量子力学主要知识点复习资料

量子力学主要知识点复习资料
量子力学主要知识点复习资料

大学量子力学主要知识点复习资料,填空及问答部分

1能量量子化

辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε

2.波粒二象性

波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2

λ

h

m p =

=v

3.波函数及其物理意义

在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程

0),()](2[),(2

2=-?+??t r r V m

t r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅

表示波动在空间一点(x ,y,z )上的强弱。所以,

该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ

波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义

常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )

附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附

件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1

必然有以下归一化条件 5. 力学量的平均值

2|(,,)|x y z ψ2

|(,,)|x y z x y z ψ???x y z τ?=??

?2

|(,,)|1

x y z dxdydz ψ∞=?

(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

既然 表示 粒子出现在点 附件的概率,那么粒子坐标的平均值,例如x 的平均值x __

,由概率论,有 又如,势能V 是 r 的函数:)(r V

,其平均值由概率论,

可表示为?

+∞

-=r d r r V r V 3*)()()(

ψψ?+∞

-=r

d r r V r V 3*)()()(

ψψ

再如,动量 的平均值为:

为什么不能写成 因为x 完全确定时p 完全不确定,x 点处的动量没有意义。 能否用以坐标为自变量的波函数计算动量的平均值? 可以,但需要表示为p __

r d r p

r ?+∞

-=

3*)(?)(

ψψ

其中 为动量 的算符

6.算符

量子力学中的算符表示对波函数(量子态)的一种运算

如动量算符?-≡

i p

? 能量算符E

t

i E ?≡??=

动能算符22

2??-=m

T

动能平均值r d r T r T ?

+∞

-=3*)(?)(

ψψ 角动量算符p

r l ??

?= 角动量平均值r d r l r l ?

+∞

-=3

*

)(?)( ψψ 薛定谔方程

),()],(2[),(2

2t r t r V m

t r t i ψψ+?-=??

算符 ,被称为哈密顿算符, 7.定态

数学中,形如 的方程,称为本征方程。其中 方程 称为能量本征方程,

被称为能量本征函数, E 被称为能量本征值。 当E 为确定值,),(t r ψ=)(r E ψ)exp(Et i

-

拨函数所描述的状态称为定态,处

22|()||(,,)|r x y z ψψ=),,(z y x r =

23

*3|()|()(),

x r xd r r x r d r ψψψ+∞

+∞

-∞

-∞

==?

?3

d r dxdydz

=*3()(),

p p p p d p ??+∞

-∞

=??

+∞

-=

r

d r r p r p 3*)()()(

ψψ?-≡ i p ?p

?Af af =?A →算符,f →本征函数,a →本征值2

2?()2H V r m =-?+22?[()]()()()()2E E E E V r r E r H r E r m ψψψψ-?+=→=)(r E ψ

于定态下的粒子有以下特征:

粒子的空间概率密度不随时间改变,任何不显含t 的力学量的平均值不随时间改变,他们的测值概率分布也不随时间改变。 8.量子态叠加原理

但一般情况下,粒子并不只是完全处于其中的某一本征态,而是以某种概率处于其中的某一本征态。换句话说,粒子的状态是所有这些分立状态的叠加,即

)()(x c x n n

n ψψ∑=

具有),(中发现粒子处于态)(表示在态||2x x c n n ψψ的概率能量n E

9. 宇称

若势函数V (x )=V (-x ),若)(x ψ是能量本征方程对于能量本征值E 的解,则)(x -ψ也是能量本征方程对于能量本征值E 的解

具有确定的宇称。无简并,则若的解,如果能量本征值是能量本征方程对应于设)()(),()()(x x x V x V E

x ψψψ-=

10.束缚态

通常把在无限远处为零的波函数所描写的状态称为束缚态 11. 一维谐振子的能量本征值 12. 隧穿效应

量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过比它们能量大的势垒的现象。这是因为根据量子力学,微观粒子具有波的性质,而有不为零的概率穿过位势障壁。 又称隧穿效应,势垒贯穿。按照经典理论,总能量低于势垒是不能实现反应的。但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。它取决于势垒高度、宽度及粒子本身的能量。能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。这就是隧道效应。例如H+H2低温下反应,其隧道效应就较突出。 13. 算符对易式

一般说来,算符之积不满足交换律,即 ,由此导致量子力学中的一个基

:()()()()()()()()()cos()cos()cos()sin()sin()sin()P P x x P x x x P x x x x P x x x P x x x ψψψψψψψψψ=-=-==-=-→=-=→=-=-定义空间反演算符为如果或,称具有确定的偶宇称或奇宇称,如偶宇称奇宇称注意:一般的函数没有确定的宇称.,2,1,0,)2/1(???=+==n n E E n ω A B B A ????≠

本问题:对易关系 对易式 ,通常 坐标对易关系

角动量的对易式

,0]?,?[,?]?,?[,?]?,?[,?]?,?[,0]?,?[,?]?,?[,?]?,?[,?]?,?[,0]?,?[,

0],?[,],?[,],?[,],?[,0],?[,],?[,],?[,],?[,0],?[=-====-=-====-====-=-===z y

x y z y x z x z y y y z x y y z x z y x x x y z z y y y x x x p l p i p l p i p l p i p l p l p i p l p i p l p i p l p l z l x i y l y i x l x i z l y l z i x l y i z l z i y l x l

y

x z x z y z y x z

z y y x x l i l l l i l l l i l l l l l l l l ?]?,?[,?]?,?[,?]?,?[,0]?,?[,0]?,?[,0]?,?[ ======

14.厄密算符平均值的性质

,?~??,?*的厄密共轭算符称为的共轭转置算符则A A A A ?。=即记为*

~??,?A A A ++先转置,再共

轭。

**

?~

?ψτ??τψA d A d ?

?= 体系的任何状态下,其厄密算符的平均值必为实数,在任何状态下平均值为实的算符必为厄

米算符,实验上可观测量相应的算符必须是厄米算符。 厄密算符的属于不同本征值的本征函数彼此正交。 15. 量子力学关于算符的基本假设

1、微观粒子的状态由波函数 描写。

2、波函数的模方 表示 t 时刻粒子出现在空间点(x,y,z )的概率。

3、力学量用算符表示。

4、波函数的运动满足薛定格方程

A B B A B A B A ????]?,?[,??-≡?设和0]?,?[≠B A

??

?≠===βαβ

αδααββ,0,]?,[ i i p z y x ,,,=βα0]?,?[,0]?,?[,0]?,?[,????222

2222===++=z y x z

y x l l l l l l l l l l 有令),(t r

ψψ=2|),(|t r

ψ2

22

2?(,)()(,)(,),2?(,)2i r t V r t H r t t m

H

V r t m

ψψψ?=-?+=?=-?+→哈密顿算符

16. 算符的本征方程,本征值与本征函数

数学中,形如 的方程,称为本征方程。其中

3

*其中,,)(均可展开如下:

状态完备态矢,系统的任何能构成一组正交归一都是不简并的,则,果的本征态与本征值,如?是算符和dr a a x A A A n n n n

n n n n n ?

∑=

=

?ψψψψψψψ17. 不确定度关系的严格表达

18. 两个算符有共同本征态的条件

两个算符对易,即0]?,?[=B A

19. 力学量完全集

若算符的本征值是简并的,仅由其本征值无法惟一地确定其本征态。若要惟一地确定其本征态,必须再加上另一些与之对易的算符的本征值才可。例如,仅由

的本征值不能确定体

系状态,必再加上

的本征值才能确定体系状态。这样,为了完全确定一个体系的状态,

我们定义力学量完全集。

定义:如果有一组彼此独立而且相互对易的厄米算符

,它们只有一组共同完备本

征函数集,记为

可以表示一组量子数,给定一组量子数后,就完全确定了体系

的一个可能状态,则称

为体系的一组力学量完全集。

20. 力学量完全集共同本征态的性质

?Af af =?A

→算符,f →本征函数,a →本征值?,???n n n n n A A A n A A A A A

A ψψψψψψ==满足的和不止一组可能有组,因此此式称为的本征方程,称为的一个本征值,称为的一个本征态。

若能级简并

21. 守恒量

对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变,所以把A 称为量子体系的一个守恒量。

22.狄拉克符号,内积及其表示形式,算符向左作用

把希尔伯特空间一分为二,互为对偶的空间,就是狄拉克符号的优点。用右矢|α>表示态矢,左矢<α|表示其共厄矢量,<α|β>是内积,<α|α>大于等于0,称为模方。|β><α|是外积。

*

的共轭态量子态左矢|;代表量子态右矢|ψ

ψψψψ→→<→>→

是力学量完全集若k ψ )?,?(是如球谐函数,||的本征态,则2z lm k l l Y k F >>→ψ

>>→lm Y lm ||的共同本征函数,

采用狄拉克符号表示量子态是,都只是一个抽象的态矢,未涉及任何具体的表象。

∑∑><===>

k k k

k k P I P I k k 为投影算符||,或||

算符向左作用

23.角动量平方和角动量z 分量的共同本征函数

?

θπ?θim m l m

lm z e

P m l m l l Y l l )(cos )!

()!(412)

1(),(的共同本征函数为

?和?这样,2+-+-= ???=-+-???-=,2,1,0,,1,,1,其中l l l l l m

?

??=-+-???-=?????=+=,2,1,0,

,1,,1,?)1(?足称为球谐函数,它们满22l l l l l m Y m Y l Y l l Y l Y lm lm z lm lm lm 注意量纲

注意,推导过程计算题有可能要考 24. 氢原子的能量本征值与能级简并度

,,3,2,1,

121222224???=-=-==n n a e n

e E E n

μ

简并的氢原子的能级是2n

25. 正常Zeeman 效应

原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。 26. 电子自旋

电子的基本性质之一。电子内禀运动或电子内禀运动量子数的简称

自旋不是机械的自转

27关于电子自旋的Stern-Gerlach 实验

Stern-Gerlach experiment 首次证实原子在磁场中取向量子化的实验,是由O. 斯特恩和W.革拉赫在1921年完成的。实验装置如图斯特恩-革拉赫实验装置示意图示。使银原子在电炉O 内蒸发,通过狭缝形成细束, 经过一个抽成真空的不均匀的磁场区域(磁场垂直于束方向),最后到达照相底片P 上。在显像后的底片上现了两条黑斑,表示银原子在经过不均匀磁场区域时成了两束。

实验上高温炉中的Ag 原子处于高压,从高温炉中出来之后迅速冷却,处于基态,磁量子数为零,似乎不该偏转,因此原子除了轨道磁矩外,还有其他磁矩,即自旋磁矩。 28碱金属原子光谱双线结构

自旋。

性。其根源正是电子的果,而是原子的故有特外界因素作用的结效应不同,此现象并非与。0.589,6.589两条谱线构成:是由行观测,发现它实际上用高分辨率的光谱仪进,3.589的跃迁产生一条黄线33对钠原子,21Zeeman nm nm nm s p ===→λλλ

29. 量子跃迁与选择定则

1|能跃迁到第一激发态只0|振子从基态在外电场的激发下,谐>>

这称为跃迁的选择定则的跃迁发生,1表明允许谐振子不能发生,0,,30,20可以发生,

10以上结果表明,1

,0)(,

02)(02

22

2102

2=?→→→→>=∞>∑=∞-n n n P e q P n τ

ωπτω

μ

即谐振子只能跃迁到相邻能级 30.禁戒跃迁

的跃迁是禁戒的。

到者说,从的跃迁是不可能的,或到表明从,0,0,使得若存在这样的末态)13(||1

)(时,有

的概率。当跃迁到末态代表系统从初态)(则,|)(|)(令)

12(1)(已知

20

220

k k

k k P H k dt H e t P k k k k t P t C t P dt H e i t C k k k k

t

k k

t i k k k k k k k k t

k k

t

i k

k k k k k k k ''=→='''=≠''='+=''''''''''??

''

ωωδ

的跃迁为禁戒跃迁。

0,,30,20。或者说,1其中,|能跃迁到激发态不

0|振子从基态在外电场的激发下,谐n n n →→→>>> 31. 微扰论的思想

解薛定谔方程的一种常用的近似方法。一个量子体系,如果总哈密顿量的各部分具有不同的数量级,又对于它精确求解薛定谔方程有困难,但对于哈密顿量的主要部分可以精确求解,便可先略去次要部分,对简化的薛定谔方程求出精确解;再从简化问题的精确解出发,把略去的次要部分对系统的影响逐级考虑进去,从而得出逐步接近于原来问题精确解的各级近似解。这种方法称为微扰论。 32.突发微扰与绝热微扰

做绝热微扰。

样的微扰叫会改变系统的状态,这地作用到系统上时,不当外界的微扰十分缓慢做突发微扰。

这样的微扰叫不会改变系统的状态,地作用到系统上时,也当外界的微扰十分突然

33. 能量与时间不确定度

不能同时为零。

度,同系统能量的不确定变化快慢的周期此式反映了一个力学量2

此式的一般形式为:确定度关系,可以证明被称为时间-能量的不E t t E h E t ??≥

??∝??

34. 能级宽度与谱线宽度

展宽。

一个宽度,这叫能级的所以,所有的能级都有2

由于能量不确定性 ≥??t E k

称为谱线宽度。

,这叫谱线的展宽/)(其中,,该是谱线的频率应.频率范围一个频率,而是有一个

/)(发出的谱线,就不止时,跃迁到,所以,当电子从,既然能级有展宽,即10)0(1)0(011)

0(11)0(ννννννν??+?=??+=?-=?+=?+=------h E E h E E E E E E E E E E k k k k k k k k k k k k 35. 半经典理论

36吸收,受激辐射,自发辐射

后记:本复习资料整理依据是往年的量子力学总结PPT ,但是那个PPT 只给了考点范围,没有给概念解释,所以我查阅了PPT ,教材,百度,谷歌,维基之后加上个人理解整理而得,制作粗糙,请见谅。

本复习资料只能应付填空和问答题,我很确认计算题和证明题范围超出此资料,但具体范围不清楚。祝大家考出满意的成绩。

本人不保留版权,欢迎各位学霸对此资料进修正。

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学主要知识点复习资料(新)

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p = =v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应 该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z ) 附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附 件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 2|(,,)|x y z ψ2 |(,,)|x y z x y z ψ???x y z τ?=?? ?2 |(,,)|1 x y z dxdydz ψ∞=? (,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.360docs.net/doc/7f5208945.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子力学期末复习资料

简答 第一章 绪论 什么是光电效应爱因斯坦解释光电效应的公式。 答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。 这些逸出的电子被称为光电子 用来解释光电效应的爱因斯坦公式:22 1 mv A h +=ν 第二章 波函数和薛定谔方程 1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加: 2211ψψψc c +=(1c , 2c 是复数)也是这个体系的一个可能状态。 答,由态叠加原理知此判断正确 4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗为什么 答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态 1、 经典波和量子力学中的几率波有什么本质区别 答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的 几率分布; (2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观 粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变; 6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1) ()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数 是否描述同一态分别写出它们的位置几率密度公式。

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学复习提纲

1. 粒子的双缝实验的结论是什么? 答:粒子具有波动性 2. 在量子力学中,波函数的波动方程是什么?它是定态薛定谔方程吗? 答:量子力学中波函数的波动方程是),()](2[),(2 2t r r V m t r t i →→→+?- =??ψψ ,它不是定态薛定谔方程,定态薛定谔方程是假设势能V 不显含时间t ,其形式是: )()](2[)(2 2→→→ +?-=r r V m r E ψψ 3. 波函数除了归一化要求之外的三个标准条件是什么? 答:单值、连续、有限。 4. 写出一维无限深方势阱的能量本征函数及能量本征值。 答: 5. 写出一维线性谐振子的能量本征函数及能量本征值。 答: 6. 什么叫做粒子的共振穿透?请举例说明。 答:当粒子射入势阱时,将发生反射和折射,当粒子的能量满足一定的条件时会使透 2 ,1n n a μ={} 2 2 22222 21 ()2?,()()()(),0,1,2, ?11 (),0,1,2,2 ?22 n n n x n n n n x U x x H x E x x P H x N H x e n E n n α μωψμωψψ ωμα-= ====+ ==+

射系数T=1,这种现象就叫做共振穿透。如上图所示,粒子在有限深势阱中,我们设 22222 1 ) (2,2 o V E k E k -==μμ则透射系数l k k k k k k k T 22 2222122212 221sin )(44-+= 当πn L k =2即02 2)(2V L n E n += πμ 时,1=T ,产生共振穿透。 7. 什么叫做粒子的遂穿效应?请举例说明。 答:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为隧道效应。金属电子冷发射和ɑ衰变等现象等都是隧道效应产生的,还有基于两字隧道效应的扫描隧道显微镜。 8. 粒子的共振穿透与粒子的遂穿效应有何区别? 答:共振穿透的物理意义是,入射粒子进入势阱后,碰到两侧阱壁时将发生反射和透 射,如粒子能量合适,使它在阱内波长'λ满足a n 2' =λ(a 为阱的宽度),则经过各次反射而透射出去的波的相位相同,因而彼此相干叠加,使透射波波幅大增,从而出现共振透射。而遂穿效应其实是粒子具有波动性的表现。 9. 什么叫做厄米算符?它有什么性质? 答:如果算符∧F 满足??()F dv F dv ψ?ψ?* *=??,则称算符∧ F 为厄米算符。厄米算符 有三点性质,一是体系的任何状态下,其厄米算符的平均值必为实数;二是厄米算符 的本征值必为实数;三是厄米算符属于不同本征值的本征函数彼此正交。 10. 量子力学中两个基本力学量是什么?在坐标表象中,用什么算符表示? 答: 量子力学中两个基本力学量是坐标→r 和动量→p ,在坐标表象中,坐标→r 用坐标算符∧ r 表示,动量用动量算符?-=∧ 2 p 表示。 11. 动量算符的本征函数和本征值是什么?其本征函数如何归一? 答:动量算符的本征函数是:)ex p( ) 2(1)(2 3r p i r p ?= πψ ,其本征值为p 。其只能归以为函数δ函数,即 )()()('*' p p d r r p p -=?∞ δτ??。 12. 在三维直角坐标系中,角动量算符的表示式是什么?动量(矢量)算符的本征函数和 本征值是什么? 答:???????????????x z y y x z z y x L yp zp i y z z y L zp xp i z x x z L xp yp i x y y x ????=-=-- ? ????????=-=-- ?????????=-=-- ? ???? h h h

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

清华大学《大学物理》习题库试题及答案____10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.5619:波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10- 3 ?,则 利用不确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm 14.8020:将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变 x (A) x (C) x (B) x (D)

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

量子力学主要知识点复习资料全

量子力学主要知识点复习资料 全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示, 其中,振幅 表示 波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点 (x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附 件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 2|(,,)|x y z ψ(,,)x y z ψ(,,)c x y z ψα i e C =(,,)i e x y z αψ(,,)x y z ψ

量子力学试题及答案

2002级量子力学期末考试试题和答案 B 卷 一、(共25分) 1、厄密算符的本征值和本征矢有什么特点?(4分) 2、什么样的状态是束缚态、简并态和偶宇称态?(6分) 3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4分) 4、在一维情况下,求宇称算符P ?和坐标x 的共同本征函数。(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系。(5分) 二、(15分)已知厄密算符B A ?,?,满足1??22==B A ,且0????=+A B B A ,求 1、在A 表象中算符A ?、B ?的矩阵表示; 2、在A 表象中算符B ?的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。 三、(15分)线性谐振子在0=t 时处于状态 )21exp(3231)0,(2 2x x x ααπαψ-??????-=,其中 ημω α=,求 1、在0=t 时体系能量的取值几率和平均值。 2、0>t 时体系波函数和体系能量 的取值几率及平均值 四、(15分)当λ为一小量时,利用微扰论求矩阵

??? ?? ? ?++λλλλλλ23303220 21的本征值至λ的二次项,本征矢至λ的一次项。 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成? 一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。 2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称。 3、全同玻色子的波函数是对称波函数。两个玻色子组成的全同粒子体系的波函数为: [])()()()(21 12212211q q q q S ????φ+= 4、宇称算符P ?和坐标x 的对易关系是:P x x P ?2],?[-=,将其代入测不准关系知,只有当0?=P x 时的状态才可能使P ?和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ?和x 的共同本征函数。 5、设F ?和G ?的对易关系k ?i F ?G ?G ?F ?=-,k 是一个算符或普通的数。以F 、G 和k 依次表示F ?、G ?和k 在态ψ中的平均值,令 F F ?F ?-=?,G G ?G ?-=?, 则有 42 2 2 k )G ?()F ?(≥???,这个关系式称为测不准关系。 时间t 和能量E 之间的测不准关系为: 2η ≥ ???E t 二、1、由于1?2=A ,所以算符A ?的本征值是1±,因为在A 表象中,算符A ?的矩阵是对角矩阵,所以,在A 表象中算符A ?的矩阵是:???? ??-=1001)(?A A

量子力学(第1-4章)考试试题

第一至四章 例题 一、单项选择题 1、普朗克在解决黑体辐射时提出了 【 】 A 、能量子假设 B 、光量子假设 C 、定态假设 D 、自旋假设 2、若n n n a A ψψ=?,则常数n a 称为算符A ?的 【 】 A 、本征方程 B 、本征值 C 、本征函数 D 、守恒量 3、证实电子具有波动性的实验是 【 】 A 、 戴维孙——革末实验 B 、 黑体辐射 C 、 光电效应 D 、 斯特恩—盖拉赫实验 4、波函数应满足的标准条件是 【 】 A 、 单值、正交、连续 B 、 归一、正交、完全性 C 、 连续、有限、完全性 D 、 单值、连续、有限 5、已知波函数 )exp()()exp()(1Et i r Et i r ??ψ+- =, )exp()()exp()(22112t E i r t E i r ??ψ+-=, )exp()()exp()(213Et i r Et i r -+-=??ψ, )exp()()exp()(22114t E i r t E i r -+-=??ψ 其中定态波函数是 【 】 A 、ψ2 B 、ψ1和ψ2 C 、ψ3 D 、3ψ和ψ4 6、在一维无限深势阱? ??≥∞<=a x a x x U ,,0)(中运动的质量为μ的粒子的能级为 【 】 A. πμ222 22 n a B. πμ22224 n a C. πμ22228 n a D. πμ2222 16 n a . 7、量子力学中用来表示力学量的算符是 【 】 A 、线性算符 B 、厄米算符 C 、幺正算符 D 、线性厄米算符 8、]? ,?[x p x = 【 】 A 、0 B 、 i C 、 i - D 、 2 9、守恒量是 【 】 A 、处于定态中的力学量 B 、处于本征态中的力学量 C 、与体系哈密顿量对易的力学量 D 、其几率分布不随时间变化的力学量

周世勋量子力学习题复习资料第六章散射

第六章 散射 1.粒子受到势能为 2)(r a r U = 的场的散射,求S 分波的微分散射截面。 [解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在 ∞→r 时的位相差。因此要找出相角位移,必须从矢径的波动方程出发。 矢径的波动方程是: 0))1()((12 2 22 =+--+??? ??l l R r l l r V k dr dR r dr d r 其中l R 是波函数的径向部分,而 E k r U r V 2222),(2)(ηη μμ = = 令 r r x R l l ) (= ,不难把矢径波动方程化为 02)1(222 2=??? ?? -+-+''l l x r r l l k x ημα 再作变换 )(r f r x l = ,得 0)(221)(1)(2 2 2 2=???? ??? ? ?+??? ? ?+-+'+''r f r e k r f r r f η μα 这是一个贝塞尔方程,它的解是 ) ()()(kr BN kr AJ r f p p += 其中 2 2 2 221ημα+??? ??+=l p 注意到 ) (kr N p 在0→r 时发散,因而当0→r 时波函数 ∞ →= r N R p l ,不符合波函数的标准条件。所以必须有0=B 故 )(1 kr J r A R p l = 现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求

得相角位移l δ,由于: ) 2sin(1)42sin(1)(l l kr r p kr r r R δπππ+-=+-→∞→ ??? ? ????????? ??+-+??? ?? +-=++-=∴21221224222 l d l l p l ημππ ππδ 当l δ很小时,即α较小时,把上式展开,略去高次项得到 ???? ? ?????+-=2122l l ημαπδ 又因 l i i e l δδ212=- 故 ∑∞=-+=0 2)(cos )1)(12(21)(l l i P e l ik f l θθδ ∑∞ =?????? ?? +-+=02)(cos 122)12(21l l P l i l ik θμαπη ∑∞ =- =0 2 ) (cos l l P k θπμα η 注意到 ???????≤???? ??≥???? ??=-+=∑∑∞=∞=02121202112121222 112)(cos 1)(cos 1cos 21 1l l l l l l r r P r r r r r P r r r r r r r r 当当θθθρ 如果取单位半径的球面上的两点来看 则 121==r r ,即有 ∑∞ == =-0 2sin 21 )(cos )cos 1(21l l P θθθ 故 2sin 21 )(2 θ πμα θηk f - = 微分散射截面为

量子力学第四版卷一习题答案

x a 即为粒子运动的转折点。有量子化条件 e 2 nh 得a 2 ---- m 代入(2),解出 设粒子限制在长、宽、高分别为 a,b,c 的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性 碰 撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 P x n x h/2a , n x ,n y ,n z 1,2,3, 粒子能量 第一章 1 设质量为m 的粒子在谐振子势 V(x) -m 2 量子力学的诞生 2x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 提示:利用 0 P dx nh, n 1,2, j2m[E V(x)] 解:能量为E 的粒子在谐振子势中的活动范围为 其中a 由下式决定:E V (x) 1 -m 2 由此得 a j2E/m 2 口 p dx 2 j2m(E a ' 2 2 X . x ) 2m a _ __________ J a 2 x 2 dx a 2m a 2 nh E n n 1,2,3, (4) 积分公式: J a 2 u 2du arcs in^ c 2 a X, y, z 轴方向,把粒子沿 X, y, z 轴三个 方向的运动分开处理。利用量子化条件,对于 X 方向,有 口 P x dx n x h n x 1,2,3, P x 2a n x h (2a :—来一回为一个周期) 同理可得, P y n y h/2b . P z n z h/2c ,

mh , 因而平面转子的能量 1,2,3, 有一带电荷e 质量m 的粒子在平面内运动 (解)带电粒子在匀强磁场中作匀速圆周运动 条件是: ,垂直于平面方向磁场是 B,求粒子能量允许值 ,设圆半径是r ,线速度是v ,用高斯制单位, E n x n y n 2m 2 2 2 2 、 P y P z ) 2m 2 n x ―2 a 2 n y b 2 2 n z c n x ,n y , n z 1,2,3, 设一个平面转子的转动惯量为I , 求能量的可能取值。 2 提示:利用0 p d nh, n 1,2, ,p 是平面转子的角动量。转子的能量 P 2 /2I 。 解:平面转子的转角(角位移) 记为 它的角动量p I (广义动量) 是运动惯量。按量子化条件 p dx mh m 1,2,3, Bev 2 mv (1 ) 又利用量子化条件 P 电荷角动量 转角 2 口 pdq 0 mrvd 2 mrv nh ⑵ 即 mrv nh 由(1)(2)求得电荷动能 再求运动电荷 ⑶ =1 2 --mv 2 在磁场 Be n 2mc 中的 势能,按电磁学通电导体 在磁场中的势能 磁矩*场强 电流*线圈面积*场强 2 ev* r * B e r 一 , v 是电荷的旋转频率,v 六,代入前式得 运动电荷的磁势能--B^^ (符号是正的 2mc 点电荷的总能量-动能+磁势能-E-Be n 2mc (n 1,2,3 ) ,未找到答案 E m P 2 /2I m 2 2 /2I , 洛伦兹与向心力平衡

相关文档
最新文档