PLC与传感器的连接

PLC与传感器的连接
PLC与传感器的连接

PLC与传感器的连接--PLC与常用设备的连接

PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。

1.PLC与主令电器类设备的连接

如图6-4所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC 为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。若是分组式输入,也可参照图6-4的方法进行分组连接

2. 旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。

如图6-7所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。

编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

3. 传感器的种类很多,其输出方式也各不相同。当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC 输入端并联旁路电阻R,如图6-8所示。当漏电流不足lmA时可以不考虑其影响。

式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。

4. 如果PLC控制系统中的某些数据需要经常修改,可使用多位拨码开关与PLC连接,在PLC 外部进行数据设定。如图6-5所示为一位拨码开关的示意图,一位拨码开关能输入一位十进制数的0~9,或一位十六进制数的0~F。

图6-5 一位拨码开关的示意图

如图6-6所示4位拨码开关组装在一起,把各位拨码开关的COM端连在一起,接在PLC输入侧的COM端子上。每位拨码开关的4条数据线按一定顺序接在PLC的4个输入点上。由图可见,使用拨码开关要占用许多PLC 输入点,所以不是十分必要的场合,一般不要采用这种方法。

5. PLC与输出设备连接时,不同组(不同公共端)的输出点,其对应输出设备(负载)的电压类型、等级可以不同,但同组(相同公共端)的输出点,其电压类型和等级应该相同。要根据输出设备电压的类型和等级来决定是否分组连接。如图6-9所示以FX2N为例说明PLC与输出设备的连接方法。图中接法是输出设备具有相同电源的情况,所以各组的公共端连在一起,否则要分组连接。图中只画出Y0-Y7输出点与输出设备的连接,其它输出点的连接方法相似。

6. PLC的输出端经常连接的是感性输出设备(感性负载),为了抑制感性电路断开时产生的电压使PLC内部输出元件造成损坏。因此当PLC与感性输出设备连接时,如果是直流感性负载,应在其两端并联续流二极管;如果是交流感性负载,应在其两端并联阻容吸收电路。如图6-10所示。

图中,续流二极管可选用额定电流为1A、额定电压大于电源电压的3倍;电阻值可取50~120Ω,电容值可取0.1~0.47μF,电容的额定电压应大于电源的峰值电压。接线时要注意续流二极管的极性。

7. PLC可直接用开关量输出与七段LED显示器的连接,但如果PLC控制的是多位LED七段显示器,所需的输出点是很多的。

如图6-11所示电路中,采用具有锁存、译码、驱动功能的芯片CD4513驱动共阴极LED七段显示器,两只CD4513的数据输入端A~D共用PLC的4个输出瑞,其中A为最低位,D为最高位。LE 是锁存使能输入端,在LE信号的上升沿将数据输入端输入的BCD数锁存在片内的寄存器中,并将该数译码后显示出来。如果输入的不是十进制数,显示器熄灭。LE为高电平时,显示的数不受数据输入信号的影响。显然,N个显示器占用的输出点数为P=4+N。

如果PLC使用继电器输出模块,应在与CD4513相连的PLC各输出端接一下拉电阻,以避免在输出继电器的触点断开时CD4513的输入端悬空。PLC输出继电器的状态变化时,其触点可能抖动,因此应先送数据输出信号,待该信号稳定后,再用LE信号的上升沿将数据锁存进CD4513。

PLC与传感器的连接方法

PLC与传感器的连接方法 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流, 2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的

PLC与感应器接线方法

一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型

SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC 程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大

PLC与传感器的接线

PLC与传感器的接线 01概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口 有光电耦合器正极共点与负极共点之分,日系PLC 通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 02输入电路的形式

1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current灌电流)。 2、术语的解释 SINK漏型SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。国内对这两种方式的说法有各种表达:

2.1 根据TI的定义,sink Current为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK 为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开 关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通, 开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部

PLC与传感器连接解决方案选型参考

PLC与传感器连接方案选型参考 传感器模拟信号数据采集与PLC系统匹配方案选型 概述 在工业现场中,压力、位移、温度、流量、转速等各类模拟量传感器因设计使用的技术方法不同。传感器工作配电的方式主要分为两线制和四线制,其输出的模拟信号也各有差异,而常见的有0-20mA/4-20mA电流信号和0-75mV/0-5V/1-5V电压信号。要把各类传感器模拟信号成功采集到PLC/DCS/FCS/MCU/FA/PC系统,就要根据传感器与数据采集系统的功能和技术特点进行匹配选型,同时也要考虑到工业现场传感器与PLC等数据采集系统的供电差异及各种EMC干扰的影响,通常把传感器输出的模拟信号隔离、放大、转换后送到PLC等数据采集系统。PLC通过信号线采集传感器的模拟或数字信号,然后进行处理,如果传感器是模拟输出,PLC就要接模拟输入接口,如果传感器是数字信号输出,PLC就要接数字输入接口。 开关量传感器就是一个无触点的开关 ,开关量传感器可作为PLC的开关量输入信号。一般 用于开关量控制的设备,机床,机器等。模拟量传感器是把不同的物理量(如 压力、流量、温度) 转换成模拟量(4-20MA的电流或1-5V的电压)。模拟量传感器作为PLC的模拟量输入模块的输入信 号。一般用于过程控制。 数字传感器是指将传统的模拟式传感器经过加装或改造A/D转换模块, 使之输出信号为数字量(或数字编码)的传感器,主要包括:放大器、A/D转换器、微处理器(CPU)、 存储器、通讯接口电路等。 常用的模拟量传感器分为两线制和四线制,两线制和四线制都只有两根信号线,它们之间的 主要区别在于:两线制的两根信号线既要给传感器或者变送器供电,又要提供电流电压信号;而四 线制的两根信号线只提供电流信号。因此,通常提供两线制电流电压信号的传感器或者变送器是无 源的;而提供四线制电流信号的传感器或者变送器是有源的。因此,当PLC等数据采集系统的模板 输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC等数据 采集系统的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出 一个直流24V的电源,以驱动两线制传感器工作。 4-20mA和电工标准有关,4-20mA信号制 是国际电工委员会(IEC)过程控制系统用模拟信号标准。我国从DDZ-Ⅲ型电动仪表开始采用这一国 际标准信号制,仪表传输信号采用4-20mA,联络信号采用1-5VDC,即采用电流传输、电压接收的信 号系统。因为信号起点电流为4mA,为变送器提供了静态工作电流,同时仪表电气零点为4mA,不与 机械零点重合,这种活零点有利于识别断电和断线等故障。 IC封装和标准DIN 35导轨安装的产品图片展示

PLC连接称重测力传感器的几种方法

PLC连接称重测力传感器的几种方法 上海天贺自动化仪表有限公司李树伟 在用PLC组成称重及配料控制系统时,与称重传感器的连接一般有以下几种方式: 1.称重传感器(称重模组)+接线盒+模拟称重放大器+PLC模拟量输入模块 一般称重传感器的信号输出都是与重量载荷成正比的毫伏级电压信号,普通PLC的模拟量输入模块无法直接处理,故需附加称重放大器将微弱的传感器信号调理放大到0~10V或者4~20mA的所谓标准工业过程信号,以供PLC的模拟量模块进行处理。典型产品有我公司生产的经济型放大器RW-ST01,工业级精密型放大器RW-PT01及内置接线盒的四路求和放大器RW-JT4。这种方式的好处是系统灵活,编程方便直接,系统反应速度快。缺点是模拟量信号在传输的过程中容易受到干扰。并且普通的PLC模拟量输入模块的分辨率都有限,一般不超过4000个分度,很难做到高精度称重。 2.称重传感器(称重模组)+接线盒+数字称重变送器(RS232或RS485输出)接PLC标 准串行通讯口 这种方式的好处是省去了PLC的模拟量输入模块,利用标准的MODBUS协议即可完成称重信号的采集,并且可以同时并接多路称重传感器。缺点是占用了PLC的通讯口,并且由于串行通信速率的限制,整个系统的响应时间较长。一般都在几十毫秒的数量级。这种连接方式的典型产品有我公司生产的RW-PT01D型数字称重测力变送器。 3.称重传感器(称重模组)+接线盒+频率输出型称重变送器,接PLC的高速脉冲捕捉端 口 这种连接方式的好处是省去了模拟量输入模块,可以长距离传输,抗干扰能力强,容易隔离,响应速度较快。对应我公司的产品是RW-PT01F

关于二线制、四线制传感器与PLC的连接方法

关于二线制、四线制传感器与PLC的连接方法 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号: 1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma 正,-为4-20ma负。 PLC: (以2正、3负为例) 1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例) 2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例) 3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例) 4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。 参考资料: https://www.360docs.net/doc/7f16117559.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/i tem/8345e5d870a0f20c48540342.html 容济摩托车点火器 https://www.360docs.net/doc/7f16117559.html,

PLC与传感器的接线方法

PLC与传感器的接线方法 收藏此信息打印该信息添加:佚名来源:未知 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Co m)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型

SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NP N的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。

变送器和PLC的连接

变送器和PLC的连接 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC 的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC:(以2正、3负为例) 1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例) 2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例) 3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例) 4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

S7-200SMART系列PLC接线方法

S7-200 SMART系列PLC接线方法 1、输入端接线 S7-200 SMART系列PLC的输入端接线与三菱FX系列接线不同,三菱FX不需要接入直流电源,其电源是由系统内部提供。而S7-200 SMART系列输入端必须接入直流电源。 下面以CPU SR40 和CPU ST40分析输入端接线需要注意的问题。 上图为CPU SR40输入端的接线图 ①【1M】是输入端的公众端子,与DC24V电源相连。 ②电源有两种连接方法:PNP和NPN。电源负与公共端1M连接为PNP型接法,电源正与公共端1M连接为PNP型接法。上图就是PNP型接法。 ③【N】和【L1】为交流电电源接入端子,可接受电压AC120-240V,为PLC 提供电源。注意:当PLC的型号为CPU ST40时为直流供电,端子标号为【M】和【L+】。接线如下图所示 初学者容易把PNP和NPN两种解法混淆,告诉大家一个简单的记忆方法,把PLC看做负载,如果电流从公共端流出PLC则为PNP型,如果从公共端流入PLC则为NPN型。上面两图中红色箭头就是标明电流的流向的。 【举例1】有一台CPU SR40,输入端需要接一只三线PNP型接近开关和一只两线PNP型接近开关,应该如何接线,画出电路图。 【解】对于CPU SR40公共端接电源负极,而三线PNP型接近开关只需要将其正、负分别与电源正、负相连即可,信号线接I0.0。二线PNP型接近开关只要将电源正极与开关正极相连,信号线与I0.1相连。如下图 如果把本例中PNP型接近开关换成NPN型,该如何接线呢? 本例涉及到接近开关的接线方法,如果不明白的可以添加微信“PLCJSZC”,点击[图文教程]查看“【607】接近开关你会使用吗”。

接近开关与PLC的接线方法

摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,SINK- 拉电流输入,SOURCE- 灌电流输入,并结合传感器常见几种输出形式和经常遇到的NPN和PNP输出,以及单端与双端接口,给出了和不同的PLC电路形式连 接时的接线方法。 关键词: PLC SINK- 拉电流输入 NPN输出 SOURCE- 灌电流输入 PNP输出单端双端接口 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

PLC与传感器的接线方法

PLC与传感器的接线方法 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可 使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点 可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释

SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分 清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表 述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感 器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号, 内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。

PLC与传感器的连接

4.3输入和输出的接线 这一个关于FP Σ的输入和输出的接线。 4.3.1 输入设备的接线 光电传感器和开关式传感器的连接 继电器输出型 图39:FP∑继电器输出型传感器 集电极开路的NPN型 图40:FP∑开环集电极输出型传感器 电压输出 (通用输出) 型 图41:FP∑电压输出型(通用输出)型传感器 双线输出型 图42:FP∑双线输出型传感器 使用带有发光二极管的行程开关的说明 发光二极管被串联到输入电路时,如带有发光二极管的行程开关,是为了确保PLC 输

入端的电压大于19.2 V 。 特别地, 串联多个开关时应该警慎。 图43: 使用带有发光二极管的行程开关的说明 使用双线型传感器的时的说明 如果PLC 的输入由于双线型传感器(光电传感器或行程开关)的漏电流而不关断,则推荐使用泄漏电阻,如下图所示 图44: 使用双线型传感器的时的说明 输入关断电压是2.4V ,因此,选择泄漏电阻 "R" 的数值以便使COM 端和输入端之间的电压小于2.4V 。 假设输入阻抗是5.6k Ω.(I:传感器的漏电流)(mA) 则,泄漏电阻的阻值 R 是 : )(4 .26.544.13Ω-?≤k I R 公式只有在输入阻抗为5.6 k Ω时才成立。 输入阻抗随着输入端子的数目而变化。 电阻器的功率W 是: R V W 2)(电源电压= 在实际的选择中,通常使用3到5倍的W 的数值。 使用带有发光二极管的限位开关的说明 如果 PLC 的输入由于带有发光二极管的限位开关的漏电流而不能关闭,则泄漏电阻的使用如下图所示。 图45: 使用带有发光二极管的限位开关的说明 输入的电压是 2.4 V , 因此当电源电压是 24 V 的时候, 选择泄漏器电阻 "R" 电流大于:r I 4.224-= 泄流电阻的电阻 R 是: )(4.26.544.13Ω-?≤ k I R

西门子PLC与NPN(源型)和PNP(漏型)传感器的接线说明

西门子PLC与NPN(源型)和PNP(漏型)传感器的接线说 明 传感器根据输出类型可以分为NPN(有人称为源型传感器)和PNP(有人称为漏型传感器)两大类;两种类型的传感器都有3个引脚,分别接24V、0V、Out(信号输出),那么西门子S7系列PLC都支持什么类型的传感器呢? 西门子PLC和模块所支持的传感器类型 1、西门子S7-200所支持的传感器类型? S7-200系列的输入端既支持源型也支持漏型,所以既可以接NPN传感器也可以接PNP 的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图): 2、西门子S7-200smart所支持的传感器类型?

S7-200smart与S7-200一样输入端既支持漏型也支持源型,所以既可以接NPN传感器也可以接PNP的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图): 3、西门子S7-1200所支持的传感器类型?

S7-1200输入端既支持漏型也支持源型,所以既可以接NPN传感器也可以接PNP的传感器。(具体接法请参考第二步),其他型号可以参照产品手册(如下图): 4、西门子S7-300所支持的传感器类型? S7-300的DI模块很多,要具参数分需要在硬件组态中查看(具体接法请参考第二步)(1)S7-300的大部分DI模块均为漏型(应该选取PNP型的传感器),在硬件组态时不提示源型还是漏型,就是默认为漏型的意思,如:321-1BL00:

(2)S7-300的源型DI模块(应该选取NPN传感器),如:6ES7 321-1BH50-0AA0:

(3)源型/漏型两用式DI模块(既可NPN也可以PNP型传感器):如:6ES7 321- 1BP00-0AA0 5、西门子S7-1500所支持的传感器类型? S7-1500系列中现推出的DI模块有漏型,接PNP型传感器(具体接法请参考第二步)。如:6ES7 523-1BL00-0AA0

PLC与传感器的连接

PLC与传感器的连接--PLC与常用设备的连接 PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。 1.PLC与主令电器类设备的连接 如图6-4所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC 为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。若是分组式输入,也可参照图6-4的方法进行分组连接 2. 旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。 如图6-7所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。 编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

3. 传感器的种类很多,其输出方式也各不相同。当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC 输入端并联旁路电阻R,如图6-8所示。当漏电流不足lmA时可以不考虑其影响。 式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。 4. 如果PLC控制系统中的某些数据需要经常修改,可使用多位拨码开关与PLC连接,在PLC 外部进行数据设定。如图6-5所示为一位拨码开关的示意图,一位拨码开关能输入一位十进制数的0~9,或一位十六进制数的0~F。 图6-5 一位拨码开关的示意图 如图6-6所示4位拨码开关组装在一起,把各位拨码开关的COM端连在一起,接在PLC输入侧的COM端子上。每位拨码开关的4条数据线按一定顺序接在PLC的4个输入点上。由图可见,使用拨码开关要占用许多PLC 输入点,所以不是十分必要的场合,一般不要采用这种方法。

PLC与传感器的连接--PLC与常用设备的连接

PLC与传感器的连接--PLC与常用设备的连接- 内容来源于 https://www.360docs.net/doc/7f16117559.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/ite m/16663cd120b3393206088bbb.html P L C常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地连接输入和输出电路,是保证P L C安全可靠工作的前提。 1.P L C与主令电器类设备的连接 如图6-4所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的P L C为直流汇点式输入,即所有输入点共用一个公共端C O M,同时C O M端内带有D C24V电源。若是分组式输入,也可参照图6-4的方法进行分组连接 2.旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给P L C,利用P L C的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。 如图6-7所示是输出两相脉冲的旋转编码器与F X系列P L C的连接示意图。编码器有4条引线,其中2条是脉冲输出线,1条是C O M端线,1条是电源线。编码器的电源可以是外接电源,也可直接使用P L C的D C24V电源。电源“-”端要与编码器的C O M端连接,“+”与编码器的电源端连接。编码器的C O M端与P L C输入C O M端连接,A、B两相脉冲输出线直接与P L C的输入端连接,连接时要注意P L C输入的响应时间。有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。 3.传感器的种类很多,其输出方式也各不相同。当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致P L C的误动作,此时可在P L C输入端并联旁路电阻R,如图6-8所示。当漏电流不足l m A时可以不考虑其影响。 式中:I为传感器的漏电流(m A),U O F F为P L C输入电压低电平的上限值(V),R C为P L C的输入阻抗(KΩ),R C的值根据输入点不同有差异。

PLC与传感器连接方案选型

PLC与传感器连接方案选型参考 在工业现场中,压力、位移、温度、流量、转速等各类模拟量传感器因设计使用的技术方法不同。传感器工作配电的方式主要分为两线制和四线制,其输出的模拟信号也各有差异,而常见的有 0-20mA/4-20mA电流信号和0-75mV/0-5V/1-5V电压信号。要把各类传感器模拟信号成功采集到PLC/DCS/FCS/MCU/FA/PC系统,就要根据传感器与数据采集系统的功能和技术特点进行匹配选型,同时也要考虑到工业现场传感器与PLC等数据采集系统的供电差异及各种EMC干扰的影响,通常把传感器输出的模拟信号隔离、放大、转换后送到PLC等数据采集系统。PLC通过信号线采集传感器的模拟或数字信号,然后进行处理,如果传感器是模拟输出,PLC就要接模拟输入接口,如果传感器是数字信号输出,PLC就要接数字输入接口。 开关量传感器就是一个无触点的开关,开关量传感器可作为PLC的开关量输入信号。一般用于开关量控制的设备,机床,机器等。模拟量传感器是把不同的物理量(如压力、流量、温度)转换成模拟量(4-20MA的电流或1-5V的电压)。模拟量传感器作为PLC的模拟量输入模块的输入信号。一般用于过程控制。数字传感器是指将传统的模拟式传感器经过加装或改造A/D转换模块,使之输出信号为数字量(或数字编码)的传感器,主要包括:放大器、A/D转换器、微处理器(CPU)、存储器、通讯接口电路等。 常用的模拟量传感器分为两线制和四线制,两线制和四线制都只有两根信号线,它们之间的主要区别在于:两线制的两根信号线既要给传感器或者变送器供电,又要提供电流电压信号;而四线制的两根信号线只提供电流信号。因此,通常提供两线制电流电压信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的。因此,当PLC等数据采集系统的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC等数据采集系统的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 4-20mA和电工标准有关,4-20mA信号制是国际电工委员会(IEC)过程控制系统用模拟信号标准。我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4-20mA,联络信号采用1-5VDC,即采用电流传输、电压接收的信号系统。因为信号起点电流为4mA,为变送器提供了静态工作电流,同时仪表电气零点为4mA,不与机械零点重合,这种活零点有利于识别断电和断线等故障。

PLC与接近、光电开关如何正确接线

PLC与接近、光电开关如何正确接线 输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE (source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流, 2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,

西门子PLC与NPN(源型)和PNP(漏型)传感器的接线说明

西门子PLC与NPN (源型)和PNP (漏型)传感器的接线说 明 传感器根据输出类型可以分为NPN(有人称为源型传感器)和PNP (有人称为漏型传感器) 两大类;两种类型的传感器都有3个引脚,分别接24V、OV、OUt (信号输出),那么西门 子S7系列PLC都支持什么类型的传感器呢? 西门子PLC和模块所支持的传感器类型 1、西门子S7-200所支持的传感器类型? S7-200系列的输入端既支持源型也支持漏型,所以既可以接NPN传感器也可以接PNP的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图): 2、西门子S7-200smart所支持的传感器类型?

S7-200smart与S7-200 —样输入端既支持漏型也支持源型,所以既可以接NPN传感器也可 以接PNP的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图): I型号(续)CPU SR20 AUDC/RLY 输入电诡最大负我时仅包括O S U 120 VAC时210 mA (带30OmA的传感器电睥输圧 120 VAC 时90 mA (?300 mΛ的传感S?iSf?ffi 240 VAC时120 mA (带30OmA的传鹤器电源输卄 240 V AC 时內OmA (?300 mA??^??2S电源输出最 大负载时旬摘CPU和序有扩展附仲 120 VAC 时290 mA 240 V AC 时170 mA 浪涌电流(最大)264 VACW 93 A 隔离(输入曲源与逻J>150OVAC 漏地电流,AC线路对功能地最大0 5 mA ftt?H?间(掉亀)120 VAC 时北ΠH 240 V AC 时200 ms 内部保险丝(用户不町更换)3Aτ250√,慢速熔断 传感器电源 电压范搠20J4-28J8VDC 颔定输出电潼(录大)300 mA (fe?保护〕 SkiK纹噪声(

相关文档
最新文档