土的本构关系的综述

土的本构关系的综述
土的本构关系的综述

土的本构关系的综述

土的本构关系,即土的应力应变关系,是现代土力学的核心内容,也是有限元分析计算的基础。建立一个有效而经典的本构模型需要对土的基本特性透彻把握,并且可全局规划。同时,一个有效且经典本构模型还可以作为一个捷径让初学者逐步认识到土加载变形过程。而建立土的本构模型的核心问题就是通过土体在实验中所表现出的力学行为来反演其内在的本构关系。

从我们的认识基础之上,土体是天然地质材料的历史产物,还是一种复杂的多孔材料,当受到外界荷载作用后,其变形可归纳为下面几种特性:土体的变形具有明显的非线性;土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变;土体中特别是软黏土,具有十分明显的流变的特点;由于土体的构造或沉积等原因,使土具有各向异性;超固结黏土等在受剪后都表现出应变软化的特性;还有土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别;土的剪胀性可以更好地描述土体的真实力学 - 变形特性,建立其应力、应变和时间的关系。

针对土这样一种多相离散、影响因素很复杂的材料,想去建立一种精确并且可面面俱到地反映每一因素的本构模型基本是做不到。在这种情况下,我们要抓住主要矛盾,应该考虑去建立可行的具有物理概念正确数学表达严密模型参数应用方便的本构模型。

其次,土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们建立了很多模型,很多论文对这些模型进行了讲述。然而这些土本构模型的出发点都是在扰动土或砂土的基础上,它们难以描述在土的结构性作用下各种非线性行为,从而造成计算结果不正确,不贴和实际情况。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。在此现实基础上,很多专家将土结构性影响特性纳入建立本构模型的因素中。

再者,随着 CT 技术、X 射线和光弹试验等在土体研究中的应用,从而使得我们对土体的宏观变形和微观规律有了更进一步的认识。在对土的结构性研究引起重视,建立了不少的模型研究成果表明:土的结构性对其压缩特性、强度包线特性等都有显著的影响在研究土体结构性模型的同时,不少专家结合其他理论建立了土体的损伤本构模型。在实际情况里,我们应针对具体工程做出选择。工程师们关心土体从加载直至破坏失稳的整个过程,那么初始模量、最终抗剪强度以及加载过程中的应力应变及体变规律三个要点都是需要考虑分析的,此时弹塑性模型将作为首要选择,要是着重考虑工程强度稳定性,本构模型对最终强度的体现是最重要的,可选取例如强调最终破坏剪应力的理想塑性模型; 或者是土的抗剪强度大于实际荷载远,我们可近似视认为变形是在弹性范围内的,随之应该选择弹性本构模型。

首先先阐明了应力应变性态的几种基本形式,如下图中所示。

再阐述几种经典的岩土本构模型。理想弹塑性模型Coulomb-Mohr破坏与屈服准则,库仑破坏准则是库仑于1773年提出的,它建立在土的摩擦试验、压剪试验或三轴试验的基础之上。准则方程为:τf=C+σ·tan其中C为土的粘聚强度, 为内摩擦角。用普通三轴试验,可测定发生某破坏面时主应力表达的破坏准则,如在σ1>σ2=σ3条件下,f*(σ1,σ2=σ3)=0。如果已知三轴试件内破坏面与小主应力方向之间的倾角为βf,则由普通三轴试验的莫尔圆,将破坏面上的剪应力与法向应力代入库仑破坏准则,得莫尔—库仑(C-M)准则:

σ1-σ3=2ccos +(σ1+σ3)sinβf

另外就是Drucker-Prager屈服准则。Drucker与Prager于1952年提出了考虑静水压力影响的广义Mises屈服与破坏准则,简称为D-P屈服或破坏准则。D-P准则的屈服函数为:

f(I1,J2)=J2-αI1-k=0(3)

f(p,q)=q-3 3αp-3k=0(4)

f(σσ,τσ)=γσ-6αρσ-2K=0(5)

其中α,k为D-P准则材料常数,按照平面应变条件下的应力和塑性变形条

件,Drucker与Prager推得了α,k与C-M准则的材料常数 ,c之间的关系为: α=sin /3 3+sin2 k=3ccos /3+sin2

由于土材料本身及其变形过程中的复杂性和多样性,从而对本构模型的研究经久不衰。在经典土力学是以连续介质为基础,并以理想粘性土和非粘性土作为研究对象,理想弹性模型和塑性模型是最简单的本构模型。对此如果要提升将连续介质力学更深层次运用于岩土问题中,这样的本构模型很严重地制约着实际工程问题的解决。

不过随着科学技术的发展,大量非线性科学理论,通过模型本身的运算来建立合理的本构关系,有较高的应用价值,但模型的准确性和适用范围还有待于深入探讨。土的本构模型研究趋势建立和发展复杂应力状态与加卸载序列条件下土的本构模型,准确反映土的非线性、非弹性、软化、剪胀与剪缩性等特性,同时能揭示土的某些特殊变形特性及机理,反映土的原生状态及应力诱发的各向异性效应及特殊荷载条件下的力学规律。重视模型参数的测定和选用,重视本构模型验证以及推广应用研究,通过不同类型仪器、不同应力路径的试验、离心模型试验以及工程现场测试等验证形式,客观地评价和论证已建模型的正确性与可靠性,全面系统地讨论与比较模型的实用性、局限性及其适用范围,在现有条件下加强本构模型研究试验数据的统一管理与共享,开展本构模型基本参数数据库的建立与维护研究,更好地为工程建设服务。

还有就是开展土的本构模型研究,建立本构模型时要充分考虑土中含水量的影响及颗粒骨架,孔隙水与气体三相之间的界面相互作用及相互交换问题。注重土体的微观结构和宏观结构研究,揭示土结构性及其变化的力学效果,了解宏观现象下的内在本质,建立正确可靠的物理、力学和数学模型,对土的力学性状进行模拟,从而要用在实际问题中。最后,土的本构模型中有许多假设条件与实际工况不符,影响了工程计算的精度和适用性,今后应加以改进和提高,建立用于解决实际工程问题的实用性模型,反映特定状况下土体的主要性状,用于工程理论计算,获得工程精度要求的结果。

参考文献:

[1] 龚晓南,徐江许增会黄方意.土的本构关系及应用[M]

[2] 蒋彭年.土的本构关系[M].北京:科学出版社,1982.

岩土工程勘察文献综述

1 岩土工程勘察内容 岩土工程勘察工作是设计和施工的基础。若勘察工作不到位,不良工程地质问题将揭露出来,即使上部构造的设计、施工达到了优质也不免会遭受破坏。不同类型、不同规模的工程活动都会给地质环境带来不同程度的影响;反之不同的地质条件又会给工程建设带来不同的效应。岩土工程勘察的目的主要是查明工程地质条件,分析存在的地质问题,对建筑地区做出工程地质评价。 岩土工程勘察的任务是按照不同勘察阶段的要求,正确反映场地的工程地质条件及岩土体性态的影响,并结合工程设计、施工条件以及地基处理等工程的具体要求,进行技术论证和评价,提交处岩土工程问题及解决问题的决策性具体建议,并提出基础、边坡等工程的设计准则和岩土工程施工的指导性意见,为设计、施工提供依据,服务于工程建设的全过程。 岩土工程勘察应分阶段进行。岩土工程勘察可分为可行性研究勘察(选址勘察)、初步勘察和详细勘察三阶段,其中可行性研究勘察应符合场地方案确定的要求;初步勘察应符合初步设计或扩大初步设计的要求;详细勘察应符合施工设计的要求。 根据勘察对象的不同,可分为:水利水电工程(主要指水电站、水工构造物的勘察)、铁路工程、公路工程、港口码头、大型桥梁及工业、民用建筑等。由于水利水电工程、铁路工程、公路工程、港口码头等工程一般比较重大、投资造价及重要性高,国家分别对这些类别的工程勘察进行了专门的分类,编制了相应的勘察规范、规程和技术标准等,通常这些工程的勘察称工程地质勘察。因此,通常所说的“岩土工程勘察”主要指工业、民用建筑工程的勘察,勘察对象主体主要包括房屋楼宇、工业厂房、学校楼舍、医院建筑、市政工程、管线及架空线路、岸边工程、边坡工程、基坑工程、地基处理等。 岩土工程勘察的内容主要有:工程地质调查和测绘、勘探及采取土试样、原位测试、室内试验、现场检验和检测,最终根据以上几种或全部手段,对场地工程地质条件进行定性或定量分析评价,编制满足不同阶段所需的成果报告文件。 2 土工程勘察热点 当前,特殊条件下的岩土工程评价仍然是岩土勘察工程中最普遍最大的热点。特殊条件指的是: (1)特殊土。包括湿陷性黄土、软土、膨胀土、盐渍土等。在特殊土地基上进行工程建设时,必须充分考虑到它们所具有的特殊物理力学化学性质。 (2)特殊工程地质条件。包括岩溶、斜坡与滑坡、泥石流、采空区、地面沉降、地震效应等。其中强震区的砂土液化、断裂、震陷等问题是岩土工程勘察中经常遇见的。

土的本构模型综述

土的本构模型综述 1 土本构模型的研究内容 土体是天然地质材料的历史产物。土是一种复杂的多孔材料,在受到外部荷载作用后,其变形具有非线性、流变性、各向异性、剪胀性等特点。为了更好地描述土体的真实力学—变形特性,建立其应力应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即为土体的本构关系。自Roscoe等1958~1963年创建剑桥模型以来,各国学者相继提出了数百个土的本构模型,包括不考虑时间因素的线弹性模型、非线弹性模型、弹塑性模型和考虑时间因素的流变模型等。本文将结合土本构模型的研究进程,综合分析已建立的经典本构模型,指出各种模型的优缺点和适用性,并对土本构模型的未来研究趋势进行展望。 2 土的本构模型的研究进程 早期的土力学中的变形计算主要是基于线弹性理论的。在线弹性模型中,只需两个材料常数即可描述其应力应变关系,即E和v或K和G或λ和μ。其中邓肯张双曲线模型是研究最多、应用最广的非线弹性模型。20世纪50年代末~60年代初,土塑性力学的发展为土的本构模型的研究开辟了一条新的途径。Drucker等(1957年)提出在Mohr-Coulomb锥形屈服面上再加一组帽形屈服面,Roscoe等(1958年~1963年)建立了第一个土的本构模型——剑桥模型,标志着土的本构模型研究新阶段的开始。70年代到80年代,计算机技术的迅速发展推动了非线性力学理论、数值计算方法和土工试验的发展,为在岩土工程中进行非线性、非弹性数值分析提供了可能性,各国学者提出了上百种土的本构模型,包括考虑多重屈服面的弹塑性本构模型和考虑土的变形及内部应力调整的时间效应的粘弹塑性模型。此外,其他本构模型如土的结构性模型、内时本构模型等也是从不同角度描述土本构关系,有的学者则借用神经网络强大的自组织、自学习功能来反演土的本构关系。

常用土体本构模型及其特点小结

常用土体本构模型及其特点小结 山中一草线弹性模型 线弹性模型遵从虎克定律,只有2个参数,即弹性模量E和泊松比V,它是最简单的应力-应变关系,但无法描述土的很多特征,主要应用于早期的有限元分析及解析方法中,可用来近似模拟较硬的材料如岩土。 Duncan-Chang( DC 模型 DC模型是一种非线性弹性模型,它用双曲线来模拟土的三轴排水试验的应力-应变关系(图1)。它侧重于刻画土体应力-应变曲线非线性的简单特征,通过弹性参数的调整来近似地考虑土体的塑性变形。但所用的理论仍然是弹性理论而没有涉及到任何塑性理论,故仍不能反映如应力路径对变形的影响、土体的剪胀特性和球应力对剪应变的影响等土体的很多重要性质。由于DC模型是在二为常 数的常规三轴试验基础上提出的,比较适用于围压不变或变化不大、轴压增大的情况,如模拟土石坝和路堤的填筑。 图】IK模型关于三轴试验的应力-应变关系Fig.l Duncan-Chang approxiniathm of the siress-strain rd nt kinship Ln ft standard drained triAxt*! te&l Mohr-Coulomb (MC)模型 MC模型是一种弹-理想塑性模型,它综合了胡克定律和Coulomb破坏准则。有5个参数,即控制弹性行为的2个参数:弹性模量E和泊松比v及控制塑性行为的3个参数:有效黏聚力c、有效内摩擦角和剪胀角。MC模型采用了弹塑性理论,能较好地描述土体的破坏行为但却认为土体在达到抗剪强度之前的应力-应变关系符合胡克定律,因而并不能较好地描述土体在破坏之前的变形行为,且不能考虑应力历史的影响及区分加荷和卸荷。故MC模型能较好地模拟土体的强度问题,MC模型的六凌锥形屈服面(图2)与土样真三轴试验的应力组合形成的屈服面吻合得较好,因此MC模型适合于低坝、边坡等稳定性问题的分析。

开题报告-岩土工程

理工大学本科毕业设计(论文)开题报告 题目名称人民防空办公室项目工程场地岩土工程勘察设计 学生姓名专业班级学号 一、选题的目的和意义 岩土工程勘察是研究人类工程建设活动与自然地质环境相互作用和相互影响的一门学科,岩土工程勘察工程建设中具有十分重要的位置,也是工程建设中不可缺少的一个重要组成部分。 任何工程建筑物都是建造在一定的场地与地基之上,所有工程建设方式、规模和类型都受建筑场地的工程地质条件所制约。地基的好坏不仅直接影响到建筑物的经济和安危,而且一旦出事故,处理困难、因此,在设计每一个建筑物之前,必须进行场地与地基的岩土工程勘察,充分了解建筑场地与地基的工程地质条件,论证和评价场地、地基的稳定性和适宜性、不良地质现象、软弱地基处理与加固等岩土工程的技术决策和实施方案。实践经验证明,岩土工程勘察工作做得好,设计、施工就能顺利进行,工程建筑的安全运营就有保证。相反,忽视建筑场地与地基的岩土工程勘察,都会给工程带来不同程度的影响,轻则修改设计方案、增加投资、延误工期,重则使建筑物完全不能使用.甚至突然破坏.酿成灾害。随着工程建设新一轮建设高潮的兴起,岩土工程勘察面临着新的机遇和挑战。 我选择岩土勘察作为毕业设计的方向。希望能够培养自己综合运用所学的理论知识,专业技能和调查研究综合分析思考能力,以及查阅技术文献,资料和手册,对存在或可能存在的岩土工程问题提出解决方案,培养自己的创新与实践能力。在设计中树立理论联系实际的踏实正确的设计思想,保持严谨认真的科学工作作风。 二、国内外研究综述 在我国,由于市场经济刚刚起步,岩土工程专业体制尚待完善,故目前从事岩土工程专业的单位不定型,有以勘察为主,有以咨询为主,有以施工为主,有的多种兼有,这在过渡时期是很自然的。通过建国以来数十年工程实践的积累,特别是改革开放以来的巨大技术进步,我国岩土工程勘察的技术水平已有了显著提高,已经完全有能力承担各类大型复杂工程的勘察、设计和施工,包括高层建筑和超高层建筑、复杂地基处理、深基坑开挖、大型边坡工程、地下工程、移山填沟、围海造陆、海上平台、核电站等。每两年评选一次的优秀勘察项目,

环境岩土工程综述

课题名称:环境岩土工程研究综述 摘要:环境污染评估、控制、修复已成为我国环保领域的重大需求。本文对环境岩土工程进行了介绍,让读者了解其研究主要内容、进展状况以及研究方法,对之后的研究做到心中有数。 (一)前言 环境岩土工程师岩土工程与环境科学密切结合的一门新学科。它主要应用岩土工程的观点、技术和方法进行治理和保护环境服务。对于如今密集型人类生活和生产方式必然产生大量的废弃物,而地球岩土全是废弃物的主要及最终处置场所。因此,利用岩土工程的手段来解决水土环境污染问题是最为经济、最符合国情的途径之一(陈云敏,2012;张帆,2015)。 (二)研究主要内容及进展状况 环境岩土工程的目的是应用岩土工程能耐的原理和方法解决环境问题。我国环境工程研究及工程实践进展主要包括城市固体废弃物可持续填埋处置,废弃泥的工程特性、工程处置及资源化利用,土体和地下水污染评价与防治和土工合成材料在环境岩土工程中应用(陈云敏,2012)。 不同学者对环境岩土工程的研究内容有着不同见解。胡中雄等将环境岩土工程的研究内容大致分成三大类:第一类称为环境工程,指用岩土工程的方法来低于由于天灾引起的环境问题,如洪水、滑坡等;第二类称为环境卫生工程,指用岩土工程的方法来抵御有各种化学污染引起的环境问题,如城市垃圾填埋处理等;第三类是指人类工程活动引起的一些环境问题,如开外隧道引起的地面变形等(王帅,2015)。 罗国煜等在文献中提到,环境岩土工程包括区域性环境岩土工程和城市环境岩土工程。城市环境岩土工程问题包括三方面:(1)城市不稳定问题(地震、地面变形问题等);(2)水资源短缺和环境水利问题;(3)采矿污染和废弃物污染问题。 此外,方晓阳主张应有两个主要分支:(1)地质环境(岩土)工程,主要强调有害有毒废料控制系统的管理和修正、填料场的选择、填料的稳定性分析和土污染技术;(2)生态环境(岩土)工程,研究环境岩土工程的敏感性生态和地质方面的问题。这其中由主要有三个方面的问题对生态环境因素相当敏感:(1)与地质、气候有关的问题,如泥石流、沙漠、实地;(2)与健康有关的问题,如酸雨、核废料;(3)与文化有关的问题,如考古、名胜古迹的保护等(李元松,2005)。 对于环境岩土工程如今的研究进展,以美国为代表的现房发达国家正发展可持续填埋技术。我国亟需开展填埋场孕育城市城市环境灾害机理、评估方法与可持续防控的科学基础理论研究,发展可持续填埋技术,以满足填埋场城市华景灾害防控、渗滤液减量、填埋气资源化的重大需求。

论岩土工程监测技术的发展及其应用综述

论岩土工程监测技术的发展及其应用综述 1.前言 近年来,随着我国基础建设的日益扩大,人们对岩土工程构筑物逐渐有了更高的安全要求。随着人类岩土工程监测技术的日趋成熟,其在基础建筑甚至地灾评价预测等方面也作出越来越大的贡献。本文在论述岩土工程监测技术发展及应用状况的基础上,结合各个学者提的一些关于岩土工程监测技术的新理论,较系统建的进行总结概括,以便后来读者查阅。 2. 岩土工程监测技术发展及应用状况 自50年代末期以来,现代科技成就,特别是电子技术和计算技术的成就被引 用到岩土工程中来,极大地推动了勘察测试技术和岩土构筑物以及地基设计理论 与方法的进展(魏道垛,孙福, 1998)。作为岩土工程重要内容的岩土工程监测技术(包括监测手段、方法与工具)的发展与进步,加速了信息化施工的推行,反过来又迅速提高了人们对岩土设计方法和理论的认识。 岩土工程设计原则正从强度破坏极限状态控制向着变形极限状态(或建筑物 功能极限状态)控制发展。目前,有一部分内容正努力试行着向新的概率极限状态(可靠性设计方法) 控制展。 我国岩土工程技术新进步的一个重要(在某种意义上可能是最重要的) 表现 是岩土工程信息化作业(融施工、监测和设计于一体的施工方法)的运行。信息化施工原理和环境效应问题被人们所注意、关心,以致被接受并付诸行动。这不仅是岩土工程技术本身的进步,更是工程界直至社会方面在岩土工程总体意识上的 更新、进步和发展,已日益表现在着力于岩土工程各类行为信息的监测、反馈、 监控及其信息数据的及时处理和技术与管理措施的及时更新等。岩土工程监测技术的进步和发展,则是岩土工程信息化得以实施的强有力的物质基础和技术保障。 横览中外,岩土工程监测技术的进步和发展具体表现在以下二个方面:一是 监测方法及机具本身的进步。现代物理,特别是电子技术的成就,已广泛应用于新型监测仪表器具中,如各种材料不同形式的收敛计、多点位移计、应力计、压力盒、远视沉降仪、各类孔压计及测斜仪等的设计与制作,优化了仪表结构性能, 提高了精度和稳定性; 二是监测内容的不断扩大与完整。分析方法的不断提高,岩土体

软土本构模型综述

《软土地基》课程论文 学院建工学院 姓名王洋 学号

软土本构模型综述 1 引言 土体具有复杂的变形特征,如剪胀性、各向异性、受应力路径影响等。土体变形的这种复杂性是在复杂受力状态下表现出来的。复杂应力状态存在 6 个应力分量,也有 6 个应变分量。其间的关系是一种多因素物理量与多因素物理量之间的关系,不能由试验直接建立。须在简化条件的试验基础上,做某些假定及合乎规律的推理,从而提出某种计算方法,把应力应变关系推广到复杂应力状态。这种计算方法叫本构模型。 1.1 土的本构模型 发展到现在,土的本构模型数目众多,大致可以分为以下几大类: ( 1) 非线性模型; ( 2) 弹塑性模型; ( 3) 粘弹塑性模型; ( 4) 结构性模型。 对于软土而言,比较适用的一般为弹塑性模型。弹塑性模型是把总的变形分成弹性变形和塑性变形两部分,用虎克定律计算弹性变形部分,用塑性理论来解塑性变形部分。 1.2 变形假定 对于塑性变形,要作三方面的假定: ( 1) 破坏准则和屈服准则; ( 2) 硬化准则; ( 3) 流动法则。 不同的弹塑性模型,这三个假定的具体形式也不同。最常用的弹塑性模型为剑桥模型及其扩展模型。 2 剑桥模型与修正剑桥模型 1958 年,Roscoe 等发现了散粒体材料在孔隙比-平均有效应力-剪应力的三维空间里存在状态面的事实,1963 年,提出了著名的剑桥模型,1968 年,

形成了以状态面理论为基础的剑桥模型的完整理论体系。 Roscoe 等人将“帽子”屈服准则、正交流动准则和加工硬化规律系统地应用于Cam 模型之中,并提出了临界状态线、状态边界面、弹性墙等一系列物理概念,构成了第一个比较完整的土塑性模型。剑桥模型又被称为临界状态模型,是一个非常经典的弹塑性模型,它是第一个全面考虑重塑正常固结或弱超固结粘土的压硬性和剪胀性的模型,标志着土的本构理论发展新阶段的开始。 1968 年,Roscoe 等人在剑桥模型的基础上提出了修正剑桥模型,将原来的屈服面在p',q 平面上修正为椭圆,并认为在状态边界面内土体变形是完全弹性的。在状态边界面内,增加的剪应力虽不产生塑性体积变形,但可产生塑性剪切变形。修正剑桥模型是一种“帽子”型模型,在许多情况下能更好地反映土的变形特性。修正剑桥模型至今仍在工程中广泛应用,是因为它具有很多优点: 形式简单,模型参数少,参数确定方法简单( 只需常规三轴试验即可) ,参数有明确的物理意义,能够很好的反映重塑正常固结或弱超固结粘土的压硬性和剪缩性,因此修正剑桥模型是土力学中比较成熟而且应用广泛的弹塑性本构模型。同时,修正剑桥模型也有一定的局限性: 屈服面只是塑性体积应变的等值面,只采用塑性体积应变作硬化参量,因而没有充分考虑剪切变形; 只能反映土体剪缩,不能反映土体剪胀; 没有考虑土的结构性这一根本内在因素的影响; 假定的弹性墙内加载仍会产生塑性变形等。修正剑桥模型对实际情况进行了一系列假定: ①屈服只与应力球量p 和应力偏量q 两个应力分量有关,与第三应力不变量无关; ②采用塑性体应变硬化规律,以为硬化参数; ③假定塑性变形符合相关联的流动法则,即g( σ) = f( σ) ; ④假定变形消耗的功,即塑性功为: 剑桥模型是当前在土力学领域内应用最广的模型之一,其主要特点有: 基本概念明确; 较好地适宜于正常固结粘土和弱超固结粘土; 仅有3个参数,都可以通过常规三轴试验求出,在岩土工程实际工作中便于推广; 考虑了岩土材料静水压力屈服特性、剪缩性和压硬性。王清等分析了修正剑桥模型的应力应变关系,以其为基础引进了接触单元和杆单元,运用修正合格模型,用有限元程序模拟了

土的本构结构

土的本构关系 土体是天然地质材料的历史产物。土是一种复杂的多孔材料,在受到外界荷载作用后,其变形具有以下特性:①土体的变形具有明显的非线性,如:土体的压缩试验e~p 曲线、三轴剪切试验的应力—应变关系曲线、现场承载板试验所得的p~s曲线等; ②土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变; ③土体尤其是软粘土,具有十分明显的流变特性; ④由于土体的构造或沉积等原因,使土具有各向异性; ⑤紧砂、超固结粘土等在受剪后都表现出应变软化的特性; ⑥土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别; ⑦剪胀性等。为了更好地描述土体的真实力学—变形特性,建立其应力、应变和时间的关系, 在各种试验和工程实践经验的基础上提出一种数学模型,即: 土体的本构关系。 自从Roscoe等人首次建立了剑桥模型以来, 土的本构关系的研究经历了一个蓬勃发展的 阶段, 出现了一些具有实用价值的本构模型。虽然很多的理论为建立土的本构关系提供了有力的工具, 但是由于土是一种三相体材料, 在性质上既不同于固体也不同于液体, 是介于两者 之间的特殊材料, 所以人们常借助于固体力学或流体力学理论, 同时结合工程实践经验来解 决土工问题, 从而研究土的本构关系形成了自己一套独特的方法—半理论半经验的方法。建立一个成功的本构关系关键有两点:第一要建立一个函数能较好地反映土在受力下的响应特征;第二要充分利用试验结果提供的数据比较容易地确定模型参数。模型都需要满足以下基本条件:(1)不违背更高一级的基本物理原理(如热力学第一、第二定律)。(2)建立在一定的力学理论基础之上(如弹性理论、塑性理论等)。(3)模型参数能够通过常规试验求取。从工程应用的角度出发,研究问题的精度就需要进行合理的控制,从而在计算精度与计算设备、计算难度、计算时间以及计算成本之间获得平衡。另外,任何理论、方法都应以实践应用为目的,这样才具有价值。综合上述两点,从工程应用的角度去分析各种土的本构关系是非常有必要的。本构关系是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-强度-时间的关系。土的本构关系十分复杂,除受时间因素影响外,还受温度、湿度等因素影响。时间作为一个主要因素,主要是反映土的流变特性且在大多数情况下可以忽略其影响。同时,强度可以视为土体应力-应变发展的一个特殊阶段,即在发生很小的应力增量下,土体单元将发生无限大的变形。 对于一般的岩土工程问题,稳定问题是主要问题,如地基稳定问题、斜坡稳定问题等,一般采用极限平衡法对土体进行分析。这种分析不考虑土体破坏前的变形过程及变形量,只关心土体处于最后整体滑动时的状态及条件,实际上是刚塑性或理想塑性的理论。20 世纪50 年代末到60 年代初,由于高重土工构筑物、高层建筑以及许多大型建筑物的兴建,使土体变形问题成为主要矛盾。此外,随着计算手段、试验手段的提高,也极大地促进了本构关系的发展。 土的线弹性模型:经典土力学将土体视为理想弹性体,在进行变形计算时采用基于广义虎克定律的线性弹性模型,假定土体的应力和应变关系成正比,通过测定土在不排水条件下的弹性 模量E和泊松比μ,或者体积变形模量K和剪切模量G来描述其应力—应变关系。土的线弹性模型简单,适用于不排水、安全系数较大、土体不发生屈服的情况,工程中可用于:①计算地基中的垂直应力分布; ②计算地基在不排水加荷情况下的位移和沉降; ③基坑开挖问题计算,用于估计基坑在不排水条件下的侧向压力与侧向位移; ④计算软粘土地基在加荷不排水条件下的沉 降和孔隙水压力。 土的非线弹性模型:土体在外荷载作用下一般都要发生屈服,其应力—应变关系具有非线性,土体发生的变形既有弹性变形又有塑性变形,土的非线弹性模型可以较好地描述其变形特性。土的非线弹性模型理论可以分为三类:弹性模型、超弹性(Hyper Elastic)模型(又称Green超弹性模型)和次弹性(Hypo Elastic) 模型。其中影响最大、最具有代表性的主要是邓肯一张

环境岩土工程问题综述

环境岩土工程问题综述 近年来,生态环境问题受到了越来越多人们的关注,同时环境岩土工程由于在解决环境破坏和实现可持续发展方面的重要作用而被人们加以重视。环境岩土工程是一门涉及广泛的学科,它在研究岩土构成特性以及岩土与环境之间的关系方面起到了重要的作用,从而也对我国水土环境污染控制方面起到了一定的作用。本文就环境岩土工程的相关问题进行了简要的分析与论述,希望可以为环境岩土工程未来的发展起到一定的启示作用。 标签:环境岩土工程内涵现状影响因素 随着工业的飞速发展以及人们生产生活的影响,我国面临了严重的环境问题,严重地影响了人们的正常生活以及自然的生态平衡,因此利用科学的方法保护人们赖以生存的生态家园就显得尤为重要,同时用环境岩土工程的方法来解决水土环境污染问题是当下最为经济、最切合我国发展现状的方法之一。环境岩土工程涉及岩土力学与岩土工程、环境工程、地球化学、工程地质等多方面的内容,让环境岩土工程与环境保护更紧密地结合起来,不仅能够扩大环境岩土工程的发展潜力,而且在我国环境污染控制方面也有重要的意义。 1环境岩土工程简介 1.1环境岩土工程的构成 环境岩土工程是将岩土力学与环境科学相结合的一门新兴学科,主要侧重于岩土材料的工程性质、岩土工程中的数值分析、岩土工程与环境、地下空间的利用与开发等多方面的研究。岩土材料的工程性质主要研究的是复杂应力条件以及与渗流、热、化学等耦合作用下岩土介质的工程性质;岩土工程中的数值分析主要研究解决岩土工程中各种问题的数值化方法和程序化技术;岩土工程与环境主要研究岩土工程与环境的相互关系及作用。包括地下污染物的迁移与扩散、高放核废料地质处置库建设中的岩土力学问题、地热等资源的开发与储存以及岩土介质中污染物扩散的阻隔和防治等;地下空间的利用与开发主要研究地下空间的规划、设计与施工技术以及地下施工对周围环境的影响等。因此环境岩土工程的存在在环境研究与治理方面具有重要的价值。 1.2环境岩土工程的内涵 环境岩土工程是利用岩土工程学的理论和方法对环境进行治理和保护任务,它是从更加科学的角度对环境岩土工程与环境系统之间相互作用的规律进行研究,从深层次了解环境岩土工程与环境之间的关系,从而使环境保护与环境岩土工程密切的结合起来,并对环境中存在的一些问题或是环境岩土工程中存在的一些问题进行有效的治理,进而实现环境岩土工程与环境保护之间的协调发展。由此环境岩土工程是站在一个更高的层次对环境岩土工程进行研究和考察,从而实现人与环境的和谐共生。

《土的本构关系》考试题

《土的本构关系》考试题 【1】 某软粘土试样的三轴固结不排水试验数据如下表所示。根据试验数据,按D —C 模型 计算: (1)绘出 131)(εσσ--及 13 11εσσε--关系曲线,求初始切线模量Ei 及极限强度 u )(31σσ-; (2)求初始切线模量Ei 的模量系数K 及幂次n ; (3)求破坏比Rf 及试样的?',c '。 (4)写出试样切线模量Et 的具体表达式。 注: 表中uf 为破坏时的孔隙水压力。 【2】 对三个尺寸为10×10×10cm 的立方土样,分别施加三组不同的应力如附表。如果假设土样为理想弹性体,试问: (1)三土样的受力状态有何不同? (2)在不排水条件下,初始孔压各为多少? (3)若土样的弹性模量E=4Mpa ,v=0.35,求排水条件下的体应变各为多少? (4)从上述计算和分析中可以得出什么结论。

【3】 对三个尺寸为10×10×10cm 的立方土样,分别施加三组不同的应力如附表。如果假设土样为理想弹性体,试求: (1)若土样为饱和正常固结粘土,孔压系数B=1.0,A=0.5。求不排水条件下三土样的孔压各为多少?在排水条件下哪个土样体变大? (2)若土样为饱和的严重超固结粘土,孔压系数B=1.0,A=-0.5。求不排水条件下三土样的孔压各为多少?在排水条件下哪个土样体变大? (3) 从上述计算和分析中,总结实际土体的应力与变形特点。 【4】 为什么说建立在常规三轴试验基础上的D —C 模型仍然没有考虑材料的剪胀性?为什么说D —C 模型没有考虑中主应力的影响?同时不能适用于应变软化材料? 【5】 Drucker 塑性公设和依留辛公设的含义是什么、有何区别?用示意图说明。 【6】 在弹性-理想塑性模型的数值计算中,假定屈服面方程为)(),(1221I G J J I F -=, 如何从第n 次加载所得的应力分量 []n ij σ与新的应变增量[] 1 +n ij d ε,求应力分量的新值 [] 1 +n ij σ? 【7】经典塑性理论的三个基本组成部分是什么?说明其含义。 【8】 在剑桥模型的屈服面推导过程中作了哪些假设?推导其屈服面方程,并写出其弹塑性应力应变关系。 【9】某种粘土在平面的NCL ,CSL ,K0固结线及过ABC 三点的一条OCL 线如图。且已知M=0.8,试进行以下各项的绘图与计算: 1)在p —q 平面绘出CSL 线与K 0固结线; 2)在p —q 及v —p 平面绘出过A ,B 点的屈服曲线及不排水试验应力路径; 3)在p —q 及v —p 平面绘出过C 点的常规三轴不排水与排水试验应力路径; 4)求B 点和C 点的不排水抗剪强度Cu B 与Cu C 之比值。 提示: K0固结时,v 0)21(31σk p += ,v 0)1(σk q -=;不排水强度 u u q C 2 1 =

岩土领域权威核心期刊

国内岩土类、地质类核心期刊导引 A.国内岩土工程期刊 1.岩土工程学报 本刊于1979年创刊,是中国水利学会、中国土木工程学会、中国力学学会、中国建筑学会、中国水力发电工程学会、中国振动工程学会联合主办的学术性科技期刊。本刊被《中文核心期刊要目总览》连续多年确认为核心期刊,并在建筑类核心期中列首位;本刊被收录为国家科技部“中国科技论文统计源期刊”(中国科技核心期刊),并被评为“百种中国杰出学术期刊”;本刊被“中国科技论文与引文数据库”、“中国期刊全文数据库”和“中文科技期刊数据库”等多个国内重要的数据库收录,并能在《中国学术期刊(光盘版)》、《中国期刊网》、万方网和重庆维普网全文检索;本刊被美国工程索引Ei网络版等国际检索系统收录。 主管单位:中国科学技术协会 主办单位:中国水利学会中国土木工程学会中国力学学会中国建筑学会中国水力发电工程学会中国振动工程学会 主编:陈生水 国际标准刊号:SSN 1000-4548 国内统一刊号:CN 32-1124/TU 地址:南京市虎踞关34号 邮政编码:210024 期刊类型:双月刊 创刊日期:1979年 2.工程地质学报 本刊是我国工程地质学科综合性的高级学术期刊。1993年批准创刊发行,现为季刊,16开本,每期96页,国内外公开发行。《工程地质学报》办刊宗旨是加强学术交流,促进工程地质科学的理论,应用和技术的发展,使工程地质学科更好地为国民经济建设服务。《工程地质学报》着重于理论研究和工程实践的结合。学报主要介绍当前规划、设计和在建国家重点工程的工程地质和地质环境实例及其论证;讨论理论进展和方法创新;讨论在土木、水电、铁路、公路、及矿山建设、城乡规划、地质环境和灾害治理,以及能源和工业采掘等方面的新技术和经营、适用于科研工作者、高校师生和专业工程技术人员参阅。《工程地质学报》由中国科学院地质与地球物理研究所主办,由工程地质力学重点研究室实验室、协同中国地质学会工程地质专业委员会及国际工程地质学会中国国家小组编辑。由中国工程院院士、国际工程地质学会副主席王思敬教授任主编的编委会由国内外知名的工程地质学家和工程师构成。 主管单位:中国科学院 主办单位:中国科学院地质与地球物理研究所 主编:王思敬 国际标准刊号:ISSN 1004-9665 国内统一刊号:CN 11-3249/P 地址:北京德外祁家豁子(北京9825信箱) 邮政编码:100029 Email:

特殊性岩土工程性质评价综述

特殊性岩土工程特性评价综述 参阅了国内外相关文献,发现对于软土的定义都不尽相同。 往往概述性比较强,具有一定的模糊性。 软土视为软粘土的简称, 软土视为整个软弱土质(高压缩性的有机土、可液化的砂土、软粘土等)的简称 软土视为软弱土的简称 软土或软弱土 我国交通部<<公路软土地基路堤设计与施工技术规范>>(JTJ017-96)对软土的定义为“滨海、湖沼、谷地、河滩沉积的天然含水量、孔隙比大、对压缩性高、抗剪强度低的细粒土”。其鉴定标准参见表1-1。 软土鉴别表(JTJ017-96) 表1-1 特征指标名称天然含水量(%) 天然孔隙比十字板剪切强度(kPa) 指标值≥35与W L≥1.0 <35 我国铁道部门则建议采用以下列物理力学指标,作为区分软土的界限: 1)天然含水量w接近或大于液限; 2)孔隙比e>1; 3)压缩模量E s<4000kPa; 4)标准贯入击数N63.5<2; 5)静力触控贯入阻力p s<700kPa; 6)不排水强度C u<25kPa;

我国建设部颁<<软土地区工程地质勘察规范>>10m SPT-N <4 <6 <10 QCC-q u/kPa <60 <100 Q c/kPa <800 <1200 <4000 《德国地基基础规范》(DIN4084)中的软土指“很容易搓捏的土”,相当软塑状态的土;而将液塑状的土称为“浆糊状土(拳头紧握它时,会从指缝挤出)”。 Terzaghi和Peck(1967)将无侧限抗压强度q u小于25kPa的粘土称作“很软的”,而将强度在25~50kPa的粘土称作“软的”。 而国外一些论文中将不排水抗剪S u(S u=q u/2)小于40kPa的粘性土称为软粘土 综合上述,软土的判别实质上是针对工程而言。其划分界限的确定,一方面是工程建设的客观需要之外,另一方面设定一个共同的标准,便于学术交流、深入研究与执行国家相关规范标准。因此,某一部门或某一行业所做出的软土划分界限,是人为划分,属于工程属性,而不是其固有属性。随着工程建设需求的提高及对软土土性的深入认识,其划分标准还会有一定的变动。

土的本构关系的综述

土的本构关系的综述 土的本构关系,即土的应力应变关系,是现代土力学的核心内容,也是有限元分析计算的基础。建立一个有效而经典的本构模型需要对土的基本特性透彻把握,并且可全局规划。同时,一个有效且经典本构模型还可以作为一个捷径让初学者逐步认识到土加载变形过程。而建立土的本构模型的核心问题就是通过土体在实验中所表现出的力学行为来反演其内在的本构关系。 从我们的认识基础之上,土体是天然地质材料的历史产物,还是一种复杂的多孔材料,当受到外界荷载作用后,其变形可归纳为下面几种特性:土体的变形具有明显的非线性;土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变;土体中特别是软黏土,具有十分明显的流变的特点;由于土体的构造或沉积等原因,使土具有各向异性;超固结黏土等在受剪后都表现出应变软化的特性;还有土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别;土的剪胀性可以更好地描述土体的真实力学 - 变形特性,建立其应力、应变和时间的关系。 针对土这样一种多相离散、影响因素很复杂的材料,想去建立一种精确并且可面面俱到地反映每一因素的本构模型基本是做不到。在这种情况下,我们要抓住主要矛盾,应该考虑去建立可行的具有物理概念正确数学表达严密模型参数应用方便的本构模型。 其次,土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们建立了很多模型,很多论文对这些模型进行了讲述。然而这些土本构模型的出发点都是在扰动土或砂土的基础上,它们难以描述在土的结构性作用下各种非线性行为,从而造成计算结果不正确,不贴和实际情况。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。在此现实基础上,很多专家将土结构性影响特性纳入建立本构模型的因素中。 再者,随着 CT 技术、X 射线和光弹试验等在土体研究中的应用,从而使得我们对土体的宏观变形和微观规律有了更进一步的认识。在对土的结构性研究引起重视,建立了不少的模型研究成果表明:土的结构性对其压缩特性、强度包线特性等都有显著的影响在研究土体结构性模型的同时,不少专家结合其他理论建立了土体的损伤本构模型。在实际情况里,我们应针对具体工程做出选择。工程师们关心土体从加载直至破坏失稳的整个过程,那么初始模量、最终抗剪强度以及加载过程中的应力应变及体变规律三个要点都是需要考虑分析的,此时弹塑性模型将作为首要选择,要是着重考虑工程强度稳定性,本构模型对最终强度的体现是最重要的,可选取例如强调最终破坏剪应力的理想塑性模型; 或者是土的抗剪强度大于实际荷载远,我们可近似视认为变形是在弹性范围内的,随之应该选择弹性本构模型。 首先先阐明了应力应变性态的几种基本形式,如下图中所示。

最新-岩土工程实验室信息化平台构建综述 精品

岩土工程实验室信息化平台构建综述 1岩土实验室现状福建工程学院岩土工程学科成立于2005年,在学校众多专业中还是一个相当年轻的方向。 学科的建设目标是建成一个包括基础丁程应用、边坡与基坑工程以及地下工程在内的、完整的岩土工程专业,并在发展中逐步摆脱以教学为主的模式,实现产学研的良好结合。 为达成这个目标,不仅在学科教学、科研方面要有所发展,还必须建成一个具备完善功能的实验室来予以支撑。 岩土工程实验室,是岩土工程学科的重要组成部分。 岩土程实验室配备有一系列较先进的仪器设备,包括各种土工试验仪、各类原位测试仪、监测与检测仪器、勘察与勘探仪器等等。 仪器的配备与使用,从基本上满足了岩土工程学科教学的要求。 但是,对于学科的发展来说,实验室现今这种单纯的仪器设备的使用模式还是远远不够的,因为从根本来说,岩土工程实验室仍无法摆脱传统实验室的模式,这可以从以下几点来说明首先,实验室的作息制度对于实验室资源的使用是个限制。 严格的作息制度,对于实验室的管理来说是必须的。 但同时,如果需要使用仪器设备,甚至于岩土_程专业软件,则必须在实验室开放的时间内进行,因此作息制度在某些程度限制了实验室资源的使用效率;其次,实验室的资源有限,许多仪器设备价格昂贵,因此只能配备为数不多的数量。 虽然现今在学科发展之初,有限资源与使用频度之间的矛盾还未凸显,但可以预见,随着学科的发展,这些有限数量的资源该如何合理分配,以及充分地得到利用,将是不得不考虑的问题。 针对以上几点存在的问题,提出岩土实验室信息化平台的建设。 通过信息化平台的建设,可以在相当大程度一对这些问题进行有效的解决,并使实验室的功能得到进一步的完善与加强,更加适应学科的建设与发展。 2信息化平台的建设2.1信息化平台的功能针对以实验室存在的一些问题,考虑进行信息化平台的建设研究,目的自然是将有限的资源进行合理的安排和利用,并实现某些方面的自动化,从而突破传统实验室模式的桎梏,使得实验室在

麦克斯韦尔模型和开尔文模型综述

麦克斯韦尔模型与开尔文模型综述 1弹性力学概念和流变学的两个基本模型 在流变学里,应变不与应力成简单的正比关系,这两者不是线性关系。在这里,表述应变、应力和时间三者关系的公式不再称为应力-应变关系,而称为“本构关系”。 马克斯威尔模型由一个弹性元件和一个流性元件串联组成,描述具有弹性又具有流性的材料。岩石在瞬间受力条件下具有弹性,在持久力作用下具有流性,恰好可用马克斯威尔模型描述。马克斯威尔粘弹性模型中的粘性元件采用了牛顿流体模型,即线性粘性流体。牛顿流体是指受应力时产生的流动速率与应力大小成正比的材料。表述为 σ=ηε(1) 式(1)中σ为应力,ε为应变(流动)速率,η为比例常数,流变学中称为粘性系数(模量)。式( 1)可与弹性力学中一维虎克定律的形式进行比较 σ=Eε(2) 式(2)中ε为应变,E为比例常数,又称杨氏模量。式( 2)表示材料的应变与应力成正比,与式( 1)的不同就在于应变速率ε上,其中包含着时间因素。 2 开尔文( Kelvin)模型简介 比马克斯威尔模型( 1868)晚几年,提出了开尔文模型( Kelvin ,1875)。与马克斯威尔模型不同,将弹性元件a和流性元件b不是串联,而是并联,就组成了开尔文模型,如图1所示。元件a 为弹簧,具有完全弹性,其应力应变关系符合虎克定律式( 2) ,在此可写为 σ (图1开尔文模型) a为弹性元件弹簧, b为流性元件有阻尼的唧筒, 两者并联,σ为应力 元件b符合牛顿流体条件,参照式(1)可写为σ=η ε由于是并联,所以两元件上应力之和应等于总应力σ ,有 σ= σ+σ=Eε+ηε σ=Eε+η ε(3) 式(3)为开尔文模型的本构关系,为深入了解开尔文模型的性质,给出一些特定情况来分析。 (1)第一种情况。我们给这个模型两端突然一个应力,例如拉应力,量值为σ并保持不变。模型的并联关系要求并联两元件的变形量要同步,弹性元件虽然有能力响应应力σ的作用,力图达到对应的应变值,但碍于流性元件的滞后性,必须跟随流性元件的缓慢速度使变形逐渐跟上来。这个过程的应力在初始时几乎全由流性元件承担,弹性元件只承担很小的应力,而随着应力保持的时间延续才逐渐增大,这样应力也逐渐由流性元件身上转移到弹性元件身上,最后

关于岩土工程的数值计算方法的综述

题目:关于岩土工程的数值计算方法的综述学院:资源与土木工程学院 专业:岩土工程 学号: 姓名:

关于岩土工程的数值计算方法的综述 我通过学习和查阅相关资料文献了解到,近年来,数值计算模拟分析在岩土工程中越来越受欢迎,随着城市的建设,地下工程所处的环境越来越复杂,影响的因素也是越来越多,所以依靠传统的解析计算难以实现,计算机的数值模拟恰恰解决的了岩土的计算的问题,它可以模拟各种复杂情况下岩土问题。就岩土工程而言,由于岩土介质涉及本构关系、力学参数、自身构造以及边界条件等的复杂多变性,在未采用计算机数值方法以前,对于复杂、重要的岩土工程,如果用传统的弹性力学或弹塑性力学的解析法难以求解时,只好采用物理模拟或其他方法从宏观上把握工程的受力和变形特征。随着计算机数值分析方法的出现和发展,情况发生了巨大的变化。计算机数值方法已经能够较好的模拟非均匀质体、各向异性介质面临的复杂边界条件问题,也能处理岩土工程中不连续性界面、渗流问题、岩土损伤断裂问题以及复杂的岩土工程结构分析问题,对于涉及时间因素的动力问题、蠕变问题,特别是耦合问题,数值模拟计算方法极大的加强了解决岩土工程的能力。 数值计算方法其主要有有限单元法、有限差分法、边界元法、离散元法和流形元法等。 有限单元法:有限单元法发展非常迅速,至今已经成为求解复杂工程问题的有力工具,并在岩土工程领域广泛的采用,主要的分析软件ANSYS。 有限单元法的最基本的元素是单元和节点,基本计算步骤的第一步为离散化,问题域的连续体被离散为单元与节点的组合,连续体内部分的应力及位移通过节点传递,每个单元可以具有不同的物理特征,这样,便可以得到在物理意义上与原来的连续体相近似的模型。第二步为单元分析,一般以位移法为基本方法,建立单元的刚度矩阵。第三步由单元的刚度矩阵集合成总体刚度矩阵,并由此建立系统的整体方程组。第四步进入计算模型的边界条件,求解方程组,求得节点位移。第五步求出各单元的应变、应力及主应力。 有限差分法:有限差分法在岩土工程中是应用非常广泛的方法,在数值计算模拟上有很大的贡献,主要的应用软件为FLAC3D。 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方

关于岩土工程边坡问题的文献综述

关于岩土工程边坡问题的文献综述 中国民航大学赵锋 090741132 摘要:边坡分析理论经过近几十年的发展,基本形成了完善的体系。现有的边坡稳定性分析评价模型大致有以下几类:(1)基于传统静力准则的评价模型;(2)基于数值计算方法的分析模型;(3)基于能量原理的分析模型;(4)基于系统控制论的分析模型;(5)基于智能技术的分析模型等;(6)性多模型综合评价。目前,边坡稳定性分析的方法很多,其中较为典型的有极限平衡法,极限分析法,有限元法等。 关键词:边坡分析理论、边坡稳定性分析模型、边坡稳定性分析方法、土质边坡的稳定性分析、岩质边坡的稳定性分析 1、背景 随着科技的进步和社会的飞速发展,全球的经济迅速崛起,因此很多重大项目如水电、露天采矿、能源及交通项目应运而生。这就极大地促进了岩土工程边坡分析理论的发展。边坡分析理论经过近几十年的发展,基本形成了完善的体系。现有的边坡稳定性分析评价模型大致有以下几类:(1)基于传统静力准则的评价模型;(2)基于数值计算方法的分析模型;(3)基于能量原理的分析模型;(4)基于系统控制论的分析模型;(5)基于智能技术的分析模型等;(6)性多模型综合评价。 目前,边坡稳定性分析的方法很多,其中较为典型的有极限平衡法,极限分析法,有限元法等。 2、意义 边坡系统是一个开放的复杂系统,不断与周围环境进行着物质和能量交换,其稳定性除受地质因素制约外,还受到工程因素的影响,这些因素部分是确定的,更多的具有随机性、模糊性、可变性等不确定性。它们对不同类型边坡稳定性的影响程序也不一样,这些因素之间具有复杂的非线性关系。 在实际施工过程中由于受场地的限制,某些规模宏大的重大工程的建设,经常需在复杂地质环境条件下进行,因而人为地开挖了各种各样的高陡边坡。而这些边坡工程的稳定状态,事关工程建设的成败与安全,会对整个工程的可行性、安全性及经济性等起着重要的制约作用,并在很大程度上影响着工程建设的投资及效益。 因此,如何能够更好地了解与掌握边坡变形、发展规律,并在此基础上对边坡的变形和破坏进行防治,分析、评价边坡系统的稳定性,经济、合理地设计边坡工程直接关系到建设资金的投入和生命财产安全,其意义尤为重大。 3、现有边坡稳定性分析模型简述 3.1基于静力准则的模型 此类模型最基本常用的是极限平衡法。利用滑面上抗滑力与下滑力之比来定义安全系数,如下式: 式中σ i ,τ i ,Ai, ci ,υi分别为i滑面单元上的正应力、剪应力、面积、粘聚力和内摩擦角; N 为滑面单元的总数。评价标准是:当 K > 1 时为稳定状态;当 K = 1 时处于临界状态;当 K < 1 时为不稳定状态。在实际应用中,对式(1)还有一些改进的模型,如按合滑移矢量方向进行计算,将τs 沿局部滑面投影等。 尽管在理论思路上,此类模型概念明确,计算可行,但是不能真实地反映边坡系统的稳定性。在工程实际中常出现“安全稳定系数大于1的边坡破坏,而稳定系数小于1的边坡反而稳定”的矛盾现象。由于边坡系统的复杂性,影响因素的多样性,各因素之间的非线性,虽然极限状态时系统将发挥其最大的抵抗力,但并不意味着滑面上的各点都同时达到其最大的抗力。而且边坡的破坏一般是一个渐进的过程,其安全系数在达到极限状态过程中是一个变量。

相关文档
最新文档