专题09 极坐标与参数方程、不等式选讲-2020届高考数学备课锦囊(人教版)

专题09 极坐标与参数方程、不等式选讲-2020届高考数学备课锦囊(人教版)
专题09 极坐标与参数方程、不等式选讲-2020届高考数学备课锦囊(人教版)

专题九极坐标与参数方程、不等式选讲

目录

一、考情分析 (1)

二、两年高考试题展示 (1)

三、知识、方法、技能 (10)

(一)极坐标与参数方程 (10)

(二)不等式选讲 (13)

四、延伸拓展 (15)

(一)直线参数方程及其应用分 (15)

(二)绝对值不等式的最值 (22)

一、考情分析

1.高考对极坐标与参数方程的考查,重点是极坐标、参数方程与直角坐标的互化及应用,难度中等以下. 2.高考对不等式选讲的考查,重点是含有2个绝对值的不等式的解法及根据不等式恒成立或能成立求参数范围,此外不等式的证明也是考查热点.

二、两年高考试题展示

1. 【2019全国卷Ⅰ】在直角坐标系xOy中,曲线C的参数方程为

2

2

2

1

1

4

1

t

x

t

t

y

t

?-

=

??+

?

?=

?+

?

(t为参数).以坐标原点O

为极点,x轴的正半轴为极轴建立极坐标系,直线l

的极坐标方程为2cos sin110

ρθθ

++=.

(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.

【解析】(1)因为

2

2

1

11

1

t

t

-

-<≤

+

,且

()

2

222

2

2

22

14

1

211

y t t

x

t t

??

-

??

+=+=

?

?+

????+

所以C 的直坐标方程为2

2

1(1)4

y x x +=≠-. l 的直角坐标方程为23110x y ++=.

(2)由(1)可设C 的参数方程为cos ,

2sin x y αα

=??

=?(α为参数,ππα-<<).

C 上的点到l 的距离为π4cos 11

|2cos 23sin 11|377

ααα?

?-+ ?++??=.

当2π3α=-

时,π4cos 113α?

?-+ ??

?取得最小值7,故C 上的点到l 距离的最小值为7.

2. 【2019全国卷Ⅰ】已知a ,b ,c 为正数,且满足abc =1.证明: (1)

222111

a b c a b c

++≤++; (2)3

3

3

()()()24a b b c c a +++≥++.

【解析】(1)因为2

2

2

2

2

2

2,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有

222111

ab bc ca a b c ab bc ca abc a b c

++++≥++=

=++.

所以

222111

a b c a b c

++≤++. (2)因为, , a b c 为正数且1abc =,故有

3333333()()()3()()()a b b c c a a b b c a c +++++≥+++ =3(+)(+)(+)a b b c a c

3(2)(2)(2)ab bc ac ≥???

=24.

所以3

3

3

()()()24a b b c c a +++++≥. 3.【2018全国卷I 】在直角坐标系

中,曲线的方程为

.以坐标原点为极点,轴正半轴为

极轴建立极坐标系,曲线的极坐标方程为

(1)求的直角坐标方程;

(2)若与有且仅有三个公共点,求的方程.

【解析】(1)由,得的直角坐标方程为

(2)由(1)知是圆心为,半径为的圆.

由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.

当与只有一个公共点时,到所在直线的距离为,所以,故或.

经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.

当与只有一个公共点时,到所在直线的距离为,所以,故或.

经检验,当时,与没有公共点;当时,与没有公共点.

综上,所求的方程为.

题.

4.【2018全国卷I】已知.

(1)当时,求不等式的解集;

(2)若时不等式成立,求的取值范围.

【解析】(1)当时,,即

故不等式的解集为.

(2)当时成立等价于当时成立.若,则当时

;若,的解集为,所以,故.综上,的取值范围为.

5.【2019全国卷Ⅱ】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=

3

θπ

时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 233

ρπ

== 由已知得||||cos

23

OP OA π

==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ??

-

== ??

?

, 经检验,点(2,)3

P π在曲线cos 23ρθπ??

-

= ???

上. 所以,l 的极坐标方程为cos 23ρθπ??

-

= ???

. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ??

????

所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ??=∈????

π.

6.【2019全国卷Ⅱ】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---. 当1x <时,2

()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞.

(2)因为()=0f a ,所以1a ≥.

当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.

7.【2018年理数全国卷II 】在直角坐标系中,曲线的参数方程为(为参数),直线的参

数方程为

(为参数).

(1)求和的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为

,求的斜率.

【解析】(1)曲线的直角坐标方程为.

当时,的直角坐标方程为,

时,的直角坐标方程为

(2)将的参数方程代入的直角坐标方程,整理得关于的方程

.①

因为曲线截直线所得线段的中点

在内,所以①有两个解,设为,,则

又由①得,故,于是直线的斜率.

点睛:直线的参数方程的标准形式的应用

过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是.(t 是参数,t 可正、可负、可为0)

若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则

(1)M 1,M 2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α). (2)|M 1M 2|=|t 1-t 2|.

(3)若线段M 1M 2的中点M 所对应的参数为t ,则t =,中点M 到定点M 0的距离|MM 0|=|t |=.

(4)若M 0为线段M 1M 2的中点,则t 1+t 2=0. 8.【2018全国II 】设函数

(1)当时,求不等式的解集;

(2)若

,求的取值范围.

【解析】(1)当时,

可得的解集为.(2)等价于.而,

且当

时等号成立.故

等价于

.由

可得

,所以的取值范围是

9.【2019全国卷Ⅲ】如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π

,(2,

)4

C 3π,(2,)

D π,弧?AB ,?BC ,?CD 所在圆的圆心分别是(1,0),(1,)2

π,(1,)π,曲线1M 是弧?AB ,曲线2M 是弧?BC ,曲线3M 是弧?CD . (1)分别写出1M ,2M ,3M 的极坐标方程;

(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =

,求P 的极坐标.

【解析】(1)由题设可得,弧???,,AB BC

CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.

所以1M 的极坐标方程为π2cos 04ρθθ??=≤≤

??

?,2M 的极坐标方程为π

3π2sin 44ρθθ??=≤≤ ???

,3M 的极坐标方程为3π2cos π4ρθθ??

=-≤≤

???

. (2)设(,)P ρθ,由题设及(1)知

若π04θ≤≤

,则2cos 3θ=π

6

θ=; 若π3π44θ≤≤,则2sin 3θ=π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos 3θ-=5π6

θ=.

综上,P 的极坐标为π3,

6?? ??

?或π3,3?? ???或2π3,3?? ???或5π3,6?? ??

?.

10.【2019全国卷Ⅲ】设,,x y z ∈R ,且1x y z ++=. (1)求2

2

2

(1)(1)(1)x y z -++++的最小值; (2)若2

2

2

1

(2)(1)()3

x y z a -+-+-≥

成立,证明:3a ≤-或1a ≥-. 【解析】(1)由于2

[(1)(1)(1)]x y z -++++

222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-

222

3(1)(1)(1)x y z ??≤-++++??,

故由已知得222

4

(1)(1)(1)3

x y z -++++≥, 当且仅当x =

53,y =–13,1

3

z =-时等号成立. 所以222

(1)(1)(1)x y z -++++的最小值为43

.

(2)由于

2[(2)(1)()]x y z a -+-+-

222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--

222

3(2)(1)()x y z a ??≤-+-+-??,

故由已知2

2

2

2

(2)(2)(1)()3

a x y z a +-+-+-≥,

当且仅当43a x -=

,13a y -=,22

3

a z -=时等号成立. 因此2

2

2

(2)(1)()x y z a -+-+-的最小值为2

(2)3a +.

由题设知2(2)1

33

a +≥,解得3a ≤-或1a ≥-.

11.【2018全国卷Ⅲ】在平面直角坐标系中,的参数方程为(为参数),过点

且倾斜角为的直线与

交于两点.

(1)求的取值范围;

(2)求中点的轨迹的参数方程.

【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.

(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满

足所以点的轨迹的参数方程是为参数,.12.【2018全国卷Ⅲ】设函数.

(1)画出的图像;

(2)当,,求的最小值.

【答案】(1)见解析(2)

【解析】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可.

(2)结合(1)问可得a ,b 范围,进而得到a+b 的最小值

详解:(1) 的图像如图所示.

(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅

时,

成立,因此

的最小值为.

点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档

三、知识、方法、技能 (一)极坐标与参数方程

1.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:???

??

x ′=λ·x λ>0,y ′=μ·

y μ>0

的作用下,点P (x ,y )对应

到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.

2.应用伸缩变换公式时应注意两点:(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式

?

????X =ax (a >0),

Y =by (b >0)建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.

3.极坐标与极坐标系的概念

在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.

4.极坐标与直角坐标的互化

设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:

?????

x =ρcos θ,

y =ρsin θ或?

?

???

ρ2=x 2+y 2,

tan θ=y x x ≠0

.

这就是极坐标与直角坐标的互化公式. 将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式x =ρcos θ,y =ρsin θ即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =ρcos θ,y =ρsin θ以及ρ=x 2+y 2,tan θ=y

x

(x ≠0).

5.极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.

6.常见曲线的极坐标方程

7.

适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.

8.已知极坐标系方程讨论位置关系时,可以先化为直角坐标方程;(2)在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.

9.常见曲线的参数方程和普通方程

10.

(1)利用解方程的技巧求出参数的表示式,然后代入消去参数;

(2)利用三角恒等式消去参数;

(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.

11.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.

12.已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.

13.圆与椭圆的参数方程的异同点:①圆与椭圆的参数方程,实质都是三角代换,有关圆或椭圆上的动点距离的最大值、最小值以及取值范围的问题,通常利用圆或椭圆的参数方程转化为三角函数的最大值、最小值求解.②圆的参数方程中的参数与椭圆的参数方程中的参数的几何意义不同,圆的参数方程中的参数是圆心角,椭圆的参数方程中的参数是离心角,只有椭圆上的点在坐标轴上时,离心角才等于圆心角.

14.在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷

的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.

(二)不等式选讲

15.|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;

③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 注意求不等式的解集要把结果用集合或区间表示.

16.(1)如果a ,b 是实数,则|a |-|b |≤|a ±b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.

(2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.

17.求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.

利用绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |求函数最值,要注意其中等号成立的条件. 18.不等式证明的方法 (1)比较法: ①作差比较法:

知道a >b ?a -b >0,a b 只要证明a -b >0即可,这种方法称为作差比较法. ②作商比较法:

由a >b >0?a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明a

b >1即可,这种方法称为作商比

较法. (2)综合法:

从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法. (3)分析法:

从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.

(4)反证法和放缩法:

①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.

②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.

(5)数学归纳法:

一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:

①证明当n=n0时命题成立;

②假设当n=k (k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.

在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.

19.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.

20.证明不等式的方法和技巧:

(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.

(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据. (3)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.

(4)柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.

四、延伸拓展

(一) 直线参数方程及其应用

一、基本结论

1.直线参数方程的标准式及t 的几何意义

(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是

??

?+=+=α

α

sin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)

P 0P=t ∣P 0P∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,

则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣

(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=

221t t +,∣P 0P 3∣=2

21t

t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2.直线参数方程的一般式 过点P 0(00,y x ),斜率为a

b

k =

的直线的参数方程是 ?

?

?+=+=bt y y at

x x 00 (t 为参数)

二、问题探究

1.直线由点和方向确定

求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过

P 0作x 轴的平行线,两条直线相交于Q 点.

1)当P P 0与直线l 同方向或P 0和P 重合时,

P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数,

又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α

即??

?+=+=α

α

sin cos 00t y y t x x 是所求的直线l 的参数方程

∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方;

特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为?

??=+=00y y t x x

④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;

l

⑥当t<0时,点P在点P0的左侧;

2.直线l上的点与对应的参数t是不是一

对应关系?

我们把直线l看作是实数轴,

以直线l向上的方向为正方向,以定点P0

为原点,以原坐标系的单位长为单位长,

这样参数t便和这条实数轴上的点P建立了

一一对应关系.

3.P1、P2为直线l上两点所对应的参数分别为t1、t2,则P1P2=?,∣P1P2∣=?

P1P2=P1P0+P0P2=-t1+t2=t2-t1,∣P1P2∣=∣ t2-t1∣4.若P0为直线l上两点P1、P2的中点,P1、P2所对应的

参数分别为t1、t2,则t1、t2之间有何关系?

根据直线l参数方程t的几何意义,

P1P=t1,P2P=t2,∵P0为直线l

上两点P1、P2的中点,∴|P1P|=|P2P|

P1P=-P2P,即t1=-t2, t1t2<0

一般地,若P1、P2、P3是直线l上的点,

所对应的参数分别为t1、t2、t3,P3为P1、P2的中点

则t3=

22

1t

t

(∵P1P3=-P2P3, 根据直线l参数方程t的几何意义,∴P1P3= t3-t1, P2P3= t3-t2, ∴t3-t1=-(t3-t2,) )

5.参数方程与普通方程的互化

(1)化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意

义,说明∣t∣的几何意义.

解析:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33

设倾斜角为α,tg α=-33,α= π6

5

, cos α =-23, sin α=21

1l 的参数方程为???

???

?

=

-=t y t x 2

1

23

1 (t 为参数)

t 是直线1l 上定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的数量.由???

???

?

=-=-(2) 21(1)

23

1t y t x (1)、(2)两式平方相加,得2

22)1(t y x =+-

∣t∣=22)1(y x +-∣t∣是定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的长. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义. (2)化直线2l 的参数方程?

??+=+-= t 313y t

x (t 为参数)为普通方程,并求倾斜角,

说明∣t∣的几何意义.

解析:原方程组变形为???=-=+ (2) t

31 (1)

3y t x (1)代入(2)消去参数t ,

得)3(31+=

-x y (点斜式) 可见k=3, tg α=3,倾斜角α=

3

π

普通方程为 01333=++-y x

(1)、(2)两式平方相加,得2

2

2

4)1()3(t y x =-++∴∣t∣=2

)1()3(2

2-++y x

∣t∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程

为???

????=-=t

y t x 21231即?????=+=ππ65

sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为??

?+=+-= t

313y t x 是非标准的形式,12+(3)2

=4≠1,此时t 的几何意义是有向线段

M M 0的数量的一半.

你会区分直线参数方程的标准形式? 6.把直线的参数方程化为标准形式 (1)直线的参数方程??

?+=+= t

331y t

x 能否化为标准形式?

是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)

??

?+=+= t 331y

t x ????

????+++=+++=))3(1()3(13 3))3(1()3(11122222

222t y t x 令t =t 22)3(1+

得到直线l 参数方程的标准形式???

????'+='+=t 233211y t x t 的几何意义是有向线段 M M 0的数量.

(2)直线非标准参数方程的标准化

一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. ?

?

?+=+=bt y y at

x x 00 (t 为参数),

斜率为a

b

tg k =

=α (1) 当2

2

b a +=1时,则t 的几何意义是有向线段M M 0的数量. (2) 当2

2

b a +≠1时,则t 不具有上述的几何意义.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

2018年高考备考极坐标与参数方程专题

专题1 极坐标与参数方程 【基本方法】 1.两大坐标系:直角坐标系(普通方程、参数方程);极坐标系(极坐标方程); 2.基本转化公式: cos sin x y ρθ ρθ = ? ? = ? , 222 (0) tan x y x y x ρ θ ?=+ ? ≠ ? = ?? ; 3.参数方程: () () x f t y g t = ? ? = ? ,消去参数t得关于,x y的普通方程,引入参数t得参数方程; 4.直线的参数方程0 0cos sin x x t y y t αα =+ ? ? =+ ? (t为参数),注意参数t的几何意义;5.用转化法解决第(1)问,用图形法解决第(2)问. 【三年真题】 1.(2017全国I)在直角坐标系xOy中,曲线C的参数方程为 3cos, sin, x y θ θ = ? ? = ? (θ为参数),直线l的 参数方程为 4, 1, x a t t y t =+ ? ? =- ? (为参数). (1)若1 a=-,求C与l的交点坐标; (2)若C上的点到l a. 2.(2016全国I)在直角坐标系xOy中,曲线C1的参数方程为 cos 1sin x a t y a t = ? ? =+ ? (t为参数, a>).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ. (I)说明C1是哪种曲线,并将C1的方程化为极坐标方程; (II)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.

3.(2015全国I)在直角坐标系xOy 中,直线1C : x =-2,圆2C :()()22 121x y -+-=,以 坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (I)求1C ,2C 的极坐标方程; (II)若直线3C 的极坐标方程为()4 θρπ =∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【自主研究】 4.(2016届佛山二模)已知曲线C 的极坐标方程为4sin()3 ρθπ =-,以极点为原点, 极轴为x 轴正半轴,建立直角坐标系xOy . (I)求曲线C 的直角坐标方程; (II)若点P 在曲线C 上,点Q 的直角坐标是(cos ,sin )?? (其中)?∈R ,求PQ 的最大值. 5.(2016届河南八市质检)在直角坐标系xOy 中,曲线C 的参数方程为333x y θ θ ???=??=cos sin (θ为参 数),以原点O 为起点,x 轴的正半轴为极轴,建立极坐标系,已知点P 的极坐标为(2,-3 π ), 直线l 的极坐标方程为ρcos(3 π +θ)=6. (Ⅰ)求点P 到直线l 的距离; (Ⅱ)设点Q 在曲线C 上,求点Q 到直线l 的距离的最大值. 6.(2016年全国卷II )在直角坐标系xOy 中,圆C 的方程为2 2 (6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t α α=??=? (t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的 斜率.

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

高考数学分类汇编-极坐标与参数方程

高考数学分类汇编-极坐标与参数方程 题型160 极坐标方程化直角坐标方程 1. (安徽理7)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ). A. ()0θρ=∈R 和cos 2ρθ= B. ()π 2 θρ=∈R 和cos 2ρθ= C. ()π 2 θρ= ∈R 和cos 1ρθ= D. ()0θρ=∈R 和cos 1ρθ= 2.(天津理11)已知圆的极坐标方程为4cos ρθ=,圆心为C ,点P 的极坐标为π4,3 ?? ??? ,则 CP = . 3. (重庆理15)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标 系.若极坐标方程为cos 4ρθ=的直线与曲线2 3 x t y t ?=??=??(t 为参数)相交于A B ,两点,则AB = . 4.(湖北理16) 在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b ? ?=?? =? (?为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点 O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为 sin 4 π ρθ+ = (m 为非零数) 与b ρ=.若直线l 经过椭圆C 的焦点,且与员O 相切,则椭圆C 的离心率为 . 5.(福建理21) 在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已 知点A 的极坐标为π4???,直线l 的极坐标方程为πcos 4a ρθ? ?-= ???,且点A 在直 线l 上.

(1)求a 的值及直线l 的直角坐标方程; (2)圆C 的参数方程为)(sin , cos 1为参数a a y a x ? ? ?=+=,试判断直线l 与圆C 的位置关系. 6.(2014 重庆理 15)已知直线l 的参数方程为23x t y t =+??=+?(t 为参数),以坐标原点为极 点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 ()2sin 4cos 00,0π2πρθθρ-=<,则直线l 与曲线C 的公共点的极径ρ=________. 7.(2014 天津理 13)在以O 为极点的极坐标系中,圆4sin ρθ=和直线sin a ρθ=相交于,A B 两点.若AOB △是等边三角形,则a 的值为___________. 8.(2014 陕西理 15)C.(坐标系与参数方程选做题)在极坐标系中,点π2,6?? ???到直线 πsin 16ρθ? ?-= ?? ?的距离是 . 9.(2014 湖北理 16)(选修4-4:坐标系与参数方程) 已知曲线1C 的参数方程是??? ??= =33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为________. 10.(2014 广东理 14)(坐标与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 . 11.(2014 安徽理 4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐 标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是1 3x t y t =+??=-?(t 为参数), 圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ). A. B. C. D.

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

-全国卷极坐标与参数方程高考题汇编

极坐标与参数方程(全国卷高考题) 1、(2011)坐标系与参数方程:在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y αα =?? =+?(α为参数),M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲 线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 π θ=与C 1的异于 极点的交点为A ,与C 2的异于极点的交点为B ,求AB . 解:(I )设P(x,y),则由条件知M( 2 ,2Y X ).由于M 点在C 1上,所以 ??? ???????????+=?=sin 222,cos 22y x 即 ? ?? ????+=?=sin 44cos 4y x 从而2C 的参数方程为4cos 44sin x y α α =??=+?(α为参数) (Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=。 射线3 π θ=与1C 的交点A 的极径为14sin 3 π ρ=, 射线3 π θ= 与2C 的交点B 的极径为28sin 3 π ρ=。 所以21||||AB ρρ-== 2、(2012)已知曲线C 1的参数方程是??? x =2cos φ y =3sin φ(φ为参数),以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的 顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π 3) (Ⅰ)求点A 、B 、C 、D 的直角坐标; (Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。 【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2, )3636 ππππ

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

极坐标与参数方程高考题含答案

极坐标与参数方程高考题 1.在直角坐标系xOy 中,直线1:2C x =-,圆()()2 2 2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()π R 4 θρ=∈,设23,C C 的交点为,M N ,求2C MN ? 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. (Ⅱ)将= 4 π θ代入2 2cos 4sin 40ρρθρθ--+=,得 240 ρ-+=,解得1ρ=, 2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN V 的面积o 1 1sin 452 ?=12 . 2.已知曲线194:2 2=+y x C ,直线???-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为 |4cos θ+3sin θ-6|,

则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α= 43 . 当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小 值,. 3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐 标方程为ρ=2cos θ02πθ?? ∈???? ,, (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标. 解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1).可得C 的参数方程为: x 1cos sin y θ θ=+??=? (0≤θ ≤π). (2)设D(1+cos θ,sin θ).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆. 因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan θ,θ= 3 π .故D 的 直角坐标为32(. 4.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程; (2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.

相关文档
最新文档