北邮光通信实验报告

北邮光通信实验报告
北邮光通信实验报告

信息与通信工程学院光纤通信实验报告

班级: 2013211123

姓名:周亮

学号:2013210906

日期: 2016年5月

一、脉冲展宽法测量多模光纤带宽

1、实验原理

多模光纤基带响应测试方法既可用频域的方法,也可用时域的方法。时域法利用的是脉冲调制。按照对脉冲信号采集及数学处理方法的不同,又分为脉冲展宽法、快速傅立叶变换法和频谱分析法。本实验采用的是较为简单的脉冲展宽法。

图1. 多模光纤脉冲展宽测试仪原理图

如图1所示为多模光纤时域法带宽测试原理框图。从光发模块输出窄脉冲信号,首先使用跳线(短光纤)连接激光器和光检测器,可以测出注入窄脉冲的宽度1τ?;然后将待测光纤替换跳线接入,可以测出经待测光纤后的脉冲宽度

2τ?。经过理论推导可以得到求解带宽公式:

)B GHz

多模光纤脉冲展宽测试仪如图2所示。前面板接口分上下两层。上层用于850nm 测试,下层为1310nm 。每个波长分别由窄脉冲发生器输出极窄光脉冲经被测光纤回到测试仪内进行O/E

变换后送出电信号,通过高速示波器即可显示。本实验测试850nm 波段和1310nm 波段,采用的数字示波器如图3所示。

图2. 多模光纤脉冲展宽测试仪实物图 图3. 实验采用的数字示波器实物

2、实验步骤

接跳线测试:

1. 打开测试仪电源开关(位于背面),前面板上的电源指示灯亮;

2. 将示波器输入端与本仪器850nm 的“RF OUT ”输出端用信号线接好;

3. 用一根光纤跳线将850nm 的 “OPTICAL IN ”和“OPTICAL OUT ”连接起来;

4. 进行示波器操作:

a) 按AUTO -SCALE 键调出波形;

b) 点击TIME BASE 键,并通过右下方旋钮调整脉冲至适当宽度(一般设置为

10.0ns/div);

c) 点击t ?、V ?键,显示屏右方会出现V ? markers(off/on)、V ? markers(off/on)

选框,先通过右侧对应按键将V ? markers 设为on ,分别调节V marker1和V

marker2测出脉冲高度并找出脉冲半高值;再将V ? markers 设为on ,分别调节

t marker1和t marker2 使其与脉冲半高值相交。则有t marker2-t marker1即为脉

冲半高全宽1τ。

d) 将光纤跳线

5、将波段调为1310nm ,重复以上步骤。

接光纤测试:

换下该光纤跳线,接入待测光纤用同样方法测出2τ。

3、实验结果

表1 脉冲展宽法测量结果

计算得850nm 波段的单位长度带宽 B1 = 0.224GHz

1310nm 波段的单位长度带宽 B2 = 0.1698GHz

二、插入损耗法测量光纤的损耗

1、实验原理

测量一段光纤的损耗特性,主要利用公式

()

()()dB P P A λλ21lg 10=

A 实际上是被测光纤的损耗与连接器损耗之和。如果忽略连接器损耗,被测光纤的长度为L ,则光纤的损耗系数为

()km dB L

A =α 2、实验步骤

实验步骤如图4所示:

图4 插入损耗法测量光纤损耗示意图

没有被测光纤接入时候的功率

可以看做该段光纤的输入功率,接入被测光纤之后的功率可以看做该段光纤的输出功率。

3、实验结果

实验使用设备为APM820,被测光纤长度为18.9km ,光信号波长为1550nm 。

经过三次测量,得到三组值,计算出其对应的损耗系数,如表2所示:

P1=1068uW

P2=160uW

a=(10/18.9)lg(1068/160)=0.437dB/km

老师给出的值为0.3dB/km左右,而实验测得值偏大,误差产生的原因可能是光纤在测量时由于弯曲导致损耗增大。

三、OTDR的使用

1、实验原理

OTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。OTDR就测量回到OTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。

给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。

在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到OTDR。作为1550nm 波长的OTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm 或1625nm波长,OTDR的测试距离就必然受到限制,因为测试设备需要在OTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。

菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,OTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。

OTDR的工作原理就类似于一个雷达。它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息。这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱。

盲区的概念

Fresnel 反射引出一个重要的 OTDR 规格,即盲区。有两类盲区:事件和衰减。两种盲区都由 Fresnel 反射产生,用随反射功率的不同而变化的距离来表示。盲区定义为持续时间,在此期间检测器受高强度反射光影响暂时“失明”,直到它恢复正常能够重新读取光信号为止。

2、实验结果

由于本操作非常简单,因此直接给出结果图。如图5所示:

OTDR结果示意图

四、半导体激光器的光谱测量半导体激光器的光谱测量仪器的使用方法很简单,实验结果如图

上图分别为20dB和3dB测量结果

峰值波长:1151.29nm

半高谱宽:0.12nm

SMSR:3.58dB

3dB谱宽:1551.3721-1551.1887=0.1834nm 20dB谱宽:1551.3333-1551.2388

边摸抑制比:39.56dB

五、心得体会

本次光通信实验包含了四个动手实验和一个演示实验,配合老师的讲解以及自己对实验仪器和步骤的探索,我和搭档两人顺利的将四个实验都完成并提前离开。通过这次亲自动手的实验,我将在理论课上学习到的知识,运用到了实际之中,理论和实践的结合,增强了对光纤通信系统特性的理解和掌握。

实验过程中,接触了许多之前未曾见过的光学仪器,实验仪器将原本复杂的理论过程大为简化,要实现某一功能只需按一个按钮,调整几个参数,就能将所求的示数读出并打印,操作比较容易,加上对实验的理解,做到了较为顺利的完成实验。有时测出的数据有明显误差,需要分析原因,有可能是某一步的操作有误或者理解偏差,排除这些问题,重新测量就=就解决了这类问题。

总体感觉这次实验提供的更多是将所学只是运用到操作中来的一次机会,学会操作仪器并不是主要目的,还需要我们对理论知识的进一步加深理解,如果不能做到对知识的深刻掌握,在日后的实验中可能会碰到一些问题。

通过本次光纤实验,我不仅学习了一些光纤中常用仪器的使用,还将课上的知识加以巩固,总的来说在这次实验中我有很大收获。

课程设计实验报告 北邮

课程设计实验报告 -----物联网实验 学院:电子工程学院班级:2011211204 指导老师:赵同刚

一.物联网概念 物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“The Internet of things”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网的基础上延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。 二.物联网作用 现有成熟的主要应用包括: —检测、捕捉和识别人脸,感知人的身份; —分析运动目标(人和物)的行为,防范周界入侵; —感知人的流动,用于客流统计和分析、娱乐场所等公共场合逗留人数预警; —感知人或者物的消失、出现,用于财产保全、可疑遗留物识别等; —感知和捕捉运动中的车牌,用于非法占用公交车道的车辆车牌捕捉; —感知人群聚集状态、驾驶疲劳状态、烟雾现象等各类信息。 三.物联网无线传感(ZigBee)感知系统 ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。ZigBee在整个协议栈中处于网络层的位置,其下是由IEEE 802.15.4规范实现PHY(物理层)和MAC(媒体访问控制层),对上ZigBee提供了应用层接口。 ZigBee可以组成星形、网状、树形的网络拓扑,可用于无线传感器网络(WSN)的组网以及其他无线应用。ZigBee工作于2.4 GHz的免执照频段,可以容纳高达65 000个节点。这些节点的功耗很低,单靠2节5号电池就可以维持工作6~24个月。除此之外,它还具有很高的可靠性和安全性。这些优点使基于ZigBee的WSN广泛应用于工业控制、消费性电子设备、汽车自动化、家庭和楼宇自动化、医用设备控制等。 ZigBee的基础是IEEE802.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEE802.15.4(ZigBee)技术标准。ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

触发器实验报告

实验3 触发器及其应用 一、实验目的 1、掌握基本RS、JK、D和T触发器的逻辑功能 2、掌握集成触发器的逻辑功能及使用方法 3、熟悉触发器之间相互转换的方法 二、实验原理 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图5-8-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此 种情况发生,表5-8-1为基本RS触发器的功能表。 基本RS触发器。也可以用两个“或非门”组成,此时为高电平触发有效。 表5-8-1 图5—8—1 基本RS触发器 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚功能及逻辑符号如图5-8-2所示。 JK触发器的状态方程为 Q n+1=J Q n+K Q n J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组

成“与”的关系。Q与Q为两个互补输出端。通常把Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。 图5-8-2 74LS112双JK触发器引脚排列及逻辑符号 下降沿触发JK触发器的功能如表5-8-2 表 注:×—任意态↓—高到低电平跳变↑—低到高电平跳变 Q n(Q n)—现态Q n+1(Q n+1 )—次态φ—不定态 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 3、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器, 触发器的状态只取决于时钟到来前D端的状态,D触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。有很多种型号可供各种用途的需要而选用。如双 D 74LS74、四D 74LS175、六D 74LS174等。 图5-8-3 为双D 74LS74的引脚排列及逻辑符号。功能如表5-8-3。

北邮2016电磁场与电磁波实验报告

电磁场与电磁波实验报告 题目:校园无线信号场强特性的研究 姓名班级学号序号

目录 一、实验目的 (2) 二、实验内容 (2) 三、实验原理 (5) 四、实验步骤 (5) 1、实验对象选取 (5) 2、数据采集 (5) 五、实验数据 (2) 1、原始数据录入 (7) 2、数据处理流程 (7) 六、实验结果与分析 (8) 1、主楼周边电磁场信号强度分析 8 2、主楼室内不同楼层楼道信号强度分析 11 七、问题分析与解决 (15) 1、Matlab 仿真问题研究与解决 (23) 2、场强分布的研究 (23)

3、模型拟合........................................................ . (24) 八、分工安排及心得体会 (25) 附录I:原始数据 (26) 附录II:源代码 (30) 一.实验目的 1.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗 的概念; 2.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 3.研究建筑物穿透损耗与建筑材料的关系。 4.掌握在移动环境下阴影衰落的概念以及正确测试方法。二.实验内容 利用DS1131场强仪和拉杆天线,实地测量信号场强。

1.研究具体现实环境下阴影衰落分布规律,以及具体的分布参数 如何; 2.研究在校园内电波传播规律与现有模型的吻合程度,测试值与 模型预测值的预测误差如何; 3.研究建筑物穿透损耗的变化规律 三.实验原理 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。 【阴影衰落】 阴影衰落是电磁波在空间传播时受到地形起伏、高达建筑物群的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起信号衰减。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落,其特点是衰落与无线电传播地形和地物的分布、高度有关。在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,

计算机网络课程设计实验报告

校园网的组建与应用 摘要: 本文针对实验室的设备环境,对校园网的组网方式进行了研究和模拟,并最终提出了一套完整的校园网组网方案。 实验中我们对路由器、交换机等组网基础设备进行了认真的研究。关于路由器,我们实现了本地基本配置,并分别使用路由器的串口和以太网口实现了不同网段的网络互联,对路由器静态及动态路由机制进行了探究。关于交换机,我们实现了VLAN的划分以及不同VLAN间的相互通信,对广播风暴现象的产生原理及解决方案进行了特定的实验。综合两者的功能,我们对多种网络拓扑结构进行了分析,讨论和改进。最后通过实验和模拟提出了一套完整的校园网组建方案。 在此方案中,我们在实现了网络互通的情况下,我们进行了IP地址的划分,IP地址利用DHCP进行自动分配。并根据模拟实际,对不同的主机进行VLAN划分,同时保证不同VLAN间的相互访问与特定VLAN的保护与单向访问。同时构建内部防火墙保证校园网与外部的安全访问。构建了完整可靠的网络之后,依据校园网的功能和服务需求,我们搭建了FTP服务器,用于提供基础的网络服务。 限于实验室条件的限制,我们的方案并不是完全能够适用于现实的。但是,通过实验使我们对校园网乃至更大的网络有了更加深刻的了解。

目录

一、前言 随着信息的调整膨胀,全球信息已经进入以计算机网络为核心的时代。作为科技先导的教育行业,计算机校园网已是教育进行科研和现代化管理的重要手段。近几年、校园网已经取得很大的发展,中国教育科研网投入运营,全国多所高校校园网络开通联网。 随着学校教育手段的现代化,很多学校已经逐渐开始将学校的管理和教学过程向电子化方向发展,校园网的有无以及水平的高低也将成为评价学校及学生选择学校的新的标准之一,此时,校园网上的应用系统就显得尤为重要。一方面,学生可以通过它在促进学习的同时掌握丰富的计算机及网络信息知识,毫无疑问,这是学生综合素质中极为重要的一部分;另一方面,基于先进的网络平台和其上的应用系统,将极大的促进学校教育的现代化进程,实现高水平的教学和管理。 学校目前正加紧对信息化教育的规划和建设。开展的校园网络建设,旨在推动学校信息化建设,其最终建设目标是将建设成为一个借助信息化教育和管理手段的高水平的智能化、数字化的教学园区网络,最终完成统一软件资源平台的构建,实现统一网络管理、统一软件资源系统,并保证将来可扩展骨干网络节点互联带宽为10G,为用户提供高速接入网络,并实现网络远程教学、在线服务、教育资源共享等各种应用;利用现代信息技术从事管理、教学和科学研究等工作。最终达到在网络方面,更好的对众多网络使用及数据资源的安全控制,同时具有高性能,高效率,不间断的服务,方便的对网络中所有设备和应用进行有效的时事控制和管理。 二、综述 2.1 概述 从物理意义上来说,校园网就是一种局域网。校园网是各类型网络中一大分支,有着非常广泛的应用及代表性。作为新技术的发祥地,学校、尤其是高等院校,和网络的关系是密不可分的。作为“高新技术孵化器”的高校,是知识、人才的高地,资源十分丰富,比其他行业更渴求网络新技术、网络新应用,

光纤基本特性测试实验报告

实验报告 课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1-2 光纤数值孔径性质和测量 一、实验目的和要求 1、熟悉光纤数值孔径的定义和物理意义 2、掌握测量光纤数值孔径的基本方法 二、实验内容和原理 光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。图一表示阶梯多模光纤可接收的光锥范围。因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。 NA 的定义式是: 式中n0 为光纤周围介质的折射率,θ为最大接受角。n1和n2分别为光纤纤芯和包层的折射率。光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系: 其中θ是远场辐射角,Ka 是比例因子,由下式给出: 专业: 姓名: 学号: 日期: 地点: 装 订 线

式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。因此可将P(θ)曲线上光功率下降到 θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径: 中心值的5%处所对应的角度 e 本实验正是根据上述原理和光路可逆原理来进行的。 三、主要仪器设备 He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。 四、实验步骤 方法一:光斑法测量(如图2) 1、实验系统调整; a.调整He-Ne激光管,使激光束平行于实验平台面; b.调整旋转台,使He-Ne激光束通过旋转轴线; c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接; d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。 2、测输出数值孔径角θo。 a. 移开光探测器,固定光纤输出端; b. 分别置观察屏于距光纤端面L1、L2 距离处,测量观察屏上的光纤输出圆光斑直径D1、D2,计算两次读数差ΔL和ΔD,得输出孔径角为:θo=arctan[ΔD/(2ΔL)]; c. 多次测量求平均值。(注:如果圆光斑边界不清晰,一般是由于出射光功率太强引起的,适当旋转读数台减小耦合效率,直至得到一个清晰圆光斑为止。)

北邮校园无线信号场强特性分析实验报告

校园内无线信号场强 特性研究 班级: 姓名: 学号: 序号: 日期: 北京邮电大学B e i j i n g U n i v e r s i t y o f P o s t s a n d T e l e c o m m u n i c a t i o n s

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法 2.研究校园内各种不同环境下阴影衰落的分布规律 3.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 无线通信系统有发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号的覆盖区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无限工程师所关心的。决定覆盖区的大小的主要因素有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同波、同频干扰。 无线 信道 发射接收 发射机接收机 2.1大尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。 大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接收功率之间的(dB)差值,根据理论和测试的传播模型,无论室内还是室外信道,平均接收信号功率随距离对数衰减,这种模型已被广泛使用。对于任意的传播距离,大尺度平均路径损耗表示为:

()[]()10l g (/) o o PL d dB PL d n d d =+ (n 依赖于具体的传输环境) 即平均接收功率为: 0000()[][]()10lg(/)()[]10lg(/)r t r P d dBm P dBm PL d n d d P d dBm n d d =--=- 其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;d0为近地参考距离;d 为 发射机与接收机(T-R )之间的距离。公式中的横岗表示给定值d 的所有可能路径损耗的综合平均。坐标为对数—对数时,平均路径损耗或平均接收功率可表示为斜率10ndB/10倍程的直线。n 值依赖于特定的传播环境。例如在自由空间,n 为2,当有阻挡物时,n 比2大。 决定路径损耗大小的首要因素是距离,此外,它还与接收点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念。中值是使实测数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。人们根据不同的地形地貌条件,归纳总结出各种电波传输模型。下边介绍几种常用的描述大尺度衰落的模型。 2.2 常用的电波传播模型 2.2.1自由空间模型 自由空间模型假定发射天线和接收台都处在自由空间。我们所说的自由空间一是指真空,二是指发射天线与接收台之间不存在任何可能影响电波传播的物体,电波是以直射线的方式到达移动台的。 自由空间模型计算路径损耗的公式是: ()10lg /32.420lg 20lg p t r L P P d f ==++ 其中p L 是以B d 为单位的路径损耗,d 是以公里为单位的移动台和基站之间的距离,f 是以MHz 为单位的移动工作频点或工作频段的频率。 空气的特性近似为真空,因此当发射天线和接收天线距离地面都比较高时,可以近似使用自由空间模型来估计路径损耗。 2.2.2布灵顿模型 布灵顿模型假设发射天线和移动台之间是理想平面大地,并且两者之间的距离d 远大于发射天线的高度ht 或移动台的高度hr 。 布灵顿模型的出发角度是接收信号来自于电波的直射和一次反射,也被叫做“平面大地模型”。 该模型的路径损耗公式为: 12040lg 20lg 20lg p t r L d h h =+-- 单位: d (km ) ht (m )hr (m )Lp (dB )

北邮电路综合实验报告——串行口数据传输的仿真及硬件实现

北京邮电大学 信息与通信工程学院 电路综合实验报告 串行口数据传输的仿真及硬件实现 姓名: 学号: 班内序号: 班级: 指导老师: 日期:2014年10月10日

摘要: 本实验模拟了现代数字逻辑电路中的数据传输过程。使用连续的代表0、1的高低电平作为数字信号,将该数字信号从输出端发送到接收端,并分别用串行、并行两种方式进行锁存,检测。本实验模拟了序列信号的发生装置、串并转换装置、串行并行两种方式的检测装置、锁存输出和控制电路,实现了一个简单的串行口数据传输模型。在此试验中,通过对常见芯片的组合实现功能,将一串由0、1组成的数字信号进行传输、转换、检测,使之显示在数码管上成为可读信息。并且,还实现了对此电路显示的控制,使数码管在满足条件的情况下才点亮。在实验中,还使用了Qua rtusⅡ对设计的电路进行了仿真模拟。 关键字: 数据传输、串并转换、数据检测、QuartusII Abstract: This experiment simulated data transfer in modern digital logic circuit. Digital signal was transferred from the output terminal to the receiving end, which was consisted of

continuous high or low level represent 0 and 1 as digital signal, and latch, test it through serial or parallel mode. Our experiment simulated the producing equipment of sequence signal, the signal conversion module, testing module of serial and parallel mode, latch output and control circuit. It implements a simple serial port data communication model. In the experiment, we use the combination of simple chips to realize the function that transport, transfer and test a sequence of the digital signal consisting of 0 and 1, and display it on LED Segment Displays. In addition, we realize the control of display. The LED Segment Displays works only in specific conditions. We also conduct simulations on QuartusⅡ. Keywords: Data transmission, String conversion, Data detection, Quartus II 目录 一、实验目的 (4)

光通信技术实验报告

光通信技术实验报告 实验一光通讯系统WDM系统设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.使用OptiSystem模拟仿真WDM系统的各项性能参数,并进行分析。 实验原理 光波分复用系统简介 光波分复用是指将两种或多种各自携带有大量信息的不同波长的光载波信号,在发射端经复用器汇合,并将其耦合到同一根光纤中进行传输,在接收端通过解复用器对各种波长的光载波信号进行分离,然后由光接收机做进一步的处理,使原信号复原,这种复用技术不仅适用于单模或多模光纤通信系统,同时也适用于单向或双向传输。 波分复用系统的工作波长可以从0.8μm到1.7μm,由此可见,它可以适用于所有低衰减、低色散窗口,这样可以充分利用现有的光纤通信线路,提高通信能力,满足急剧增长的业务需求。 WDM光通信结构组成 1)滤波器:在WDM系统中进行信道选择,只让特定波长的光通过,并组织其他光波长 通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中,为了选择所需的波长,一般都需依赖于其前端的可调谐滤波器。要求其有宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 2)复用器/解复用器(MUX/DEMUX):将多个光波长信号耦合到一路信道中,或使混合 的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易,其结构基本是相同的。实际上即是一种波长路由器,使某个波长从指定的输入端口到一个指定的输出端口。 实验软件介绍 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的

CMOS反相器数电实验报告

1.实验目的 1.1了解Schematic设计环境 1.2掌握反相器电路原理图输入方法 1.3掌握逻辑符号创建方法 2实验原理 在Schematic设计环境中本实验所用的主要菜单有Tool、Design、Window、Edit、Add、Check、Sheet、Options等项。其中常用菜单有: Tool菜单提供设计工具以及辅助命令。比如,lab4、lab5所使用的仿真工具ADE,就在Tool下拉菜单中。 Window菜单中的各选项有调整窗口的辅助功能。比如,Zoom选项对窗口放大(Zoom in)与缩小(Zoom out),fit选项将窗口调整为居中,redraw选项为刷新。 Edit菜单实现具体的编辑功能,主要有取消操作(Undo)、重复操作(Redo)、拉伸(Stretch)、拷贝(copy)、移动(Move)、删除(Delete)、旋转(Rotate)、属性(Properties)、选择(Select)、查找(Search)等子菜单,在以下实验中将大量应用。 Add菜单用于添加编辑所需要的各种素材,比如元件(Instance)或输入输出端点(pin)等。 3实验步骤 3.1在ic5141中设计的管理以库的方式进行。库管理器中包含有设计使用的工艺库和ic5141软件提供的一些元件库。无论画电路图还是设计版图,都和建库有关,所以首先建立一个库文件,方法如下: CIW界面点击File菜单,出现下拉菜单,选命令File→New→Library,出现“New Library”对话框,填入合适的信息,如图1所示。

新建库后面还将用于版图绘制,选第二个选项,即“Attach to an existing techfile”,单击“OK”按钮,完成新库的建立。 3.2电路原理图输入 设计库建好后,就可以开始画电路原理图,具体过程如下。 建立设计原理图:在CIW中选菜单单项File→New→Cellview,出现“Create new File”对话框,如图所示填写、选择相应的选项,点击OK按钮,进入原理如编辑器。

北邮—电磁场实验之校园场强

电磁场实验 校园内无线信号场强特性的研究 学院:信息与通信工程学院 班级: _______________________________ 姓名: _______________________________ 学号: _______________________________ 班内序号:

、实验目的 1、掌握在移动环境下阴影衰落的概念以及正确测试方法; 2、研究校园内不同环境下阴影衰落的分布规律; 3、熟练使用DS1131场强仪实地测试信号场强的方法; 4、学会对大量数据进行统计分析和处理,进而得出实验结论 二、实验原理 1、三种基本电波传播机制 影响电波在空间传播的三种最基本的机制为反射、绕射、散射。当电磁波传 播遇到比其波长大得多的物体时,发生反射。当接收机和发射机之间无线路径被尖利的边缘阻挡时会发生绕射。散射波产生于粗糙表面、小物体或其它不规则物体,比如树叶、街道标志和灯柱等都会引发散射。 2、阴影衰落 在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。 在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象,这就叫“阴影效应”或“阴影衰落”。在阴影衰落的情况下收到的信号是各种绕射,反射,散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,对任意的d值,特定位置的接受功率为随机对数正态分布。 对数正态分布描述了在传播路径上,具有相同T-R距离时,不同的随机阴影 效应。这样利用高斯分布可以方便地分析阴影的随机效应。正态分布,也叫高斯 分布,它的概率密度函数是: (??- ??)2 ???? = 2?? 应用于阴影衰落时,上式中的?表示某一次测量得到的接收功率,??表示以dB表示的接收功率的均值或中值,(表示接收功率的标准差,单位是dB。阴影 衰落的标准差同地形,建筑物类型,建筑物密度等有关,在市区的150MHz频段其典型值是5dB

北邮移动通信实验报告

信息与通信工程学院移动通信实验报告 班级: 姓名: 学号: 序号: 日期:

一、实验目的 1移动通信设备观察实验 1.1RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计 2网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)、电脑。 三、实验内容 1TD-SCDMA系统认识 TD-SCDMA是英文Time Division-Synchronous Code Division Multiple Access(时分同步码分多址)的简称,TD-SDMA是由中国提出的第三代移动通信标准(简称3G),也是ITU批准的三个3G标准中的一个,以我国知识产权为主的、被国际上广泛接受和认可的无线通信国际标准。是我国电信史上重要的里程碑。 TD-SCDMA在频谱利用率、业务支持灵活性、频率灵活性及成本等方面有独特优势。TD-SCDMA由于采用时分双工,上行和下行信道特性基本一致,因此,基站根据接收信号估计上行和下行信道特性比较容易。TD-SCDMA使用智能天线技术有先天的优势,而智能天线技术的使用又引入了SDMA的优点,可以减少用户间干扰,从而提高频谱利用率。TD-SCDMA还具有TDMA的优点,可以灵活设置

上行和下行时隙的比例而调整上行和下行的数据速率的比例,特别适合因特网业务中上行数据少而下行数据多的场合。但是这种上行下行转换点的可变性给同频组网增加了一定的复杂性。TD-SCDMA是时分双工,不需要成对的频带。因此,和另外两种频分双工的3G标准相比,在频率资源的划分上更加灵活。 图1 3G网络架构 2硬件认知 2.1 RNC设备认知 TDR3000整套移动通信设备机框外形结构如图2所示。

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告学院:信息与通信工程学院 姓名: 班级: 学号:

红外通信收发系统的设计和实现实验报告 1、课题名称 红外通信收发系统的设计与实现 2、摘要 红外通信系统的设计是光通信系统的一个重要分支,红外数据传输,使用传输介质――红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75~25um之间。本实protel软件辅助设计,分析并设计了红外通信系统的发射电路与接收电路,实现了红外信号的无线传输功能和音乐信号的收发功能。 3、关键词 红外线、收发系统、音乐芯片 3、设计任务要求; 1、基本要求: (1)设计一个正弦波振荡器,f≥1kHz,Uopp≥3v; (2)所设计的正弦波振荡器的输出信号作为红外光通信收发系统发送端的输入信号,在接收端可收到无明显失真的输入信号; (3)要求接收端LM386增益设计G=200; (4)设计该电路的电源电路(不要求实际搭建),用软件绘制完整的电路原理图(PROTEL)及印制电路板图(PCB) 2、提高要求: 利用音乐芯片产生乐曲,调制LED后发出,接收端接收信号利用喇叭将发送的乐曲无失真的播放出来。 3、探究环节: 探索其它红外光通信收发系统的应用实例,数字调制的解决的方案,给出应用方案。 4、设计思路、总体结构框图;

1、设计思路 系统主要由信号产生电路,红外光发射系统,红外光接收系统三个模块完成基本实验要求,其中信号产生电路分别由信号发生器和音乐芯片代替,电信号经过发生系统转化为红外光信号,经接收系统接受后,光信号转化为电信号,再通过喇叭将其转化为语音信号,实现红外光通信的全过程。 首先主要用信号发生器发出电信号,微弱的电信号经过一个分压式共射电路适当放大,并通过LED红外发送管转化为光信号发送。 信号经接收管接收后,通过运放电路得到较高的输出功率,驱动喇叭发出声音。利用放大器LM386,调节电位器改变其增益,驱动喇叭得到所需功率。再将音乐芯片替代信号发生器重复上述过程即可驱动喇叭发出音乐芯片的声音(此实验为三声门铃声) 2.总体框架图 1、信号的产生 实验中使用了音乐芯片KD-9300或者LX-9300来完成。信号产生也可以使用RC振荡器构成,但信号的幅度不宜过大。 2、红外光发送模块的设计 设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大容易毁坏发光管。(要注意芯片的接法以及发送电路的连接。) 3、红外光接收模块的设计 1)高通滤波器:红外接收的二极管都是光敏二极管,这样普通光对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。 2)功率放大器:利用音频功率专用放大器LM386,可以得到50~200的增益,确保驱动喇叭。 所以设计框图如下 光通信收发系统原理图

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

北邮场强仪实验报告

北邮场强仪实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电磁 场与电磁波实验报告 班级 姓名: 学号: 姓名: 学号: 时间:2015年5月3日 校园内无线信号场强特性的研究 一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验内容 无线通信系统是由发射机,发射天线,无线信道,接收机,接收天线所组成。对于接收者,只有处在发射信号的覆盖区内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰。 (1) 大尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接收功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接收信号功率随距离对数衰减,这种模型已被广泛地采 用。对任意的传播距离,大尺度平均路径损耗表示式为: PL(d )[dB] PL(d )10n lg(d / d ) (5-1) 即平均接收功率为:

P (d )dBm PdBm PL(d )10n log(d / d ) P (d )dBm10n log(d / d ) (5-2) 其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;d 0为近地参考距离;d 为发射机与接收机(T-R)之间的距离。公式(5-1)和(5-2)中的横杠表示给定值 d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可表示为斜率 10ndB/10 倍程的直线。n 值取决于特定的传播环境。例如在自由空间,n 为 2,当有阻挡物时,n 比 2 大。决定路径损耗大小的首要因素是距离,此外,它还与接收点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念。中值是使实测数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。人们根据不同的地形地貌条件,归纳总结出各种电波传播模型。常见的电波传播模型有: 1) 自由空间模型 自由空间模型假定发射天线和接收台都处在自由空间。自由空间一是指真空,二是指发射天线与接收台之间不存在任何可能影响电波传播的物体,电波是以直射线的方式到达移动台的。自由空间模型计算路径损耗的公式是: Lp 20Lgd 20Lgf (5-3) 其中 Lp 是以 dB 为单位的路径损耗,d 是以公里为单位的移动台与基站之间的距离,f 是以 MHz 为单位的移动工作频点或工作频段的频率。 空气的特性可近似为真空,因此当发射天线与移动台距离地面都较高时,可以近似使用自由空间模型来估计路径损耗。 2) 布灵顿模型 布灵顿模型假设发射天线和移动台之间的地面时理想平面大地,并且两者之间的距离 d 远大于发射天线的高度 ht 或移动台的高度 hr,此时的路径损耗计算公式为:Lp 120 40Lgd 20Lgt 20Lghr (5-4) 其中距离 d 的单位是公里,天线高度 ht 及 hr 的单位是米,路径损耗 Lp 的单位是dB。系统设计时一般把接收机高度按典型值 hr= 处理,这时的路径损耗计算公式为:Lp 40Lgd 20Lght (5-5) 按自由空间模型计算时,距离增加一倍时对应的路劲损耗增加 6dB;按布灵顿模型计算时,距离增加一倍时对应的路径损耗要增加 12dB。 3) EgLi 模型 前述的自由空间模型及布灵顿模型都是基于理论分析得出的计算公式。EgLi模型则是从大量实测结果中归纳出来的中值预测公式,属于经验模型,其计算式为:Lp 88 40Lgd 20Lght 20Lghr 20Lgf G (5-6) 其中路径损耗 Lp 的单位是 dB,距离 d 的单位是公里,天线高度 ht 及 hr 的单位是米,工作频率 f 的单位是 MHz,地形修正因子 G 的单位是 dB。G 反应了地形因素对路径损耗的影响。 EgLi 模型认为路径损耗同接收点的地形起伏程度h 有关,地形起伏越大,则路径损耗也越大。当h 用来测量时,可按下式近似的估计地形的影响: 若将移动台的典型高度值 hr= 代入 EgLi 模型,则有: Lp 40Lgd 20Lght 20Lgf G (5-8) 4) Hata- Okumu ra 模 型 H ata- Okumu

数据结构 哈夫曼编码 实验报告

数据结构实验报告 实验名称:实验3——树(哈夫曼编/解码器) 学生姓名: 班级: 班内序号: 学号: 日期:2011年12月5日 1.实验要求 利用二叉树结构实现哈夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频 度,并建立哈夫曼树 2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的 编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输 出。 4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出 译码结果。 5、打印(Print):以直观的方式打印哈夫曼树(选作) 计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果。 并用I love data Structure, I love Computer。I will try my best to study data Structure.进行测试。 2. 程序分析 哈夫曼树结点的存储结构包括双亲域parent,左子树lchild,右子树rchild,还有字符word,权重weight,编码code 对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。统计每个字符出现的次数作为叶子的权重,统计次数可以根据每个字符不同的ASCII码,根据叶子结点的权重建立一个哈夫曼树。 建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为1。由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树为基础的。同时注意递归函数中能否直接对结点的编码域进行操作。 编码信息只要遍历字符串中每个字符,从哈夫曼树中找到相应的叶子结点,取得相应的编码。最后再将所有找到的编码连接起来即可。 译码则是将编码串从左到右逐位判别,直到确定一个字符。这就是哈夫曼树的逆过程。

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

相关文档
最新文档