水冷技术

水冷技术
水冷技术

水冷- 工作原理

一套水冷(液冷)散热系统必须具有以下部件:水冷块、循环液、水泵、管道和水箱或换热器。

水冷散热系统的组成

水冷块是一个内部留有水道的金属块,由铜或铝制成,与CPU接触并将吸收CPU的热量,所以这部分的作用与风冷的散热片的作用是相同的,不同之处就在于水冷块必须留有循环液通过的水道而且是完全密闭的,这样才能保证循环液不外漏而引起电器的短路。

循环液的作用与空气类似,但能吸收大量的热量而保持温度不会明显变化,如果液体是水,就是我们大家熟知的水冷系统了。

水泵的作用是推动循环液流动,这样吸收了CPU热量的液体就会从CPU上的水冷块中流出,而新的低温的循环液将继续吸收CPU的热量。

水管连接水泵、水冷块和水箱,其作用是让循环液在一个密闭的通道中循环流动而不外漏,这样才能让液冷散热系统正常工作。

水箱用来存储循环液,回流的循环液在这里释放掉CPU的热量,低温的循环液重新流入管道,如果CPU的发热功率较小,利用水箱内存储的大容量的循环液就能保证循环液温度不会有明显的上升,如果CPU功率很大,则需要加入换热器来帮助散发CPU的热量,这里的换热器就是一个类似散热片的东西,循环液将热量传递给具有超大表面积的散热片,散热片上的风扇则将流入空气的热量带走。

如果是小型密闭式的液冷系统,则可以省略开放式的水箱让液体在水泵、水冷块和换热器之间往返流动,避免循环液暴露在空气中而变质。

水冷- 发展历史

说到CPU水冷那还要追溯到上个世纪,早在1998、1999年左右台湾就开始流行CPU水冷散热了,DIY 利用自己的条件制作出各式各样的水冷系

统,但大多以开放式结构为主,在DIY看来,当时的CPU就已经是“发热量巨大”的怪物了。

大陆水冷制作相对要晚些,也大多集中在个人的制作水平上,曾经出现像杭州中裕的CoolMax等数款个人制作并销售的水冷产品,其中CoolMax水冷已经具备像样的包装和配套件,在宣传上也曾经有过动作,但由于市场响应有限,这些产品犹如过眼云烟,没有多长时间就从市场上彻底消失了。

到2003年,水冷又开始在大陆市场上活跃起来,其中以正规厂家中的澳柯玛和个人制作中的水冷王为主流,从市场推广和论坛宣传两个方面展开了水冷制作的新篇章。

新一代水冷与旧水冷相比原理并没有变化,但制作工艺却大幅度提升,大多注重全密闭式的设计,而且内地与港台个人DIY作品间的差别也越来越少,这与互联网的推广不无关系,上个世纪的水冷主要集中在少数能上网的发烧友中,随着网络的普及,越来越多的能人异士纷纷出现,行业范围远远跨越了电脑及其相关行业,精通于金属加工的朋友不胜枚举,制作这种水冷散热器更加方便,而且更加美观、实用、可靠,此外,越来越多的喜欢水冷的朋友可以在各个论坛中各抒己见,这样也推动了水冷工艺的进步,显然是互联网促进了水冷产品的进步,同时也为产品的推广奠定了基础。

随着显卡技术的快速发展,显卡上的GPU已经能够发出与CPU相当的热量,因此水冷已经不再局限在CPU了,显卡、北桥、硬盘的水冷也不断涌出,彻底让大家进入水冷的新世界。

Lumia950/Lumia950 XL全球首创的“水冷散热”模式

三星S7采用“水冷散热”

IBM水冷技术历史回顾

如今数据中心越来越追求高能效,降低运维成本和TCO,但是空调制冷成本却依旧高居不下,据统计,数据中心大约25%的能耗和碳排放量都是由制冷系统产生,如果能够降低空调制冷成本,数据中心运维成本将得以整体下降。水冷是数据中心散热的一个好办法,在水冷上,IBM进行了多年研究,其最早的水冷技术可以追溯到1966年,如今,IBM的背板换热器技术为Power System和System x用户带来了巨大的好处,能够为数据中心降低超过50%的空调需求。本文将带您回顾过去几十年中IBM的水冷技术。

1996:IBM开启水冷之旅IBM首次在计算机上应用水冷要追溯到1966年,当时IBM推出了System/360 Model 91计算机,是当时速度最快、最强大的计算机。它主要为处理科学应用中的高速数据处理而设计,比如太空探索、理论天文学、亚原子物理学和全球气象预报。为了避免计算机过热,IBM设计了一个专门的水冷系统。

1980:芯片散热IBM在1980年11月12日发布了IBM Model 3081 Processor Complex主机系统,它包含了两项提高效能的特性,将能耗从68千瓦降低到23千瓦,

并且内置了水冷技术,直接对芯片散热,效果大大超越了传统的空气散热。

1990:8款水冷主机1990年,IBM推出了ES/9000家族主机系统,包含8个型号,330、340、500、580、620、720、820和900,全部采用水冷技术。

2006:全新水冷方法在2006年伦敦召开的电源及冷却高峰论坛(Power and Cooling Summit)上,IBM研究人员展示了用于提高计算机芯片冷却能力的最新结果,这是一种被称作“直接射流冲击”的全新水冷方法,在一个完全封闭的系统中将水直接喷射到芯片背部,再将水吸出。这是一套复杂的架构,采用了多组高达5万个细小喷嘴和树枝状返回结构。

2008:零排放数据中心在2008年的CeBIT展会上,IBM展示了零排放数据中心,并公布正在开发智能的芯片水冷回路。相比传统的空气制冷数据中心,只能水冷回路不仅能降低40%的能耗,同时也能将余热再利用,比如用于家庭取暖。据报告,IBM首个原型系统已经能够将数据中心运营的四分之三能耗再利用。

2008:IBM首个水冷Unix服务器,Power 575在2008年4月,IBM发布了Power 575服务器,包含14个服务器节点,水管穿过机架直接进入服务器,处理器散热器上包含了水冷铜座。

2009:水冷QPACE超级计算机Green500夺冠2009年11月的Green500榜单上,由IBM为于利希研究中心、雷根斯堡大学和乌珀塔尔大学建造的三台同样的水冷QPACE超级计算机夺冠,成为世界上最具能效的超级计算机。

2010:IBM热水冷却超级计算机Aquasar2010年7月,IBM为瑞士联邦理工学院建设了同类别首个热水冷却超级计算机Aquasar,标志着一个新的“能源感知”计算时代的到来。这套被称作Aquasar的系统相比同等的空气冷却系统能够节省40%能耗,碳排放量降低了85%。

2012:第一台商业热水冷却计算机SuperMUC2012年6月,IBM表示为德国巴伐利亚科学院的莱布尼茨超级计算中心(LRZ)建设的SuperMUC超级计算机将采用革命性的温水冷却方式。系统的活动组件,如CPU和内存,可以直接用最高45摄氏度的温水进行散热,以削减系统的能耗。

2012年及以后:打开自来水在温水和热水散热技术之后,IBM水冷技术还在继续创新。IBM在纽约波基普西实验室的研究人员开发出了一项新的技术,可以用自来水为计算机来散热,这样,数据中心不必再冷却水,直接采用自来水能够节省更多的能源和成本。

谷歌数据中心采用水冷技术

采用水冷服务器的主要好处是就近带走热量,可以有很高的节能效果,同时大大提高功率密度来缩小服务器的尺寸,减少风扇噪音,以及容易实现热能回收等等好处。基于这些好处,谷歌早在2006年之前就开始研究此技术,并于2009年得到其水冷服务器的专利。谷歌水冷服务器专利的主要技术特点是服务器主板两两成对安装在散热片的两个外侧,由散热片内流过温度较低的冷冻水来带走热量。其中高发热的元件,比如CPU和南北桥芯片组等靠近散热片内的冷冻水来安装,从而发出的热量被散热片内的冷冻水就近带走;而一些发热量不高的器件,比如内存和硬盘等则直接安装在稍远离三明治散热片中心的位置,部分案例中还有服务器风扇或电源风扇安装在某侧的服务器主板上,用于将内存和硬盘等的热量带走。

俄勒冈州达拉斯,进出谷歌数据中心的水管。蓝色管道供应冷水,红色管道送回

温水,以进行冷却。

图2 谷歌水冷服务器侧视图

如图2是谷歌水冷服务器的侧视图,其中中间的三明治结构部分为水冷散热片114,散热片的上下表面分别安装了两个服务器主板112a和112b以及CPU、内存等发热元件。由铝锭加工压叠压而成的散热片114的内部有多个如122这样的冷冻水通孔,用于带走散热片吸收的服务器热量。散热片114的表面则根据服务器器

件的发热程度还专门刻蚀出不同深浅的平台,用于安装发热量不同的器件,比如标识为116的CPU和标识为118的芯片组等高发热量器件,置于靠近冷冻水供水通道的平台,而标识为120的内存、标识为124网络和标识为130的低发热量器件则可置于稍远离冷冻水通道的平台,部分设计中标识为126的服务器风扇等还仍然会用于给服务器表面的器件散热,下面会更为详细介绍。

采用水冷服务器来散热有很多好处,比如发热量大的器件可以高效就近在本地很快被散热片冷却,而不像传统服务器发出的热量散发到机房级,需要通过机房级大风扇、冷水机组、大功率水泵等较高能耗的传统制冷方式来实现,还不用额外冷却机房级大空间环境内的空气等。由于采用了就近散热方式,冷冻水就可以不再采用传统的7/12度供水,而供水温度可以提升到21摄氏度以上,基本就不再需要冷水机组了,大大节能还可节省设备投资。同样服务器释放出来的发热量大大减少,气流循环的风扇126也仅仅可以以较低的速度运转,大大节省服务器风扇的能耗。

图3是谷歌水冷服务器的俯视图,主板201上有6个标识为202的CPU及标识为206的芯片组,中间横向虚线部分为多根内存阵列,以及冷通道侧的网络控制器208和网络RJ45接口214等。服务器的进风从右侧进入,流经内存及周边器件,然后被标识为204的服务器电源吸入,服务器电源的风扇203既作了电源的散热风扇,同时还兼做了服务器的气流循环风扇,进入服务器的风还可以被导风板205导入到风扇内,防止冷气流短路直通。

图3 谷歌水冷服务器的俯视图

图4(a)是服务器散热片114的内部结构图,包括302和304这样的冷冻水通孔,内部流经的冷媒除了普通冷冻水外,还可以是氟化剂、食用油、乙二醇、液氮等等非导电物质。冷冻水从靠近大发热量CPU侧的306口进入,带走大部分热量后,再从小发热量的内存等附近308口流出。实际应用中,服务器机架内的水泵及阀门等提供冷冻水给到每套服务器,比如机柜内的冷冻水配水竖管(类似供电的配电PDU),通过快速连接软管(类似于供电的电源线)以及每个服务器接入水阀门(类似于供电的空开)接到每套服务器的散热片内。冷冻水竖管上级还有配水单元及供水阀门(类似于供电的配电柜及上级空开)。图4(b)是散热片的更详细侧视图,可以看到散热片400表面上有三个不同的散热平台层,用于不同发热量的器件。散热片400实际由三层铝锭402、404和406压叠而成,其中中间层的404可以为导热好的金属材料,也可以采用导热不好的塑料材料等,甚至可以不用404

层,直接由导热性好的402和406压叠而成。此外412作为冷冻水输入口,而414作为冷冻水流出孔。

图4散热片俯视图

图5是两个服务器机柜502a和502b的简化图,两层导轨的两套服务器之间的部分存在一定空隙,用于机柜级气流流通,这个气流循环由每套服务器上安装的风扇来带走。由于服务器上的大部分热量都被散热片内的冷冻水带走,风扇只用于循环内存和硬盘等低发热器件的部分散热气流,因此风扇运行转速很低功耗也很少。每个散热器表面的两个服务器上器件经过精心设计,以至于服务器密集堆叠部署时,相邻两套服务器上的器件也不会互相干涉。比如上一套服务器的底部主板上的器件不会和下一套服务器的顶部主板上的器件发生干涉。同时每套服务器顶部主板上的风扇可以巧妙地同时用于本服务器顶部主板以及上面一套服务器的底部主板上的器件散热,即一套服务器的风扇可以同时用于上下两个服务器主板的散热。此外,如前面所述,这里的服务器风扇可能会单独安装较大的散热风扇,但在谷歌的水冷服务器应用中,因为内存和硬盘等需要的散热功率不大,这些风扇很可能只是服务器电源内的散热风扇。通过这些电源风扇的运转以及导风板设计,将内存、硬盘等器

件的热量带走,同时兼做服务器电源的散热,最后再送到热通道内降温。由于采用了双U高的大电源风扇,可以得到更大的风量,在降低了风扇转速和风扇能耗的同时,还可以大大降低机房的噪音,提供更好的现场人员工作环境,谷歌的机房也因为冷通道维护环境舒适和机房低噪声大空间等考虑和设计,也于前几年通过了OHS 职业健康安全管理体系认证。

图5 谷歌水冷服务器机柜

如前面所述,除了被冷冻水带走的热量外,主板上内存硬盘等由电源风扇循环的热量,在热通道内被热通道顶部的制冷盘管重新制冷后,再被机房级的大风扇引导重新循环回服务器的冷通道侧以及现场人员操作通道内,最后被服务器吸入重新开始新一轮循环。通过适当控制机房级热通道内的服务器出风温度以及冷冻水供水

温度,或者控制IT设备级的水冷服务器进水流量,以及服务器上气流循环的风扇转速,使得整个系统高效运转在最佳节能状态。

比如控制服务器的出风温度,将散发出来的热量有效控制在较小的热通道内,得到较高的置顶空调盘管的delta T温差,温差越大盘管热交换效率就更高。且热气流不会和冷气流混合,就近被冷却盘管散热,风扇的功耗也更低。同时通过盘管顶部的机房级循环大风扇将冷却后的空气重新循环回机房的冷通道内,整个机房环境作为大的冷通道,不仅提供一个凉爽的现场运维人员工作环境,同时还兼作为整个大冷池,用于众多服务器的风扇故障备份。

图6是机房某个剖面示意图,如前面介绍,整个机房环境是个大的冷通道,用于如下图515的工作人员操作空间,兼做服务器的进风侧,实际图6右侧机柜的右边也是有类似冷通道用于服务器的进风,这里没画出来。两排机柜间的通道516作为热通道,用于汇集两侧所有服务器发出的热量(当然主要发热部分由服务器内部散热片内的冷冻水带走),热通道顶部安装着标识为514的置顶盘管,由风扇512和盘管514将热通道516内的热量制冷后再释放到整个机房大环境冷通道内。虽然下图的512风扇没有和514盘管放在一起,专门做了个热吊顶510,实际在谷歌的很多案例中512风扇会直接安装在514盘管顶部,不再建设吊顶层来减少工程的复杂度。当然盘管514也可以不用直接安装在热通道的顶部,比如安装在机柜底部等,减少盘管漏水或者冷凝水等对服务器的运行风险,总之,可以灵活安装盘管和风扇的位置,满足不同的应用和风险需求。

图6 水冷服务器机房截面图

和谷歌的微模块技术一样,谷歌的水冷服务器机房沿用了地板下供水的方案,由于需要保持水冷服务器的水质,因此主要通过板式换热器528来隔离冷冻水内循环和冷却水外循环。513a和513b是机房级主供回水管路(类似于供电主母排),而515a和515b为机柜级配水供回水管路(类似于机柜供电PDU),524a和524b 为到每个服务器的供回水支管(类似于电源线),非常类似供电系统的供电路径设计。其中524a和524b为快接软管,考虑服务器故障检修和搬迁等经常性维护操作,用于和服务器散热片的快速插接。整个管路上还有很多的阀门用于防止漏水,比如竖管上的球阀527和支管自动截至阀等。而流到每个服务器的冷冻水流量则由

流量计525a和温度传感器525b来控制,比如当监测到服务器温度偏高的时候,可以加大水流量或者调低冷冻水供水温度等。

优势

因为减少了风扇的数量,所以也减少了风扇所产生的振动及噪音。

散热效果比风冷系统高出许多。

劣势

水冷散热器所需的用具非常庞大,占用了一定的空间。

价钱比风冷系统较高。

因为结构比风冷系统复杂,还多加了一级的工质,所以可靠性也较差。

水冷散热系统

水冷散热系统 一、原理 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。二、分类 根据二次换热器换热方式的不同,一般情况下可以将水冷散热系统分为以下三种类型:空气冷却系统、液体冷却系统、冷水机组冷却系统。 1、空气冷却系统一般主要由:水冷板、水泵、水箱、热交换器和风机组成。 该系统结构简单,是最经济的水冷系统。 2、冷水机组冷却系统:由压缩机、水冷板、冷却塔等部分组成。这种方式水 温可以精确的控制在环境温度以下,制冷量大。 3、液体冷却系统:它不含压缩机,主要由液体交换器、水泵、水箱等组成。 低噪音、体积比冷水机组小一半以上。 三、水冷板的选择与计算 设计适当的冷板,需要确定如下参数:冷却液体流速,冷却液体进口温度,安装在冷板上发热器件的热耗散功率,冷板表面允许的最高温度Tmax。已知这些参数,您就可以确定冷板的最大的允许热阻并且通过热仿真分析验证。 计算冷却液体出口最高温度Tout。这个是非常重要的,如果Tout大于Tmax,那么,冷板将不能解决发热问题。 假设Tout小于Tmax,下一步需要确定冷板的标准化热阻

,使用如下方程: 四、其他系统的设计 管道系统和阀门是水冷系统硬件重要组成部分,主要包括快速接头、管道、各种功能阀门(流量控制阀)、过滤器、其它管接头及密封件等。 管道的尺寸(如直径、长度等),应根据冷却液的流速来确定: 其中,Qv为水流量(m3/h);U为水流速(m/s)。可计算管道的直径。系统的管道材料,考虑到冷却介质特殊要求,全部采用无缝不锈钢管,局部用聚胺脂管。 五、冷却液与泵 必须对冷却液的热传递能力、冰点和黏度、沸点和分解温度、绝缘性能、腐蚀性、可燃性、毒性、费用等加以考虑。常用冷却液有水、乙二醇溶液、硅油等。 泵是冷却系统中的主要部分,其目的是为了使冷却剂以能够克服冷却回路中总流体摩擦热所需的流量进行循环。冷却系统中的常用的泵有离心泵,旋涡泵和齿轮泵。选择泵主要依据冷却系统所需的流量Qv及压头H来确定。为了便于调节,通常水泵的总扬程应比冷却系统所计算的压力约大15%~20%,流量应比计算值约大15%~20%。

变频系统空水冷散热方案

变频系统空水冷散热方案 变频器的最大散热功率按照变频额定功率×4%(加余量20%)核算。根据现场的实际情况,综合冷却系统的投资和运营成本,提出下面的空-水冷却方案: 1.空-水冷却系统的工作原理: 空-水冷却系统是一种高效、节能、环保的冷却系统,其应用技术在国内处于领先地位。在高压大功率变频应用中得到了广泛应用。该系统由于其采用完全机械结构设计,较空调等电力、电子设备而言具有明显的安全、可靠性。 其主要原理是:将变频器的热风通过风道作用于空-冷装置进行热交换,由冷却水直接将变频器产生的热量带走;经过降温的冷风进行循环回至室内。空冷装置内进口冷水温度要求低于33℃,可以充分保证热风经过散热片后,将变频器室内的环境温度控制在40℃以下满足变频器运行对环境的要求。空-水冷却系统冷却水与循环风完全分离,水管线在变频室外与高压设备明确分离,并且系统本身设有通风开放转换方式,确保空-水冷却系统出现问题不会对整个变频系统运行造成安全威胁和事故。同时,由于房间密闭,变频器利用室内的循环风进行设备冷却,具有粉尘度低,维护量小的特点;减少了环境对变频器运行稳定性的不利影响。 2.系统安全性能评价: 设备整体安装于高压变频器室墙外,采用风道与变频器的柜顶排气口直接连接,提高了冷却器的设备运行效率,能够对变频器排出的热气直接降温处理,另外冷却器的设计能力可满足最高冷却水温33℃,水侧清洁系数为0.85以及管子堵塞率为5%等情况下的最大热负荷的要求。同时,避免冷却水管线在高压室内布局出现破裂后漏水危机高压设备运行安全的严重事故发生。在空-冷系统的设计当中,为了防止空冷器出口侧凝露使冷风带水排入室内,对空-水冷系统的风压、风速等指标进行设计计算,保证良好的排压情况下,运行安全稳定。另外,为防止空冷器漏水后进入室内,在空冷器的出口侧设置了淋水板,当漏水或有积水时,可以直接排向室外。同时,变频器提供风机、空冷器的故障报警检测点,并通过综合报警信号远传至DCS.完整的冷却系统解决方案,有效降低了辅助系统的故障率以及对主要设备的运行安全影响程度。 3 冷却水系统参数: 3.1 冷却水采用闭式循环水,最高温度为33℃。 3.2.冷却水进口母管取水点压力为0.2~0.5MPa. 3.3冷却水进出水母管DN=?.

水冷散热系统的设计

水冷散热系统的设计 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。 由于水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,在激光、军工、医疗、电力电子、工业设备等行业有着广泛的应用。 水冷散热系统的分类: 根据二次换热器换热方式的不同,一般情况下可以将水冷散热系统分为以下三种类型:空气冷却系统、液体冷却系统、冷水机组冷却系统。 空气冷却系统一般主要由:水冷板、水泵、水箱、热交换器和风机组成。该系统结构简单,是最经济的水冷系统。 冷水机组冷却系统:由压缩机、水冷板、冷却塔等部分组成。这种方式水温可以精确的控制在环境温度以下,制冷量大。 水冷式冷水机组工作原理图: 液体冷却系统:它不含压缩机,主要由液体交换器、水泵、水箱等组成。低噪音、体积比冷水机组小一半以上。 水冷板的选择和计算 冷板作为水冷系统的重要组成部分,主要是将发热元器件产生的热量与冷却液充分交换。为了确保器件的发热表面在被液体冷却时能把所耗散的热量尽量全部带走,器件与冷板的接触和冷板的热阻就显得尤为重要!

设计适当的冷板,需要确定如下参数:冷却液体流速,冷却液体进口温度,安装在冷板上发热器件的热耗散功率,冷板表面允许的最高温度Tmax。已知这些参数,您就可以确定冷板的最大的允许热阻并且通过热仿真分析验证。

Tout:冷却液体出口温度 Tin:冷却液体进口温度 Q:冷板上发热器件的总热耗散功率 ρ:液体的密度 V:冷却液体流速 CP:冷却液体的比热容 计算冷却液体出口最高温度Tout。这个是非常重要的,如果Tout大于Tmax,那么,冷板将不能解决发热问题。 假设Tout小于Tmax,下一步需要确定冷板的标准化热阻,使用如下方程: :热阻 Tmax:冷板表面允许的最高温度 Tout:冷却液体出口温度 A:被冷却区域的面积 Q:冷板上发热器件的总热耗散功率 系统其他部分设计: 管道系统和阀门是水冷系统硬件重要组成部分,主要包括快速接头、管道、各种功能阀门(流量控制阀)、过滤器、其它管接头及密封件等。 管道的尺寸(如直径、长度等),应根据冷却液的流速来确定: 其中,Qv为水流量(m3/h);U为水流速(m/s)。可计算管道的直径。系统的管道材料,考虑到冷却介质特殊要求,全部采用无缝不锈钢管,局部用聚胺脂管。 冷却液:必须对冷却液的热传递能力、冰点和黏度、沸点和分解温度、绝缘性能、腐蚀性、可燃性、毒性、费用等加以考虑。常用冷却液有水、乙二醇溶液、硅油等。

自制笔记本电脑水冷散热器

自制笔记本电脑水冷散热器国外网友为我们带来了这个新式的全手工制作超强笔记本电脑水冷散热装置。据作者介绍,他制作这个散热器的目的是为了在观看电影的时候能够摆脱笔记本电脑内部讨厌的风扇噪音。散热器主体双管散热片底部是一个铜块,铜块上面用剪刀剪出了很多长的锯齿。笔者看到这里不仅感叹,好强的剪刀啊。铜块中央使用电钻钻通,插入了一个铜导管。看来工艺越来越专业化了。铜块上部焊接了一块盒装奔腾4处理器附带的鳍状散热片。将散热器与笔记本电脑相连接为了使这个散热器发挥作用,作者还对笔记本电脑的边缘部分做了一些改造,他将笔记本电脑的塑料外壳去掉一部分以便让这个铜块的锯齿能够和主机紧密接触。不过作者也表示如果之前做的铜块锯齿足够长的话,也可以跳过这一步。、添加的微型水泵接着添加了一个微型水泵,工作电压仅为1.5V。水冷散热效果显著当使用水冷散热时,系统温度逐渐下降的屏幕截图,我们看到笔记本的温度从60度下降到了45度,看来还是十分有效的。以前还要清理CPU风扇的灰尘,以后再也不用清理CPU风扇了铜块底部有一个塑料小支架铜块与水冷管的连接部分这里先将塑料导管加热,用小镊子撑开管口,把它套接在先前铜块中央的铜导管中。下面介绍添加额外的多个水冷管和水泵的制作方法。找到一个小的电动螺旋桨将金属外壳和桨叶去掉改造为原长度一半左右的一个空管改造之后的样子改造之后内部保留原来的电线近距离再仔细看一下这是与增加的水冷管连接后的样子连接时需要用酒精喷灯给导管加热用剪刀将加热后的导管撑开将空管的两头都套上导管,注意将电线放在外面裸露的电线和水泵的电线相连接连接完成后的样子在笔记本的液晶屏上放置更长的水冷导管大功告成,大面积的水冷导管效果良好看到这里,常被笔记本的风扇噪音困扰的网友是不是也有点心动了呢不过这套水冷设备虽然造价并不高,制作过程可是需要较高的技巧的,喜欢挑战的网友不妨一试。 自制笔记本电脑水冷散热器国外网友为我们带来了这个新式的全手工制作超强笔记本电脑水冷散热装置。据作者介绍,他制作这个散热器的目的是为了在观看电影的时候能够摆脱笔记本电脑内部讨厌的风扇噪音。散热器主体双管散热片底部是一个铜块,铜块上面用剪刀剪出了很多长的锯齿。笔者看到这里不仅感叹,好强的剪刀啊。铜块中央使用电钻钻通,插入了一个铜导管。看来工艺越来越专业化了。铜块上部焊接了一块盒装奔腾4处理器附带的鳍状散热片。将散热器

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

水冷技术

水冷- 工作原理 一套水冷(液冷)散热系统必须具有以下部件:水冷块、循环液、水泵、管道和水箱或换热器。 水冷散热系统的组成 水冷块是一个内部留有水道的金属块,由铜或铝制成,与CPU接触并将吸收CPU的热量,所以这部分的作用与风冷的散热片的作用是相同的,不同之处就在于水冷块必须留有循环液通过的水道而且是完全密闭的,这样才能保证循环液不外漏而引起电器的短路。 循环液的作用与空气类似,但能吸收大量的热量而保持温度不会明显变化,如果液体是水,就是我们大家熟知的水冷系统了。 水泵的作用是推动循环液流动,这样吸收了CPU热量的液体就会从CPU上的水冷块中流出,而新的低温的循环液将继续吸收CPU的热量。 水管连接水泵、水冷块和水箱,其作用是让循环液在一个密闭的通道中循环流动而不外漏,这样才能让液冷散热系统正常工作。 水箱用来存储循环液,回流的循环液在这里释放掉CPU的热量,低温的循环液重新流入管道,如果CPU的发热功率较小,利用水箱内存储的大容量的循环液就能保证循环液温度不会有明显的上升,如果CPU功率很大,则需要加入换热器来帮助散发CPU的热量,这里的换热器就是一个类似散热片的东西,循环液将热量传递给具有超大表面积的散热片,散热片上的风扇则将流入空气的热量带走。 如果是小型密闭式的液冷系统,则可以省略开放式的水箱让液体在水泵、水冷块和换热器之间往返流动,避免循环液暴露在空气中而变质。 水冷- 发展历史 说到CPU水冷那还要追溯到上个世纪,早在1998、1999年左右台湾就开始流行CPU水冷散热了,DIY 利用自己的条件制作出各式各样的水冷系 统,但大多以开放式结构为主,在DIY看来,当时的CPU就已经是“发热量巨大”的怪物了。

水冷散热器选购指南-水冷散热器致命缺点

水冷散热器选购指南:水冷散热器致命缺点 现在很多高端DIY玩家都喜欢给电脑装水冷散热器,但水冷散热器比风冷散热复杂很多,而且价格昂贵,电脑水冷散热器怎么选购?本次小编就带来水冷散热器选购指南,一起来看看。 水冷散热器选购指南 一:预算 水冷散热器针对高端玩家设计,在成本和售价上也更高端。大家都知道水冷产品是土豪必不可少的配件,那么为什么要说是土豪才能消费的产品?水冷的配件在价格往往要比主流的主板、CPU、显卡的价格持平,有些还会超过三大件的价格。一些水冷品牌的配件相比普通水冷产品的价格要高不少,与其硬件的价格加起来,可能都没有水冷配件贵。对于那些追求性价比的消费者,让他们把这部分的钱投入到硬件中,可能还会让平台达到一个更好的级别。 水冷散热器并非是像风冷一样只能为CPU提供散热,显卡也可以搭配水冷散热器,不过显卡的水冷兼容性较差,一般同一款显卡的水冷只能兼容同一型号的显卡,甚至只能用于某一款显卡,在购买时需要注意。 有些水冷产品在购买时并不会买冷头,送水箱、水泵以及冷排水管等产品,消费者要选择不同的配件。而风冷产品购买后会看到齐全的配件,可以兼容目前市面上见到的不同主板类型。通过这一点我们就可以看到消费者在两种不同散热器产品中投资的是不能作比较的。而对于那些在资金方面并不多或者追求太多性价比的玩家就很难满足他们的购买心理。 所以针对不同消费者的消费观不同,在选择玩水冷时玩家们一定要头脑清醒,不能一时的冲动。不要为了炫酷或者其他的一些不正确的观点来接近水冷,消费者要具备良好的心态。这样才能更好的使用水冷。 水冷散热器选购指南 二:如何避免水冷漏水

机箱内的硬件性能再强也不能防水,而水冷散热器又是借助水冷液进行热量传导的,因此避免散热器漏水也是用户需要首先注意的地方。 水冷配件现在在工艺上已经有很好的提升,由于配件质量问题和兼容问题导致的漏水已经不常见到了。往往发生漏水问题都是由于安装问题或者是设计管道问题上所导致,这样的问题往往发生在喜爱水冷的入门级玩家身上。 水冷散热器中有很多连接处是薄弱的地方,一体式水冷在安装之前要转动不同的角度测试一下,有任何漏水的迹象都要停下来排查,直到确保散热器不会漏水之后再安装。分体式水冷在安装完成之后则需要先少量上水进行测试,同样要确保不漏水再完全上水。 这里介绍一个小窍门,就是可以在水冷的连接处用卫生纸打一个结,这样如果有漏水的情况可以更直观地在卫生纸上显示出来,良好的吸水性也可以避免水冷液流到其他地方难以清洁。 很多水冷散热器提供很长时间的质保,但是需要玩家注意的是这里只为散热器本身提供质保,如果漏液导致硬件损坏是不包含在质保范围内的,因此安装前测试密封性也是很有必要的,我们也建议初次安装水冷的玩家多看看其他玩家分享的经验或者找有经验的玩家进行指导。 三:散热能力 水冷散热器在散热时更加高效,因而有些朋友认为,只要安装了水冷散热器,主机及硬件的散热就可以高枕无忧了。然而容易忽视的是,水冷散热器虽然有更好的性能,但是在整体的散热环境方面还是存在一定的不足。 水冷散热器集中为CPU进行散热,但水冷散热器的风扇和冷排一般位于机箱顶部或前部,也都是向外部排风,如果没有其他风扇搭配的话,机箱内部很少会有高效的风道。 我们都知道机箱内的发热大户是CPU和显卡,不过在高端硬件中,其他的硬件同样需要良好的散热环境来保障稳定运行,主板的芯片组包括南桥及MOD管也会在长时间运行时发出大量的热,在没有良好散热环境的情况下同样会产生问题。

相关主题
相关文档
最新文档