电网距离保护各种圆特性阻抗继电器动作特性分析

电网距离保护各种圆特性阻抗继电器动作特性分析
电网距离保护各种圆特性阻抗继电器动作特性分析

电网距离保护各种圆特性阻抗继电器动作特性分析

发表时间:2018-07-23T09:47:19.980Z 来源:《基层建设》2018年第14期作者:曹琦

[导读] 摘要:本文通过对距离保护各种特性圆的分析,归纳总结了其特性方程,以及在距离保护中的用途。天水师范学院电子信息与电气工程学院甘肃天水 741000

摘要:本文通过对距离保护各种特性圆的分析,归纳总结了其特性方程,以及在距离保护中的用途。关键字:距离保护特性圆方程

电网距离保护是利用短路发生是电压、电流同时变化的特征,测量电压电流比值,该比值反应故障电到保护安装处距离,如果短路点距离小于整定值则动作的保护。

在距离保护中,阻抗继电器的作用就是在系统发生短路故障时,通过测量故障环路上的测量阻抗,并与整定阻抗相比较,以确定故障所处的区段,在保护范围内部故障时,给出动作。

阻抗继电器在阻抗复平面动作区域的形状,称为动作特性。

1.方向圆特性:

阻抗继电器的动作特性为一个圆。如下图1所示的阻抗继电器的动作特性为方向特性圆。

变压器气体继电器QJ-50说明书A4

QJ系列油浸式变压器用 气体继电器 安装使用说明书 沈阳隆辉电器有限公司

1、概述 1.1产品用途 QJ 系列气体继电器(以下简称继电器),是油浸式变压器所用的一种保护装置,继电器安装在变压器与储油柜的连接管路上,在变压器运行中由于内部故障而使油分解产生气体造成油流涌动时,使继电器的接点动作,接通指定的控制回路,并及时发出报警信号或切除信号,从而达到保护变压器的目的。 1.2型号组成及其含义 注:特殊使用环境代号 TH-湿热带型 TA-干热带型 一般型不加表示 1.3使用条件:允许工作温度:-30℃ ~ +95℃ 2、结构与工作原理 2.1气体继电器结构 1. 探针 6. 接线端子 2. 气塞 7. 上盖 3. 重锤 8. 弹簧 4. 浮子 9. 干簧接点 5. 磁铁 10. 挡板 图1 继电器芯子结构 2.2气体继电器工作原理 变压器正常工作时,继电器内是充满变压器油的,当变压器在运行中出现轻微故障时,因变压器油分解而产生的气体将积聚在继电器容器的上部,迫使继电器油面下降,浮子随之下降至某一限定位置时,磁铁使信号接点接通,发出报警信号。若因变压器漏油而使油面降低,同样发出报警信号。当变压器内部发生严重故障时,油箱内压力瞬时升高,将会出现油的涌浪,从而在管路内产生油流,冲击继电器的挡板运动。当挡板运行到某一限定位置时,磁铁使跳闸接点接通,将变压器从电网中切除。 3、技术参数 3.1接点容量 直流 220V 0.3A S ≤5×10-3S 交流 220V 0.3A COS Φ≤0.6 3.2工作特性 表一 规 格 QJ-50 QJ-80 备 注 油速整定范围(m/s ) 0.6~1.2 0.7~1.5 油速刻度偏差±0.1m/s 气体积聚数量(ml ) 250~300 容积刻度偏差±10% 继电器 设计序号 气体 管路通径(标称值),mm 取气接头 特殊使用环境代号 不带取气接头者不加表示 带取气接头者标注A

关于110KV线路距离保护知识

关于110KV线路保护知识 一、长距离输电线的结构,短路过渡过程的特点: 高压长距离输电线的任务是将远离负荷中心的大容量水电站或煤炭产地的坑、口火电厂的的巨大电功率送至负荷中心,或作为大电力系统间的联络线,担负功率交换的任务。因此;偏重考虑其稳定性及传输能力,为此长距输电线常装设串联电容补偿装置以缩短电气距离。 为补偿线路分布电容的影响,以防止过电压和发电机的自励磁,长距离输电线还常装设并联电抗补偿装置,其典型结构图如下: 短路过程的特点: 1、高压输电线电感对电阻的比值大,时间常数大,短路时产生的电流和电压、非同期性自由分量衰减较慢。为了保持系统稳定,长距离输电线的故障,对其快速性提出严格的要求。应尽切除,其保护动作要求在20~40ms。因此快速保护不可避免地要在短路电流存在时间内工作。 2、由于并联电抗所储磁能在短路时释放,在无串联电容补偿的线路上可产生非周期分量电流,在一定条件下此电流可能同时流向线路两端或从线路两端流向电抗器。因而在外部短路时,流入线路两端继电保护非周期分量电流数值可能不等。方向相同(例如:都从母线指向线路)。 3、串联电容和线路及系统电感及并联电抗等谐振将产生幅值较大的频率低于工频的低次谐波,由于这种谐波幅值大,频率接近工频,故使电流波形和相位将发生严重畸变。 4、由于分布电容大,因而分布电容和系统以及线路的电感产生的高次谐波很多,幅值也很大,对电流的相位和波形也将产生影响。 距离保护的定义和特点 距离保护——是以距离测量元件为基础反应被保护线路始端电压和线路电流的比值而工作所构成的保护装置,其动作和选择性取决于本地测量参数(阻抗、电抗、方向)与设定的被保护区段参数的比较结果,而阻抗、电抗又与输电线的长度正比故名。 其特点:主要用于输电线的保护,一般是三段式或四段式,第一、二段带方向性,作本线段的主保护,其中,第一段保护线路80%~90%,第二段保护余下的10%~20%并作相邻母线的后备保护。第三段带方向或不带方向,有的还设有不带方向的第四段,作本线及相邻线路的后备保护。 其整套保护应包括故障起动、故障距离测量、相应时逻辑回路与电压回路断线闭锁。有的还配置振荡闭锁等基本环节以及对整套保护的连续监视等装置。有的接地距离保护还配置了单独的选相元件。 距离保护为什么能测量距离?

方向阻抗继电器特性实验报告

实验三方向阻抗继电器特性实验 1.实验目的 (1)熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性。 (2)测量方向阻抗继电器的静态()?f Z pu =特性,求取最大灵敏角。 (3)测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流。 2.LZ-21型方向阻抗继电器简介 1)LZ-21型方向阻抗继电器构成原理及整定方法 距离保护能否正确动作,取决于保护能否正确地测量从短路点到保护安装处的阻抗,并使该阻抗与整定阻抗比较,这个任务由阻抗继电器来完成。 阻抗继电器的构成原理可以用图3-1来说明。图中,若K 点三相短路,短路电流为I K ,由PT 回路和CT 回路引至比较电路的电压分别为测量电压U 'm 和整 定电压set U ',那么 m m YB PT K K YB PT m Z I n n Z I n n U 1 1=='(3-1) 式中:n PT 、n YB —电压互感器和电压变换器的变比; Z K —母线至短路点的短路阻抗。 当认为比较回路的阻抗无穷大时,则: I m CT I K CT set Z I n Z I n U 1 1=='(3-2) 式中:Z I —人为给定的模拟阻抗。 比较式(3-1)和式(3-2)可见,若假设 CT YB PT n n n =?,则短路时,由于线路上流过同一电流K I ,因此在比较电路上比较set U '和m U '的大小,就等于比较I Z 和m Z 的大小。如果set m U U '>',则表明I m Z Z >,保护应不动作;如果set m U U '<',则表明I m Z Z <,保护应动作。阻抗继电器就是根据这一原理工作的。 电抗变压器DKB 的副方电势2E 与原方电流1 I 成线性关系,即,12I K E I =I K 是一个具有阻抗量纲的量,当改变DKB 原方绕组的匝数或其它参数时,可以改 图3-1 阻抗继电器的构成原理说明图 1—比较电路 2—输出

瓦斯继电器原理及安装使用说明

瓦斯继电器 1、简介 瓦斯继电器(又称气体继电器)是变压器的一种保护装置,我公司消弧/接地变常用瓦斯继电器型号为QJ1-50(QJ代表气体继电器,50代表管径),装在变压器的油枕和油箱之间的管道内,利用变压器内部故障而使油分解产生气体或造成油流涌动时,使气体继电器的接点动作,接通指定的控制回路,并及时发出信号告警(轻瓦斯)或启动保护元件自动切除变压器(重瓦斯)。 2、结构与工作原理 1. 探针 6. 接线端子 2. 放气塞 7. 上盖 3. 重锤 8. 弹簧 4.开口杯(浮子) 9. 干簧接点 5. 磁铁 10. 挡板 (继电器芯子结构)

2.1气体继电器工作原理 变压器正常工作时,继电器内是充满变压器油的,当变压器在运行中出现 轻微故障时,因变压器油分解而产生的气体将积聚在继电器容器的上部,迫使 继电器油面下降,开口杯(浮子)随之下降至某一限定位置时,磁铁使信号接 点接通,发出报警信号。若因变压器漏油而使油面降低,同样发出报警信号。 当变压器内部发生严重故障时(特别是匝间短路等其他变压器保护不能快速动 作的故障),产生的强烈气体使油箱内压力瞬时升高,将会出现油的涌浪,从 而在管路内产生油流,冲击继电器的挡板运动。当挡板运行到某一限定位置时,磁铁使跳闸接点接通,将变压器从电网中切除。 2.2工作特性 3、安装与调试 3.1瓦斯继电器的安装 继电器应安装在油浸变压器油箱与储油柜之间的连接管路上,联管的内径 应与继电器的管路通径(口径)一致,继电器上的箭头必须指向储油柜。允许 储油柜端稍高,但联管的轴线与水平面的倾斜度不得超过4%,或采用安装导气 联管的方法,使变压器内部的气体易于汇集在继电器内。 继电器的安装位置应便于取气样及观察继电器,并方便运行现场对继电器 的检修,其安装位置应保证继电器芯子能顺利的从壳体中取出。 从气塞处打进空气,可以检查“报警信号”接点动作的可靠性。 将探针罩拧下,按动探针,可以检查“切除信号(跳闸)”接点动作的可 靠性。 油时请先将放气塞打开,然后注油。

中间继电器接线图及工作原理

中间继电器接线图及工作原理 中间继电器(intermediate relay) :用于继电保护与自动控制系统中,以增加触点的数量及容量。它用于在控制电路中传递中间信号。中间继电器的结构和原理与交流接触器基本相同,与接触器的主要区别在于:接触器 的主触头可以通过大电流,而中间继电器的触头只能通过小电流。所以,它只能用于控制电路中。它一般是没有主触点的,因为过载能力比较小。所以它用的全部都是辅助触头,数量比较多。新国标对中间继电器的定义 是K,老国标是KA。一般是直流电源供电。少数使用交流供电。 中间继电器原理 线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电, 动铁芯在弹簧的作用下带动动触点复位,继电器的工作原理是当某一输入量( 如电压、电流、温度、速度、压力等) 达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,继电器主要起了传递信号的作用。 中间继电器组成部分 中间继电器就是个继电器,它的原理和交流接触器一样,都是由固定铁芯、动铁芯、弹簧、中间继电器的特点1. 整个继电器采用的是模块化结构,它的结构和交流接触器基本相同,只是电磁系统小些,触头组数较多。继电 器的体积小,重量轻,整机动作灵活、可靠,机械寿命为200 万次,电气绝缘性能很好,其它的耐振性能、阻 燃性能、温度特性、电气性能均达到或超过了标准要求,另外外观新颖,维修也简便 2. 常见的中间继电器也有主触头和辅助触头,主触头一般有四组,辅助触头有两组。与接触器相比,它的主触 头较小,承载能力低,主要用于传递控制信号。 3. 中间继电器作用是用来传递信号或同时控制多个电路,也可直接用它来控制小容量电动机或其他电气执行元件 动触点、静触点、线圈、接线端子和外壳组成。 中间继电器的作用 一般的电路常分成主电路和控制电路两部分,继电器主要用于控制电路,接触器主要用于主电路;通过继电器 可实现用一路控制信号控制另一路或几路信号的功能,完成启动、停止、联动等控制,主要控制对象是接触器; 接触器的触头比较大,承载能力强,通过它来实现弱电到强电的控制,控制对象是电器。

气体继电器动作原因及判断

编订:__________________ 审核:__________________ 单位:__________________ 气体继电器动作原因及判 断 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4358-32 气体继电器动作原因及判断 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1引言 在电力工业中,油浸式电力变压器应用非常广泛,在油浸式电力变压器的内部故障保护中,气体继电器保护是一种最基本的保护措施。由于多种原因导致气体继电器频繁动作,常常因动作原因判断错误导致造成设备损坏或人力物力资源的浪费。下面就气体继电器动作故障分析其常见原因,并指出判断的方法。 2动作原因 (1)变压器内部故障: 当变压器内部出现匝间短路,绝缘损坏,接触不良,铁芯多点接地等故障时,都将产生大量的热能,使油分解出可燃性气体,向储油柜方向流动。当流速超过气体继电器的整定值时,气体继电器的档板受到冲击,使继电器跳闸,从而避免事故扩大,这种情况

通常称之为重瓦斯保护动作。当气体沿油面上升,聚集在气体继电器内超过30ml时,也可使气体继电器的信号接点接通,发出警报,发生轻瓦斯保护。如某台35kV、4.2MVA的主变压器,轻瓦斯保护一天连续动作两次,色谱分析为裸金属过热,经测直流电阻为分接开关故障,吊芯检查发现分接开关的动静触点错位2/3,这是引起气体继电器动作的根本原因。 (2)辅助设备异常: ①呼吸系统不畅通。变压器的呼吸系统包括气囊呼吸器,防暴简呼吸器(有的变压器两者合一)等,呼吸系统不畅或堵塞往往会造成轻、重瓦斯保护动作,并大多伴有喷油或跑油现象。 ②冷却系统漏气。当冷却系统密封不严进入了空气或新投入运行的变压器未经真空脱气时,都会引起气体继电器的动作。③冷却器入口阀门关闭。冷却器入口阀门关闭造成堵塞,相当于潜油泵向变压器注入空气,造成气体继电器频繁动作。 ④散热器上部进油阀门关闭。散热器上部进入油

过渡电阻对阻抗继电器的影响

第四章 过渡电阻对阻抗继电器的影响 一. 过渡电阻对相间阻抗继电器的影响 电力系统中的短路一般都不是金属性的,而是在短路点存在过渡电阻。短路点的过渡电阻g R 是指当相间短路或接地短路时,短路电流从一相流到另一相或从相导线流入地的途径中所通过的物质的电阻,这包括电弧、中间物质的电阻,相导线与地之间的接触电阻,金属杆塔的接地电阻等。 在相间短路时,过渡电阻主要由电弧电阻构成。短路初瞬间,电弧电流g I 最大,弧长g l 最短,弧阻g R 最小。几个周期后,在风吹、空气对流和电动力等作用下,电弧逐渐伸长,弧阻g R 迅速增大,因此电弧电阻属于非线性电阻。在导线对铁塔放电的接地短路时,铁塔及其接地电阻构成过渡电阻的主要部分,铁塔的接地电阻与大地导电率有关,对于跨越山区的高压线路,铁塔的接地电阻可达数十欧;当导线通过树木或其它物体对地短路时,过渡电阻更高。目前我国对500kV 线路接地短路的最大过渡电阻按300Ω估计;对220kV 线路,则按100Ω估计。 对于图中所示的单侧电源网络,当线路B —C 的出口经g R 短路时,保护l 的测量阻抗为g J R Z =1.,保护2的测量阻抗为g AB J R Z Z +=2.。可见,过渡电阻会使测量阻抗增大,对保护1,测量阻抗增大的数值就是g R ;对保护2,由于2.J Z 是AB Z 与g R 的向量和, 图 单侧电源线路经过渡电阻g R 短路的等效图 由图可知其数值比无g R 时增大不多。因此可以得出结论:保护装置距短路点越近时,受过渡电阻的影响越大;同时,保护装置的整定值越小,受过渡电阻的影响也越大。

图 过渡电阻对不同安装地点距离保护影响的分析 当g R 较大使1?k Z 落在保护1的第Ⅱ段范围内,而2.k Z 仍落在保护2的第Ⅱ段范围内时,两个保护将同时以第Ⅱ段时限动作,从而失去选择性。 如图所示的双侧电源网络接线,各参数标示于图中,假设全系统各元件的阻抗角相等,以'()S L S Arg Z Z Z ArgZ φ∑ ∑=++=表示。 当线路上任意点经过渡电阻Rg 发生三相短路时,设三相参数相同,则仍可用一相回路进行分析。此时在F 点Rg 中流过的电流为: F M N I I I =+ (4-25) 安装于线路M 侧的继电器测量阻抗为: F M M L g L R M M U I Z Z R Z Z I I αα= =+ =+ (4-26) 式中α表示故障点位置占线路全长的百分数,Z R 表示由过渡电阻在测量阻抗中引起的附加分量。由于对侧电源的助增作用使Rg 所产生的影响要复杂得多。例如,当两侧电势相位不同时,I M 和I N

中间继电器作用、结构组成、工作原理全解析

中间继电器作用、结构组成、工作原理全解析

————————————————————————————————作者:————————————————————————————————日期:

中间继电器作用、结构组成、工作原理全解析 中间继电器:用于继电保护与自动控制系统中,以增加触点的数量及容量。它用于在控制电路中传递中间信号。 中间继电器的结构和原理与交流接触器基本相同,与接触器的主要区别在于: 接触器的主触头可以通过大电流,而中间继电器的触头只能通过小电流。 所以,它只能用于控制电路中。它一般是没有主触点的,因为过载能力比较小。所以它用的全部都是辅助触头,数量比较多。 新国标对中间继电器的定义是K,老国标是KA。一般是直流电源供电。少数使用交流供电。

中间继电器的作用 一般的电路常分成主电路和控制电路两部分,继电器主要用于控制电路,接触器主要用于主电路;通过继电器可实现用一路控制信号控制另一路或几路信号的功能,完成启动、停止、联动等控制,主要控制对象是接触器;接触器的触头比较大,承载能力强,通过它来实现弱电到强电的控制,控制对象是电器。 中间继电器组成部分 中间继电器就是一个继电器,它的原理和交流接触器一样,都是由固定铁芯、动铁芯、弹簧、动触点、静触点、线圈、接线端子和外

壳组成。 中间继电器工作原理 线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电,动铁芯在弹簧的作用下带动动触点复位,继电器的工作原理是当某一输入量(如电压、电流、温度、速度、压力等)达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,中间继电器主要起了传递信号的作用。

两种气体继电器的结构原理 柴大为

两种气体继电器的结构原理柴大为 发表时间:2018-03-12T15:31:46.660Z 来源:《电力设备》2017年第29期作者:柴大为 [导读] 摘要:气体继电器(也称为瓦斯继电器)是保护油浸式变压器的一种装置,安装在变压器储油柜与本体之间的油管上,当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其产气速率与产气量与故障严重程度有关。 (国网内蒙古东部电力有限公司检修分公司兴安运维分部 137400) 摘要:气体继电器(也称为瓦斯继电器)是保护油浸式变压器的一种装置,安装在变压器储油柜与本体之间的油管上,当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其产气速率与产气量与故障严重程度有关。当变压器内部故障而使油分解产生气体或造成油流涌动时,气体继电器的相应接点动作,接通指定的二次回路,并及时发出信号告警(轻瓦斯)或启动主变各侧断路器跳闸(重瓦斯)。 本文中主要介绍了油浸式变压器常用的两种气体继电器,对不同气体继电器的结构原理及应用范围进行阐述。 关键词:气体继电器;结构;原理;应用范围 1引言 变压器发生内部故障时,由于故障电流和故障点处电弧的作用,使变压器内部绝缘油因受热而分解产生气体,气体将从变压器本体油箱内流向储油柜上部,故障严重时将迅速产生大量气体且绝缘油体积迅速膨胀,此时会有强烈的绝缘油流和气流迅速冲向储油柜上部,利用变压器本体内部故障时的这一特点构成的保护称之为瓦斯保护。 变压器瓦斯保护中最为重要的元件为变压器气体继电器,将气体继电器安装在变压器本体与储油柜之间的导油管上,以便监测变压器内部故障产生的气体及油流,从而迅速做出判断避免变压器发生进一步损坏。目前,现场中常用的气体继电器有两种结构,一种为单浮球气体继电器,另一种为双浮球气体继电器。 2两种瓦斯继电器的结构原理 2.1单浮球气体继电器结构 如图1所示为一种常用的单浮球气体继电器内部结构,各部位结构说明如下: 1-探针,2-放气阀,3-重锤,4-开口杯,5-永久磁铁,6-干簧触点(轻瓦斯),7-磁铁,8-挡板,9-接线端子,10-流速整定螺杆,11-干簧触点(重瓦斯),12-终止档,13-弹簧。 变压器本体内部发生轻微故障时,绝缘油受热分解出的气体沿本体与储油柜之间的导油管运动至气体继电器处,聚集在顶盖处形成一定的压力,逐渐将变压器油面高度压低,开口杯所受浮力减小,随油面的降低开始转动,使磁铁5与干簧触点6接触,从而吸引干簧触点接通,发出轻瓦斯信号。同理,当变压器本体漏油时,随着气体继电器内部油面降低,气体继电器动作情况相同,发出轻瓦斯信号。 双浮子气体继电器轻瓦斯与重瓦斯动作原理与单浮子继电器相同,但是由于增加了下浮子,使得继电器在变压器绝缘油严重泄露时也可以向变压器各侧开关发出跳闸信号,对变压器的保护更加全面。 3两种气体继电器的应用 3.1单浮球气体继电器应用 单浮球气体继电器普遍应用于各类油浸式变压器及有载分接开关上,当变压器内部发生轻微故障,气体逐渐积累至气体继电器内部,可使继电器发出轻瓦斯信号。由于气体继电器内挡板动作方向朝向储油柜方向,所以只有在变压器内部发生严重故障时,气体继电器才能够发出跳闸命令同时发出重瓦斯信号。 如果由于某种原因导致变压器油大量泄漏,本体内油位迅速下降,由于此时油流方向从储油柜流向本体,不会冲击气体继电器挡板动作,即使油位已经下降至露出变压器铁芯,开关短时内仍不会跳闸,将导致变压器损坏。 目前,现场使用的容量在120MVA及以下的主变压器密封较好,运行期间基本不存在变压器油大量泄漏的风险,因此单浮球气体继电器得到了广泛的应用。 3.2双浮球气体继电器的应用 随着用电需求的增加和电网发展的要求,越来越多的大容量变压器逐步投入运行,同时对变压器本体的消防装置要求也不断提高,现场一般要求120MVA以上容量的变压器需安装排油充氮灭火装置,避免变压器发生严重故障时引起火灾并进一步扩大。 由于排油充氮灭火装置的安装,在变压器本体上安装了排油电磁阀及充氮电磁阀,大大增加了变压器运行期间绝缘油泄露的风险,因此国家电网十八项反事故措施要求采用排油充氮灭火装置的主变,需安装双浮球气体继电器,避免由于排油充氮装置的故障导致电磁阀失效引起绝缘油大量泄露造成变压器烧损。 4结语 目前,双浮球气体继电器广泛应用于大容量变压器上,在实现传统气体继电器功能的同时,也能够对绝缘油异常泄露进行保护,对变压器的保护更全面,大大提高了设备运行稳定性。

阻抗继电器(仅供参考)

阻抗继电器 继电器的测量阻抗:指加入继电器的电压和电流的比值,即 cl cl cl I U Z =。 cl Z 可以写成jX R +的复数形式,所以可以利用复数平面来分析这种继电器的动作特 性,并用一定的几何图形把它表示出来,如图3-3所示。 以图3—3(a )中线路BC 的距离保护第Ⅰ段为例来进行说明。设其整定阻抗 BC zd Z Z 85.0=',并假设整定阻抗角与线路阻抗角相等。 当正方向短路时测量阻抗在第一象限,正向测量阻抗cl Z 与R 轴的夹角为线路的阻抗角 d ?。 反方向短路时,测量阻抗cl Z 在第三象限。如果测量阻抗cl Z 的相量,落在zd Z '向量以内,则阻抗继电器动作;反之,阻抗继电器不动作。 TV TA d TA BC TV B cl cl cl n n Z n I n U I U Z === 阻抗继电器的动作特性扩大为一个圆。如图3—3(b )所示的阻抗继电器的动作特性为方向特性圆,圆内为动作区,圆外为非动作区。 一、具有圆及直线动作特性的阻抗继电器 (一)特性分析及电压形成回路 1.全阻抗继电器 (1)幅值比较 图3-3 用复数平面分析阻抗继电器的特性 (a )系统图;(b )阻抗特性图 (b) (a)

全阻抗继电器的动作特性如图3—4所示,它是以整定阻抗zd Z 为半径,以坐标原点为 圆心的一个圆,动作区在圆内。它没有方向性。全阻抗继电器的动作与边界条件为 : cl zd Z Z ≥ 构成幅值比较的电压形成回路如图 3—5所示。 (2)相位比较 相位比较的动作特性如图3—6 所示,继电器的动作与边界条件为cl zd Z Z -与 cl zd Z Z +的夹角小于等于 90,即 图3-5 全阻抗继电器幅值比较电压形成回路 B TA DKB TV c l U B U y =Z I z d c l =cl I R z d Z c l Z k ?j ?0 j X

中间继电器 特点

DL-30系列(包含DL-31 DL-32 DL-33 DL-34)继电器,线圈接线方式为串连时,可整定的电流为2~5A,线圈接线方式为并联时,可整定的电流为5~10A 继电保护常用仪器装置 常用继电器的类型及作用 (一) 电流继电器 1.构造 电流继电器是反应电流大小变化而动作的继电器。常用典型的电磁型电流继电器为DL-10系列,它用于电机、变压器和输电线的过负荷和短路保护装置中,作为瞬时起动元件。其构造如图1.6.1所示,为旋转舌片式电磁继电器。 请看图片BH34,+90mm。91mm,BP#〗 图1.6.1DL-10系列电磁型继电器结构图 1.电磁铁; 2.线圈; 3.Z型舌片; 4.弹簧; 5.动触点桥; 6.静触点; 7.整定值调整把手;8.刻度盘;9.舌片行程限制螺杆;10.轴承 2.原理 当电磁铁的线圈中通过动作电流 I k2act 时,在铁芯中立即建立磁通郑 磐ㄖ经铁芯、空气隙和 Z形舌片构成闭合回路。Z形舌片在磁场中被磁化,产生电磁力 F i,这个力作用在 Z形舌片上,使Z形舌片产生电磁转矩 M dc ,在 M dc 作用下使继电器动作,Z形舌片上的动触点与静触点闭合动作。由于受到止档螺杆的限制,舌片只能在定向范围内动作。 根据电磁学原理可知,电磁力 F i与磁通平方成正比,即 F i= K 1帧糉H〗(1) 式中 K 1--比例系数。 因磁通帧糤T5,4"BZ〗决定于磁动势 W k2act I k2act 和闭合磁路的磁阻R M,故 郑絎 k2act I k2 act / R M (2) 式中 W k2act --继电器线圈匝数; R M --磁通闭合回路的磁阻。 将式(2)代入式(1)中得 F i= K 1W k2act I k2act / R M= K 2 I k2act (3) K 2=K 1W k2act / R M 式中 K 2--比例系数。 Z形舌片在电磁力作用下产生的电磁力矩为 M dc = F i L j= K 2 L j I k2act = K 3I k2act (4) K 3=K 2 L j 式中 K 3--比例系数; L j--转动Z形舌片的力臂。 由式(3)可见,作用在继电器Z形舌片上的电磁力F i和电磁转矩与通过继电器线圈中的动作电流 I k2act 平方成正比,与磁阻 R M 成反比。 当舌片在运动时,总有摩擦力F mp 存在,此外为了能够使继电器的触点闭合后还能自动地返回,因此在舌片轴上加装了反作用拉力弹簧F f,所以继电器起始条件是 F i= F mp + F f。

22-阻抗继电器的动作特性(精)

一、选择题 1、以电压U 和(U-IZ)比较相位,可构成( )。 A :全阻抗特性的阻抗继电器 B :方向阻抗特性的阻抗继电器 C :电抗特性的阻抗继电器 D :带偏移特性的阻抗继电器 2、模拟型方向阻抗继电器受电网频率变化影响较大的回路是( )。 A :幅值比较回路 B :相位比较回路 C :记忆回路 D :执行元件回路 3、阻抗继电器的精确工作电流是指,当φk =φ sen ,对应于( )时,继电器刚好 动作的电流。 A :Z act =0.8z set 时的电流 B :Z act =0.9z set 时的电流 C :Z act =z set 时的电流 4、如果用Z m 表示测量阻抗,Z set 表示整定阻抗,Z act 表示动作阻抗。线路发生短 路,不带偏移的圆特性距离保护动作,则说明( )。 A ; act set set ,m Z Z Z Z << B : act set set ,m Z Z Z Z ≤≤ C: act set set ,m Z Z Z Z <≤ 5、某距离保护的动作方程为 90<270J DZ J Z Z Arg Z -0°)是( )。 A :90+<270+J DZ J Z Z Arg Z δδ-

瓦斯动作原理

变压器气体继电器(瓦斯继电器)保护动作原因 2011年07月06日星期三 16:59 气体继电器保护(也称瓦斯保护)是油浸式电力变压器内部故障的一种基本保护。近几年来,由于多种原因导致气体继电器频繁动作,引起运行、检修、试验人员广泛重视,共同关心气体继电器的动作原因、判断和处理方法,以避免误判断造成的设备损坏或人力、物力浪费。 一、动作原因 (一)变压器内部故障 当变压器内部出现匝间短路,绝缘损坏、接触不良、铁芯多点接地等故障时,都将产生大量的热能,使油分解出可燃性气体,向油枕(储油柜)方向流动。当流速超过气体继电器的签定值时,气体继电器的档板受到冲击,使断路器跳闸,从而避免事故扩大,这种情况通常称之为重瓦斯保护动作。当气体沿油面上升,聚集在气体继电器内超过30ml时,也可以使气体继电器的信号接点接通,发出警报,通常称之为轻瓦斯保护动作。例如: (l)某台220kV、120MVA主变压器瓦斯保护动作,经试验和吊芯检查判断为35kV 侧B相统组上部匝间绝缘损坏,形成层或匝间短路造成的。 (2)某台220kV、60MVA的主变压器轻、重瓦斯保护动作,经综合分析和放油检查确定为63kV侧B相套管均压球对升高座放电造成的,与推断吻合,避免了吊芯检查。 (3)某台35kV、4.2MVA的主变压器,轻瓦斯保护一天连续动作两次,色谱分析为裸金属过热,经测直流电阻力分接开关故障,吊芯检查发现分接开关的动静触点错位2/3,这是引起气体继电器动作的根本原因。 (二)附属设备异常 1.呼吸系统不畅通 变压器的呼吸系统包括气囊呼吸器,防爆筒呼吸器(有的产品两者合一)等。分析表明,呼吸系统不畅或堵塞会造成轻、重瓦斯保护动作,并大多伴有喷油或跑油现象。例如,某台110kV、63MVA主变压器,投运半年后,轻、重瓦斯保护动作,且压力阀喷油。但色谱分析正常,经检查,轻、重瓦斯保护动作的原因为变压器气囊呼吸堵塞。又如某台220kV、120MVA主变压器,在气温为33~35℃下运行,上层油温为75~80℃。在系统无任何冲击的情况下,突然重瓦斯保护动作跳闸,经试验和检查,证明是呼吸器堵塞。由于它在高温下突通造成油流冲击,导致重瓦斯保护动作。 2.冷却系统漏气 当冷却系统密封不严进入了空气,或新投入运行的变压器未经真空脱气时,都会引起气体继电器的动作。例如某台主变压器气体继电器频繁动作,经分析是空气进人冷却系统引起的,最后查出第7号风冷器漏气。 3.冷却器入口阀门关闭 冷却器入口阀门关闭造成堵塞也会引起气体继电器频繁动作。例如,某电厂厂用变压器大修后,投运一段时间,气体继电器突然动作,但色谱分析正常,经检查发现冷却器入口阀门造成堵塞,相当于潜油泵向变压器注入空气,造成气体继电器频繁动作。 4.散热器上部进油阀门关闭 散热器上部进油阀门关闭,也会引起气体继电器的频繁动作。例如,某220kV、120MVA主变压器冲击送电时,冷却系统投入则发生重瓦斯保护动作引起跳闸。

实验二 电磁型时间继电器和中间继电器实验

实验二电磁型时间继电器和中间继电器实 验 【实验名称】 电磁型时间继电器和中间继电器实验 【实验目的】 1.熟悉时间继电器和中间继电器的实际结构、工作原理和基本特 性; 2.掌握时间继电器和中间继电器的的测试和调整方法。 【预习要点】 1.复习电磁型时间、中间继电器相关知识。 2.影响起动电压、返回电压的因素是什么? 【实验仪器设备】 【实验原理】 DS-20系列时间继电器为带有延时机构的吸入式电磁继电器。继电器具有一付瞬时转换触点,一付滑动延时动合主触点和一付终止延时动合主触点。 当电压加在继电器线圈两端时,唧子(铁芯)被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。在延时机构拉力弹簧作用下,经过

整定时间后,滑动触点闭合。再经过一定时间后,终止触点闭合。从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。当线圈断电时,唧子和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。 DS-20系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制进行动作。 中间继电器,用于继电保护与自动控制系统中传递中间信号,以增加触点的数量及容量。 【实验内容】 1.时间继电器的动作电流和返回电流测试 实验接线见图2-1,选用EPL-05挂箱的DS-21型继电器,整定范围(0.25-1.25s)。 Rp采用EPL-14的900 电阻盘(分压器接法),注意图2-1中Rp的引出端(A3、A2、A1)接线方式,不要接错,并把电阻盘调节旋钮逆时针调到底。 开关S采用EPL-14的按钮开关SB1,处于弹出位置,即断开状态。直流电压表位于EPL-19。 图2-1 时间继电器动作电压、返回电压实验 数字电秒表的使用方法:“启动”两接线柱接通,开始计时,“停止”两接线柱接通,结束计时。 (1)动作电压U d的测试 合上220V直流电源船型开关和按钮开关SB1,顺时针调节可变电阻Rp使输出电压从最小位置慢慢升高,并观察直流电压表的读数。

继电器知识

1.3.1 继电器的用途1.3 继电器 、组成 继电器是一种根据电气量(如电压、电流等)或非电气量(如热量、时间、压力、转速等)的变化来接通或断开控制电路,以实现对电力系统及电力拖动装置的自动控制、检测、保护及调节为目的的自动电器。它实际上是用较小的电流去控制较大电流的一种“自动开关”。继电器是一种小容量电器(一般小于5A),一般没有灭弧装置,不能用来接通和分断负载电路;接触器可以用于控制大容量的电路或电气设备,有良好的灭弧措施,完全可以分断负载电路。继电器的输入量可以是电气量也可以是非电气量;而接触器的输入量只能是电压。 继电器的定义为:当输入量(或激励量)满足某些规定的条件时,能在一个或多个电器输出电路中产生跃变的一种器件。它一般由感测机构、中间机构和执行机构三个基本部分组成。感测机构把感测到的电气量或非电气量传递给中间机构,将它与设定的整定值进行比较,当达到整定值(过量或欠量)时,中间机构便使执行机构动作,从而接通或断开被控电路。 1.3.2 继电器的分类 继电器种类繁多,分类方法也很多。 1.3. 2.1按继电器的工作原理或结构特征分 电磁继电器、固体继电器、温度继电器、舌簧继电器、时间继电器、高频继电器、极化继电器、其他类型的继电器:如光继电器, 声继电器,热继电器,仪表式继电器,霍尔效应继电器,差动继电器等; 1.3. 2.2按继电器的外形尺寸可分

微型继电器(最长边尺寸不大于10mm的继电器)、超小型微型继电器(最长边尺寸大于10mm,但不大于25mm的继电器)、小型微型继电器(最长边尺寸大于25mm,但不大于50mm的继电器); 1.3. 2.3按继电器的负载分类 微功率继电器(当触点开路电压为直流28V时,触点额定负载电流(阻性)为0.1A;0.2A的继电器)、弱功率继电器(当触点开路电压为直流28V 时,触点额定负载电流(阻性)为0.5A;1A的继电器)、中功率继电器(当触点开路电压为直流28V时,触点额定负载电流(阻性)为2A;5A的继电器)、大功率继电器(当触点开路电压为直流28V时,触点额定负载电流(阻性)为10A;15A;20A;25A;40A……的继电器) 1.3. 2.4按继电器的防护特征分类 密封继电器(采用焊接或其它方法,将触点和线圈等密封在罩子内,与围介质相隔离,其泄漏率较低的继电器)、封闭式继电器(用罩壳将触点和线圈等密封(非密封)加以防护的继电器)、敞开式继电器(不用防护罩来保护触电和线圈等的继电器)。 1.3. 2.5 按用途分 通讯继电器、机床继电器、家电用继电器、汽车继电器、SF6气体密度继电器。 1.3.3 热继电器 热继电器是利用电流的热效应原理 来工作的保护电器,具有反时限保护 特性。热继电器主要用于电动机的过 载保护和断相保护。

阻抗继电器的接线方式_继电保护

阻抗继电器的接线方式 一、对阻抗继电器接线方式的基本要求及常用接线方式 阻抗继电器的接线方式是指接入阻抗继电器的电压和电流?. m U m 分别取用什么电压和电流的接线方法。对于阻抗继电器,接入电压和电流将会直接影响阻抗继电器的测量阻抗 Zm 。根据距离保护的工作原理,加入继电器的电压 和电流?. m U m 应满足如下要求: (1)阻抗继电器的测量阻抗应与短路点到保护安装处的距离成正比,而与系统的运行方式无关; (2)阻抗继电器的测量阻抗还应与故障类型无关,也即保护范围不随故障类型而变化。 类似于功率方向继电器接线方式中的定义,阻抗继电器的接线方式分为0 o 接线,+30 o 接线和-30 o 接线。电压、电流的具体接线方式见表3-3。 表3-3 阻抗继电器的常用接线方式 具体接线如表3-3所示。按此种方式接线,加到继电器上的电压和电流相位差为0 o 。现对各种相间短路时阻抗继电器的测量阻抗进行分析。分析时,测量阻抗仍用电力系统一次测量阻抗表示或假定电流互感器,电压互感器的KI =KU =1。 1、三相短路 图3-31 三相对称短路时测量阻抗的分析 如图3-31所示,当线路发生三相短路时,由于为对称性短路。因此,三个阻抗继电器的工作情况完全相同,故可以其中一相为例进行分析,如KR1。设短路点K至保护安 装处之间的距离为,线路每千米的正序阻抗为Z l 1,则加入继电器KR1的电压应为 . AB U =-=?. A U . B U A Z 1l -?B Z 1l =(?A -?B )Z 1l 阻抗继电器的测量阻抗为

l Z I I U Z B A A B m 1. . . ) 3(1=?= (3-29) 同理可得,KR2、KR3的测量阻抗为 (3)(3) 23m m 1Z Z Z ==l 由此可见,三个阻抗继电器的测量阻抗相等,且均等于短路点到保护安装点之间的阻抗。 当保护范围内发生三相短路时,三个继电器均能动作。 2、两相短路 图3-32 两相短路时测量阻抗的分析 如图3-32所示,设AB两相短路。对接于故障相间的阻抗继电器KR1而言,其所 加电压为 .AB U =-=?.A U . B U A Z 1l -?B Z 1l =(?A -?B )Z 1l 此时,阻抗继电器KR1的测量阻抗为 l Z I I U Z B A A B m 1. . . )2(1=?= (3-30) 可见,与三相短路的测量阻抗相等。当保护范围内发生两相短路时,KR1也能正确动作。 但对阻抗继电器KR2和KR3而言,由于所加电压为故障相与非故障相间的电压,其数值 较高,而电流却只有一个故障相的电流,其值较(?. AB U A -?B )小,因此,它们的测量阻抗比(2)1 m Z 大,不能动作。但由于KR1能正确动作,所以整套保护不会因为KR2、KR3的拒动而受到影响。 3、中性点直接接地系统中的两相接地短路 图3-33 中性点直接接地系统中两相接地短路时测量阻抗的分析 如图3-33所示,仍以A -B 两相故障为例。显然,因为系统中性点接地,两相故障电流经地形成回路,?A ≠?B 。可以认为导线A 、B 具有耦合关系,并设Z L 为每千米的自感阻抗,Z M 表示每千米的互感阻抗,则安装地点的故障相电压可表示为 .A U =+ .A I L Z l . B I M Z l . B U =+ . B I L Z l . A I M Z l 故得阻抗继电器KR1的测量阻抗为

中间继电器

一、中间继电器 1、中间继电器工作原理介绍 它的工作原理和交流接触器一样,都是由固定铁芯、动铁芯、弹簧、动触点、静触点、线圈、接线端子和外壳组成。线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电,动铁芯在弹簧的作用下带动动触点复位。 1)特点:触点多(六对甚至更多) 触点电流大(额定电流为5 ~10A) 动作灵敏(动作时间小于0.05s) 2)作用:放大触点容量、数量。 2、控制功能 中间继电器是在自动控制电路中起控制与隔离作用的执行部件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。继电器一般都有能反映一定输入变量如电流、电压、功率、阻抗、频率、温度、压力、速度、光等的感应机构输入部分;有能对被控电路实现“通”、“断”控制的执行机构输出部分;在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离、功能处理和对输出部分进行驱动的中间机构驱动部分。在工程实际中,中间继电器主要有两个作用:一是隔离作用;二是增加辅助接点。 3、工作特性 作为控制元件,继电器有如下四个特点: (1)扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。 (2)放大。例如中间继电器等,只用一个很微小的控制量,就可以控制很大功率的电路。 (3)综合信号。例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。 (4)自动、遥控、监测。例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。 4、JDZ1系列中间继电器

气体继电器动作原理

QJ1-80(50)型气体继电器是带储油柜的油浸式变压器的一种保护装置。该继电器安装在变压器油箱与储油柜之间的连接管路中 动作原理 变压器正常运行时,继电器一般是充满变压器油的。如果变压器内部出现轻微故障,则因油的分解而产生的气体聚集在容器的上部,迫使油面下降,开口杯E随之下降,当E降到某一限定位置时,磁铁D使干黄接点R闭合,接通信号回路,发出信号。若变压器因故漏油而是继电器油面下降,同样可以发出信号。如果变压器内部发生严重故障,将出现油的涌浪,则在连接管内形成油流,该油流冲击继电器挡板L,当L运动到某一限定位置时,磁铁M使干簧接点P闭合,接通跳闸回路,使有关装置动作,切断与变压器连接的所有电源。保护主变 信号接地动作的气体容积;250-300cm2 跳闸接点动作的油流速度: QJ1-80型的继电器为0.7-1.5米/秒,出厂整定为1.0米/秒 QJ1-50型的继电器为0.6-1.0米/秒,出厂整定为0.8米/秒 开口杯的一侧装有重锤,改变重锤的位置,可在250-300cm2范围内调节信号接点动作的体积 调节螺杆Q,改变弹簧K的长度,调整跳闸接点动作油流度。 螺杆N调节磁铁M与干簧接点P之间的距离 (033):开口杯档板式瓦斯继电器工作原理? 答:正常时,瓦斯继电器开口杯中充满油,由于油自身重力产生力矩小于疝气重力产生的力矩,开口杯,使的触点处于开断位置。当主变发生轻微故障时,气体将到瓦斯继电器,迫使油位下降,使开口杯随油面下将,使触点接通,发出“重瓦斯动作“信号。 瓦斯保护属于非电气量,非电气量还包括压力释放等,统一将变压器的主保护叫非电气量,不是电压电流变化引起动作,而是内部故障产生气体 (在主变投差动瓦斯保护压板前,测量压板,主要是…………) 差动和瓦斯保护一般是相互配合来完成保护主变任务的。运行经验证明,在变压器内部故障时(除不严重的匝间短路),差动和瓦斯保护都能反映出来。至于哪种保护首先动作还须看故障的性质。 轻瓦斯动作取气在…… 8.2.1瓦斯保护的概念和作用 1、瓦斯保护基本原理:

相关文档
最新文档