质的有机肥料的生产都必须经过堆肥发酵过程。 堆肥是在一定条件下通过微生物的作用,使有机物不断被降解和稳定,并产出一种适宜于土地利用的产品的过程。 堆肥这种古老而简便的处理有机废弃物和制造肥料的方法,随着研究的深入和方法的改进,其应用很受各个国家的重视,因为它有很好的生态意义,也为农业生产带来效益。有许多报道指出,用腐熟堆肥制备种子苗床能抑制土传病害。并且在堆肥过程的高温阶段过后接踵而来的拮抗性细菌,可使菌数达到很高水平;堆肥过程中各有机物在微生物作用下,达到不易分解、稳定、作物易吸收状态;同时微生物作用在一定范围内减少重金属毒害作用。可见,堆肥是制造生物有机肥的简便而有效的方法,有益于生态农业的发展。 我国国内大多数有机肥料产品只堆肥发酵15-20天,这样的产品只能达到无害化标准。而优质的有机肥料堆肥发酵过程一般需要45-60天的时间。这是因为在堆肥前期的升温阶段以及高温阶段会杀死植物致病病原菌、虫卵、杂草籽等有害微生物,但此过程中微生物的主要作用是新陈代谢、繁殖,而只产生很少量的代谢产物,并且这些代谢产物不稳定也不易被植物吸收。到后期的降温期,微生物才会进行有机物的腐殖质化,并在此过程中产生大量有益于植物生长吸收的代谢产物,这个过程需要45-60天。经此过程的堆肥可以达到三个目的,一是无害化;二是腐殖质化;三是大量微生物代谢产物如各种抗生素、蛋白类物质等。 堆肥为什么产生这样的效果呢?下面我们对堆肥原理进行比较详尽的介绍。 二、有机肥发酵原理 (一)堆肥过程中有机质的转化 堆肥中的有机质在微生物作用下进行复杂的转化,这种转化可归纳为两个过程:一个是有机质的矿质化过程,即把复杂的有机质分解成为简单的物质,最后生成二氧化碳、水和矿质养分等;另一个是有机质的腐殖化过程,即有机质经分解再合成,生成更复杂的特殊有机质-腐殖质。两个过程是同时进行的,但方向相反,在不同条件下,各自进行的强度有明显的差别。 1.有机质的矿化作用 ⑴不含氮有机物的分解多糖化合物(淀粉、纤维素、半纤维素)首先在微生物分泌的水解酶的作用下,水解成单糖。葡萄糖在通气良好的条件下分解迅速,酒精、醋酸、草酸等中间产物不易积累,最终形成CO2和H2O,同时放出大量热能。如果通气不良,在嫌气微生物作用下,单糖分解缓慢,产生热量少,并积累一些中间产物-有机酸。在极嫌气微生物条件下,还会生成CH4、H2等还原态物质。

有机肥生产工艺流程精编版

有机肥生产工艺流程 楷瑞农业固体废弃物资源化利用项目采用土地利用模式,结合沼气生态模式,建立有机肥厂,利用鸡、猪、牛、羊等畜禽粪便及农作物秸杆为原料,运用生物发酵技术,经科学加工处理(生物发酵、高温杀菌、除臭、干燥),制成具有品质优良、肥效稳长的绿色、环保高效有机肥料、复混肥料、复合肥料、掺混肥、有机-无机复合肥。投入科研力量逐步建成无病菌蝇蛆蛋白饲料厂,届时养蝇育蛆的饲料也可加入有机复合肥生产的原料中,达到无污染排除,循环利用。同时在有机复合肥厂内厕所附件建设以处理厂内部分生活废水、人粪尿和少量堆肥原料渗滤液为目的的沼气池(还需要加入一定比例的粪便),为有机复合肥厂和牲畜集中养殖场提供热能和燃气。以实现养殖业废物高效资源化利用,达到畜禽养殖效益和环境保护生态效益的双赢。 一、工艺流程 整个工艺流程可以简单分为前处理、一次发酵、后处理三个过程。 前处理:堆肥原料运到堆场后,经磅秤称量后,送到混合搅拌装置,与厂内生产、生活有机废水混合,加入复合菌,并按原料成分粗调堆肥料水分、碳氮比,混合后进入下一工序。 一次发酵:将混合好后的原料用装载机送入一次发酵池,堆成发酵堆,采用风机从发酵池底部往上强制通风,进行供氧,同时2天左右进行翻堆,并补充水分(主要以厂内生产、生活有机废水为主)和养分,控制发酵温度在500C~650C,进行有氧发酵,本工程一次发酵周期为8天,每天进一池原料出一池半成品,发酵好的半成品出料后,准备进入下一工序。 后处理:进一步对堆肥成品进行筛分,筛下物根据水分含量高低分别进行处理。筛下物造粒后,送入由沼气池沼气供热的烘干机,进行烘干,按比例添加中微量元素后搅拌混合后制成成品,进行分装,入库待售。筛上物返回粉碎工序进行回用。 综上所述,整个工艺流程具体包括新鲜作物秸杆物理脱水→干原料破碎→分筛→混合(菌种+鲜畜禽粪便+粉碎的农作物秸杆按比例混合)→堆腐发酵→温度变化观测→鼓风、翻堆→水分控制→分筛→成品→包装→入库。 生物有机肥、有机-无机复混肥料、复合肥工艺流程图见图6-3、图6-4、图6-5。 二、工程方案 1、主料为畜禽粪便,对配料(秸秆、废弃烟叶、芒果种植加工废弃物等)进行粉碎,可适当添加一些氮素、磷矿粉等。调节物料的养分和碳氮比、碳磷比、PH值等。处理后原

有机堆肥发酵原理

有机肥料发酵原理 一、堆肥过程中有机质的转化 堆肥中的有机质在微生物作用下进行复杂的转化,这种转化可归纳为两个过程:一个是有机质的矿质化过程,即把复杂的有机质分解成为简单的物质,最后生成二氧化碳、水和矿质养分等;另一个是有机质的腐殖化过程,即有机质经分解再合成,生成更复杂的特殊有机质-腐殖质。两个过程是同时进行的,但方向相反,在不同条件下,各自进行的强度有明显的差别。 1.有机质的矿化作用 ⑴不含氮有机物的分解多糖化合物(淀粉、纤维素、半纤维素)首先在微生物分泌的水解酶的作用下,水解成单糖。葡萄糖在通气良好的条件下分解迅速,酒精、醋酸、草酸等中间产物不易积累,最终形成CO2和H2O,同时放出大量热能。如果通气不良,在嫌气微生物作用下,单糖分解缓慢,产生热量少,并积累一些中间产物-有机酸。在极嫌气微生物条件下,还会生成CH4、H2等还原态物质。 ⑵含氮有机物的分解堆肥中的含氮有机物包括蛋白质、氨基酸、生物碱、腐殖质等。除腐殖质外,大部分容易被分解。例如蛋白质,在微生物分泌的蛋白酶作用下,逐级降解,产生各种氨基酸,再经氨化作用、硝化作用而分别形成铵盐、硝酸盐,可以被植物吸收利用。 ⑶含磷有机物的转化堆肥中的含磷有机化合物,在多种腐生性微生物的作用下,形成磷酸,成为植物能够吸收利用的养分。 ⑷含硫有机物的转化堆肥中含硫有机物,经微生物的作用生成硫化氢。硫化氢在嫌气环境中易积累,对植物和微生物会发生毒害。但在通气良好的条件下,硫化氢在硫细菌的作用下氧化成硫酸,并和堆肥中的盐基作用形成硫酸盐,不仅消除了硫化氢的毒害,并成为植物能吸收的硫素养料。在通气不良的情况下,发生反硫化作用,使硫酸转变为H2S散失,并对植物产生毒害。堆肥发酵过程中,可以通过定时翻倒措施改善堆肥的通气性,就能消除反硫化作用。 ⑸脂类及芳香类有机物的转化单宁、树脂等结构复杂,分解较慢,其最终产物也是CO2和水;木质素是含植物性原料(如树皮、木屑等)堆肥中特别稳定的有机化合物,它结构复杂,含芳香核,并以多聚形式存在于植物组织中,极难分解。在通气良好的条件下,主要通过真菌、放线菌的作用,缓慢地进行分解,其芳香核可变为醌型化合物,它是再合成腐殖质的原料之一。当然,这些物质在一定条件下,还会继续被分解的。 综上所述,堆肥有机质的矿质化,可为作物和微生物提供速效养分,为微生物活动提供能源,并为堆肥有机质的腐殖化准备基本原料。堆肥以好气性微生物活动为主时,有机质迅速矿化生成较多的二氧化碳、水及其它养分物质,分解速度快而彻底,并放出大量热能;以嫌气性微生物活动为主时,有机质的分解速度慢,且往往不彻底,释放热能少,其分解产物除植物养分外,尚易积累有机酸及CH4、H2S、PH3、H2等还原性物质,当其达到一定程度时,则对作物生长不利甚至有害。因此堆肥发酵期间的翻倒也是为了转换微生物活动类型,以消除有害物质。 2.有机质的腐殖化过程 关于腐殖质的形成过程有很多种说法,概括起来大体可分为两个阶段:第一阶段,有机残体分解形成组成腐殖质分子的原始材料,如多元酚、含氮有机物(氨基酸、肽等)等;第二阶段,先由微生物分泌的多酚氧化酶将多酚氧化成醌,然后醌与氨基酸或肽缩合而成腐殖

厌氧发酵过程三阶段理论

厌氧发酵过程三阶段理论: 一、有机物水解和发酵细菌作用下,使碳水化合物、蛋白质与脂肪转化为单糖氨 基酸、脂肪酸、甘油、CO2、H等 二、把第一阶段产物转化为H、CO2和CH3COOH 三、通过两组生理物质上不同产CH4菌作用,将H和CO2转化为CH4,对CH3脱 羧产生CH4。 厌氧消化原理:有机物厌氧消化过程主要包括产酸和产甲烷两个阶段。而对于不溶性有机物(有机垃圾),一般可认为在上述两个阶段之前多一个“水解 阶段”,水解阶段起作用的细菌包括纤维素分解菌、脂肪分解菌和蛋白质水解菌;在水解酶作用下,转化产生单糖、酞和氨基酸、脂肪酸和甘油。产酸阶段起作用细菌是发酵性细菌,产氢产乙酸和耗氢产乙酸菌在胞内酶作用下,转化产生挥发性脂肪酸、醇类、氢和二氧化碳;产甲烷阶段是产甲烷菌利用H2、CO2、乙酸、甲醇等化合物为基质,将其转化成甲烷,其中H2、CO2和乙酸是主要基质。 名词: VFA: Volatile acid 挥发酸

COD: Chemical oxygen demand 化学需氧量 BOD: Biochemical oxygen demand 生物需氧量 TOD: Total oxygen demand 总需氧量 TOC: Table of content 总有机碳 TS: Total solid 总固体 SS: Suspend solid 悬浮固体 VS: Volatile solid 挥发固体 HRT: 水利滞留时间=消化器有效容积/每天进料量 SRT: 污泥停留时间:单位生物量在处理系统中的平均停留时间 SVT: 污泥体积系数:单位体积水样在静置30min后,污泥体积数 MRT: 微生物滞留时间 PFR:塞流式反应器(Plug flow reactor)高浓度悬浮固体发酵原料一段进入,从另一段排除。 USR:生流式固体反应器(Upflow solid reactor)原料从底部进入消化器,上清从消化器上部溢出 UASB:生流式厌氧污泥床(Upflow anaerobic sludge bed)自下而上流动污水通过膨胀的颗粒状污泥床消化分解,消化器分为污泥床、污泥层和三相分离器。 UBF:污泥床过滤器。将UASB和厌氧过滤器结合为一体的厌氧消化器,下部为污泥床,上部设置纤维填料。 EGSB:膨胀颗粒污泥床(Expanded granular sludge bed)与UASB反应器有相似之处,可分为进水配水系统、反应区、三相分离区和出水渠系统,EGSB没有专门的出水回流系统。 ABR:厌氧折板反应器(Anaerobic baffled reactor) SBR:间歇曝气方式运行活性污泥水处理技术,又称序批式活性污泥发(Sequencing batch reactor actirated sludge process) USSB:(Upflow staged sludge bed)

废水厌氧处理原理介绍

废水厌氧处理原理介绍 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CQ的过程。 一、厌氧生物处理中的基本生物过程 1、三阶段理论 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类。 (1)水解、发酵阶段; (2)产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2; (3)产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4; 一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CQ。 2、四阶段理论: 实际上,是在上述三阶段理论的基础上,增加了一类细菌一一同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合成为乙酸。但研

究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。 总体来说,三阶段理论” 四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。 有机物 I 1蜚壽性 ▼ 说明j 1)I, m m为三阶段理论.I, H.nr IV丸四英畔理论; 2?所产丰的细肮拘质未壺示在图中 图上図氨反应的三曲段理ttHUQ类群理论 二、厌氧消化过程中的主要微生物 主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。 1、发酵细菌(产酸细菌): 发酵产酸细菌的主要功能有两种: ①水解一一在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; ②酸化一一将可溶性大分子有机物转化为脂肪酸、醇类等;

厌氧菌分类及简介

厌氧菌分类及简介 厌氧菌是指无氧或氧化还原电势低的条件下才能生长繁殖的一类细菌。根据对氧的敏感程度,广义的厌氧菌可分为专性厌氧菌、微需氧菌和耐氧菌。习惯上厌氧菌是指专性厌氧菌,即必须在大幅度降低氧分压的条件下才能生长,可分为兼性厌氧菌、微需氧菌和专性厌氧菌。临床上所谓的厌氧菌肺炎主要指专性厌氧菌所致的肺部感染。专性厌氧菌只能在无氧或低于正常大气氧分压的条件下才能生存或生长,进一步可分为极端厌氧菌、中度厌氧菌和耐氧厌氧菌。 1.极端厌氧菌这类厌氧菌对氧极端敏感,在0.5%的氧浓度下,或在空气中暴露不到10min 即死亡。因在临床实验室极难分离到,目前尚不知其致病情况。 2.中度厌氧菌这类厌氧菌能在2%~8%氧浓度中生长,在空气中暴露60~90min 还能够分离出来。导致肺部感染的常见厌氧菌,如脆弱拟杆菌、产气荚膜梭菌等均属此类,为临床最常见的一类厌氧菌。 3.耐氧厌氧菌这类厌氧菌在无氧件下生长最好,而在有氧条件下生长较差。第 2 梭菌和溶组织梭菌即属此类。其中肺部感染的常见厌氧菌有: (1)革兰阴性厌氧杆菌:为肺部厌氧菌感染的常见菌。文献报道在吸入性肺炎、坏死性肺炎、肺脓肿和脓胸,分离到革兰阴性厌氧杆菌分别约占53.67%,56.45%,50.87%和39.29%,其中拟杆菌属占第1 位,其次为梭杆菌属。 ①拟杆菌属:为革兰阴性无芽孢杆菌。少数菌株有荚膜或鞭毛。专性厌氧。能利用糖和蛋白质的中间代谢产物。模式菌为脆弱拟杆菌。菌体形

态为短杆状,染色不匀,中间染色浅或不着色,使菌体呈空泡状。两端圆而浓染。在固体培养基上不规则,表现长短不一。在培养条件稍有改变,如厌氧条件不足、营养不良或酸性产物堆积时,菌体出现多形态性。引起肺部感染的拟杆菌以脆弱拟杆菌和产黑色素拟杆菌最多见。 ②梭杆菌属:可能为革兰阴性无芽孢杆菌,专性厌氧,无鞭毛,能利用糖和蛋白胨。模式菌种为核梭杆菌,该菌中间膨大,两端尖,菌体内有革兰阳性颗粒,长短不等,形态较规则。菌体呈双,尖端对尖端。引起肺部感染的梭杆菌属以核梭杆菌和坏死梭杆菌多见。 (2)革兰阳性厌氧球菌:革兰阳性厌氧球菌在肺部感染中仅次于革兰阴性厌氧杆菌。文献报道在上述肺部感染中均约占1/4~1/3,其中以消化链球菌属和消化球菌属为常见。 ①消化链球菌属:消化链球菌菌体较小,直径0.5~0.6μm,排列成双或成链,形成针尖大小直径1mm 的圆形、光滑、凸起、灰白色、不透明、不溶血的菌落,为肺部感染最常见的革兰阳性厌氧球菌。 ②消化球菌属:消化球菌的菌体圆形,直径0.3~1.3μm,排列成双、短链或成堆。生长缓慢,培养2~4 天形成小菌落,为肺部厌氧菌感染较常见的细菌。 (3)革兰阴性厌氧球菌:革兰阴性厌氧球菌中的韦荣球菌,也是肺部厌氧菌感染的病原菌,在肺部厌氧菌感染中约占3.7%。该菌菌体较小,0.3~0.6μm 直径,有时成短链,在培养初期为革兰阳性,过夜即变为革兰阴性。 (4)革兰阳性厌氧杆菌:革兰阳性厌氧杆菌约占肺部感染厌氧菌的1/5,

厌氧发酵工艺

以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。 1.塞流式反应器(Plug Flow Reactor,简称PFR) 塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。 2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR) 完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。该反应器常采用恒温连续投料或半连续投料运转。CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。为了提高反应器效率,在应用过程常加以改进,通过延长固体停留时间(SRT)来提高产气率。该工艺的优点是处理量大,产沼气多,易启动,便于管理,投资费用低,但是水力停留时间(HRT)和SRT要求较长。 3.上流式厌氧污泥床反应器: 上流式厌氧污泥床反应器,Upflow Anaerobic Sludge Bed Reactor,简称UASB 反应器。该工艺装置的特点为在反应器上部安装有气、液、固三相分离器,反应器内所产生的气体在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气体上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿着分离器斜壁滑回反应器内,使反应器内积累起大量活性污泥。在反应器的底部是浓度很高并具有良好沉降性能的絮状或颗粒状活性污泥,形成污泥床。有机污

相关文档
最新文档