蛋白质糖基化类型与点

蛋白质糖基化类型与点
蛋白质糖基化类型与点

1.2蛋白质糖基化类型与特点

蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质,和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明,70%人类蛋白包含一个或多个糖链,1%的人类基因组参与了糖链的合成和修饰。哺乳动物中蛋白质的糖基化类型可分为三种:N-糖基化、0-糖基化和GPI糖基磷脂酰肌醇锚。大多数糖蛋白质只含有一种糖基化类型,但是有些蛋白多肽同时连有N-糖链、O-糖链或糖氨聚糖。

(l) N-糖基化:糖链通过与蛋白质的天冬氨酸的自由NH

基共价连接,将这种

2

糖基化称为N-糖基化。N-连接的糖链合成起始于内质网(ER),完成于高尔基体。N-糖链合成的第一步是将一个14糖的核心寡聚糖添加到新形成多肽链的特征序列为Asn-X-Ser/Thr(X代表任何一种氨基酸)的天冬酰胺上,天冬酰胺作为糖链受体。核心寡聚糖是由两分子N-乙酰葡萄糖胺、九分子甘露糖和三分子葡萄糖依次组成,第一位N-乙酰葡萄糖胺与ER双脂层膜上的磷酸多萜醇的磷酸基结合,当ER膜上有新多肽合成时,整个糖链一起转移。寡聚糖转移到新生肽以后,在ER 中进一步加工,依次切除三分子葡萄糖和一分子甘露糖。在ER形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,原来糖链上的大部分甘露糖被切除,但又由多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。血浆等体液中蛋白质多发生N-糖基化,因此N-糖蛋白又称为血浆型糖蛋白。

(2) O-糖基化:糖链与蛋白质的丝氨酸或苏氨酸的自由OH基共价连接。0-糖基化位点没有保守序列,糖链也没有固定的核心结构,组成既可是一个单糖,也可以是巨大的磺酸化多糖,因此与糖基化相比,0-糖基化分析会更加复杂。0-连接的糖基化在高尔基体中进行,通常第一个连接上去的糖单元是N-乙酰半乳糖,连

接的部位为Ser、Thr或Hyp的羟基,然后逐次将糖残基转移上去形成寡糖链,糖的供体同样为核苷糖,如UDP-半乳糖。O-糖蛋白主要存在于黏液和免疫球蛋白等。

(3) GPI糖基磷脂酰肌醇锚:是蛋白与细胞膜结合的唯一方式,不同于一般的脂类修饰成分,其结构极其复杂。许多的受体、分化抗原以及具有一些生物活性的蛋白都被证实通过GPI结构与细胞膜结合。GPI的核心结构由乙醇胺磷酸盐、三个甘露糖苷、葡糖胺以及纤维醇磷脂组成。GPI锚定蛋白的C末端是通过乙醇胺磷酸盐桥接于核心聚糖上,该结构高度保守,另有一个磷脂结构将GPI锚连接在细胞膜上。核心聚糖可以被多种侧链所修饰,比如乙醇胺锚酸盐基团,甘露糖,半乳糖,唾液酸或者其他糖基。

糖基化的结果使不同的蛋白质打上不同的标记,改变多肽的构象,增加蛋白质的稳定性。糖蛋白的空间结构决定了它可以和那一种糖基转移酶结合,发生特定的糖基化修饰。在参与糖基化形成的过程中,糖基转移酶和糖苷酶扮演了重要的角色。表1-1显示了血清蛋白上N-糖链合成中重要的糖基转移酶。糖基转移酶是一类负责合成二糖、寡聚糖和多聚糖的酶。它们催化核苷酸糖(糖基供体)上的单糖基团转移到糖基受体分子上形成糖苷键。目前己对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。尽管如此,糖基转移酶具有严格的底物和受体专一性,如a1,6岩藻糖转移酶(Fut8)只催化二磷酸鸟苷-岩藻糖,将L-岩藻糖残基转移至N-糖链五糖核心的第一个N-乙酷葡糖胺上形成a-1,6糖苷键。一个寡糖结构可以被一个或几个糖基转移酶识别,不同比例的糖基转移酶竞争的结果就形成不同的糖苷键。糖苷酶是作用于各种糖苷或寡糖使其糖苷键水解的酶的总称,又称糖苷水解酶。糖苷酶一般对糖残基的特异性比对糖苷配基的特异性强,所以有许多仍未能确定其“真正的天然底物”到底是什么。

表1-1血清蛋白N-糖链合成重要糖基转移酶

Table 1-1 Glycosyltransferases that are important in the modification of N-glycans on serum proteins

蛋白质修饰位点预测详解

蛋白质修饰位点预测详 解 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

蛋白质修饰位点分析目录

(特别提示:ctrl+单击目录下的标题链接,可以跟踪标题;ctrl+单击标题后的图标 可以返回目录) 实验目的 找出“人类connexin43”蛋白质上面的所有可能磷酸化位点,并说明为什么(注释) 找出“人类血红蛋白”上面的糖基化位点,注释结果 实验平台 uniprot数据库: (查看蛋白的修饰情况) 预测未知蛋白磷酸化位点 DISPHOS: PhosphoSitePlus:

预测未知蛋白的糖基化修饰位点 N型糖基化位点预测: O型糖基化位点预测: 实验过程 一、“人类connexin43”蛋白质磷酸化位点修饰 1、“人类connexin43”蛋白质序列下载 蛋白序列: 2、uniprot数据库查看蛋白磷酸化位点 网站链接: 3、在线软件预测指定蛋白磷酸化位点 (1)DISPHOS 预测未知蛋白磷酸化位点 网站链接: 开始预测 结果

DISPHOS由蛋白序列预测蛋白磷酸修饰位点,总共有37个丝氨酸修饰位点,13个苏氨酸修饰位点,16个酪氨酸修饰位点。但是根据打分,只有8个丝氨酸修饰位点可能存在。 (2)PhosphoSitePlus预测指定蛋白磷酸化位点 网站链接: 开始预测 结果 筛选参考文献来源多于5篇的磷酸化修饰位点,丙氨酸磷酸化修饰位点数目为1、丝氨酸为17、苏氨酸数目为1、酪氨酸数目为7。 4、“人类connexin43”蛋白质磷酸修饰结论 在线数据库查询和在线软件预测结果基本一致,“人类connexin43”蛋白质磷酸位点数量相对一般蛋白质较多,且丝氨酸磷酸修饰位点最多。“人类connexin43”蛋白质极有可能是一种活性较高的蛋白质,与机体的生物活性显着相关。 通过各种文献阅读和网络筛选发现connexin43蛋白质是一种哺乳动物连接蛋白,是主要的细胞缝隙连接蛋白,其表达的异常与多种疾病的发生有关。 二、“人类血红蛋白”糖基化位点修饰 Ncbi下载人类血红蛋白的蛋白序列保存为:

蛋白质糖基化修饰研究进展

期末考核 课程:Glycobiology 蛋白质糖基化研究进展 姓名:马春 学号:2013113022 班级:生命科学与技术基地班 时间:2016.1.1

蛋白质糖基化研究进展 马春 (西北大学生命科学学院,陕西西安,710069) 摘要:糖基化修饰是生命活动中最广泛、最复杂、也是最重要的蛋白质翻译后修饰之一,不仅影响着蛋白质的空间构象、生物活性、运输和定位,而且在分子识别、细胞通信、信号转导等特定生物过程中发挥着至关重要的作用。本文综述了糖基化的分类、在生命体中的作用、糖基化位点分析及糖链分析方法等。 关键词:蛋白质糖基化;分析方法 生命体是一种极其复杂且动态变化的有机系统,不断发生着各种生物化学反应,进行新陈代谢,并协调、控制各部分生物功能的发挥。蛋白质是生命体内各种生化反应的载体和生物功能的执行者,如分子识别、信号转导、免疫应答等。蛋白质功能的正常发挥保证着生命有机系统正确、有序、高效地运转。基因在转录和翻译后产生具有特定序列的氨基酸长链,即蛋白质的前体,再经过共价修饰、折叠、卷曲并形成特定的空间构象后,成为具有正常功能的成熟蛋白质。而共价修饰在这个成熟过程中发挥着重要的调节作用。不仅如此,蛋白质成熟后的许多关键功能,特别是涉及控制、调节等方面的功能,都是通过共价修饰实现的。这些发挥重要功能的共价修饰,就是蛋白质翻译后修饰它们使蛋白质的结构更为合理、功能更为完善、调节更为精细、作用更为专一。翻译后修饰可以发生在蛋白质的任一位点上,并且种类繁多,目前有文献报道的翻译后修饰就多达数百种,常见的有碟酸 化修饰、糖基化修饰、乙醜化修饰等。 蛋白质糖基化修饰是最广泛、最复杂、最重要的翻译后修饰之一,据推断有超过的蛋白质都发生了糖基化修饰。这些糖蛋白广泛分布于生命体中,特别是在细胞膜上和体液中含量丰富,大部分膜蛋白和分泌蛋白都是糖蛋白。糖基化修饰不仅影响蛋白质的空间构象、生物活性、运输和定位,而且在分子识别、细胞通信、信号转导等特定生物过程中发挥着至关重要的作用。 1 糖基化类型 糖蛋白中的糖部分被称为聚糖。而己糖则是聚糖中最常见的组分。包括葡萄糖、半乳糖和甘露糖以及他们的一些简单修饰形式,如葡萄糖的α-羟基被酰化氨基取代生成N-乙酰葡糖胺。根据蛋白质被糖类修饰形式的不同可以把蛋白质糖基化分成以下四类: 1.2 N位糖基化 聚糖与天冬酰胺侧链的酰胺氮连接而修饰蛋白质。在动物细胞中,与天冬酰胺连接的糖,几乎都是N-乙酰葡糖胺,而且连接方式总是β构型。N 位糖基化根据其末端精细结构的不同又可分为高甘露糖型、复合型和杂合型。在N位糖基化中Asn-Xaa-Ser / Thr(Xaa 是除Pro外的任何氨基酸)被认为是N位糖基化的先决条件,不过少数情况下Asn-Xaa-Cys 序列也可以糖基化。 1.1 O位糖基化: 聚糖与丝氨酸或苏氨酸残基上的氧连接来修饰蛋白质。此糖基化多发生在临近脯氨酸的丝氨酸或苏氨酸残基上,但并没有发现特异的序列作为糖基化位点.O位多聚糖以逐步加接

(完整word版)蛋白质糖基化类型与点

1.2蛋白质糖基化类型与特点 蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质,和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明,70%人类蛋白包含一个或多个糖链,1%的人类基因组参与了糖链的合成和修饰。哺乳动物中蛋白质的糖基化类型可分为三种:N-糖基化、0-糖基化和GPI糖基磷脂酰肌醇锚。大多数糖蛋白质只含有一种糖基化类型,但是有些蛋白多肽同时连有N-糖链、O-糖链或糖氨聚糖。 (l) N-糖基化:糖链通过与蛋白质的天冬氨酸的自由NH 基共价连接,将这种 2 糖基化称为N-糖基化。N-连接的糖链合成起始于内质网(ER),完成于高尔基体。N-糖链合成的第一步是将一个14糖的核心寡聚糖添加到新形成多肽链的特征序列为Asn-X-Ser/Thr(X代表任何一种氨基酸)的天冬酰胺上,天冬酰胺作为糖链受体。核心寡聚糖是由两分子N-乙酰葡萄糖胺、九分子甘露糖和三分子葡萄糖依次组成,第一位N-乙酰葡萄糖胺与ER双脂层膜上的磷酸多萜醇的磷酸基结合,当ER膜上有新多肽合成时,整个糖链一起转移。寡聚糖转移到新生肽以后,在ER 中进一步加工,依次切除三分子葡萄糖和一分子甘露糖。在ER形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,原来糖链上的大部分甘露糖被切除,但又由多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。血浆等体液中蛋白质多发生N-糖基化,因此N-糖蛋白又称为血浆型糖蛋白。 (2) O-糖基化:糖链与蛋白质的丝氨酸或苏氨酸的自由OH基共价连接。0-糖基化位点没有保守序列,糖链也没有固定的核心结构,组成既可是一个单糖,也可以是巨大的磺酸化多糖,因此与糖基化相比,0-糖基化分析会更加复杂。0-连接的糖基化在高尔基体中进行,通常第一个连接上去的糖单元是N-乙酰半乳糖,连

生物类似药糖基化相似性评价中的审评思考

生物类似药糖基化相似性评价中的审评思考 糖基化作为一种重要的翻译后修饰,造成了蛋白类药物分子结构上的多样性和异质性,对有效性、安全性和药动学性质都有重要影响。糖基化是生物类似药和参照药相似性评价的难点之一。本文以单克隆抗体药物为例,介绍蛋白类药物糖基化表征的常用方法以及审评工作中生物类似药糖基化表征的技术考虑,为研发单位开发生物类似药以及监管机构对糖基化相关的技术审评提供参考。近年来,蛋白类药物由于在肿瘤、关节炎、糖尿病、心血管疾病等适应证上,显示出了作用靶点特异、疗效突出、安全性好等优点,极大满足了病患需求,已经成为药物研发的最重要领域之一[1]。然而,蛋白类创新药物由于巨大的研发成本,且价格高昂,严重影响了药物的可及性。各国监管机构纷纷出台政策法规指导和鼓励生物类似药的研发。2015年国家药品监督管理局药品审评中心发布了《生物类似药研发与评价技术指导原则》后,国内迎来了生物类似药的研发热潮,目前已陆续有相关产品获批上市。蛋白类药物由于多数采用哺乳动物细胞表达体系,细胞内存在着复杂的翻译后修饰和酶类反应,造成了表达产物在糖基化分子结构的多样性,生产工艺和细胞株的微小变化都可能导致目的蛋白糖修饰基团结构上的明显差异,因此,生物类似药基本上无法做到与原研产品在糖基化分子结构上完全一致[2-3]。相对于小分子药物,现有科学研究对单抗等大分子蛋白药物的分子结构与功能的认知仍然存在局限。目前对大分子药物之间的相似性评价方面往往需要综合药学、动物和人体等试验数据,结构和质量的相似性研究的深度和程度决定了开展人体临床评估的必要性和程度。各国监管机构鼓励研发企业采用最新的分析技术手段对原研药和生物类似药的结构进行深入研究,证明与原研药的“相似性”。 蛋白糖基化是一种重要的翻译后修饰,造成了蛋白药物糖基化修饰分子结构上的多样性和异质性。蛋白糖基化对蛋白的免疫原性和有效性有重要影响[4],被普遍认为是治疗性蛋白药物最重要的关键质量属性( CQA) 之一。细胞基质和生产工艺的变化都可能影响终产品蛋白的糖基化修饰的组成和结构[5-6]。因此,研发单位需要对不同研发阶段的蛋白药物进行全面深入的表征,保证生产工艺的一致性、产品的安全性、生物类似药和原研药的可比性。本文将以

蛋白质修饰位点预测详解

蛋白质修饰位点分析 目录 实验目的 (2) 实验平台 (2) 实验过程 (3) 一、“人类connexin43”蛋白质磷酸化位点修饰 (3) 1、“人类connexin43”蛋白质序列下载 (3) 2、uniprot数据库查看蛋白磷酸化位点 (4) 3、在线软件预测指定蛋白磷酸化位点 (6)

(1)DISPHOS 1.3预测未知蛋白磷酸化位点 (6) (2)PhosphoSitePlus预测指定蛋白磷酸化位点 (11) 4、“人类connexin43”蛋白质磷酸修饰结论 (14) 二、“人类血红蛋白”糖基化位点修饰 (15) 1、N型糖基化位点预测 (15) 2、O型糖基化位点预测 (18) (1)哺乳动物O型糖基化位点预测 (18) (2)真核生物O型糖基化位点预测 (20) 3、uniprot数据库查看蛋白质糖基化修饰位点 (22) 4、“人类血红蛋白”糖基化位点修饰结论 (22) 实验结论 (23) (特别提示:ctrl+单击目录下的标题链接,可以跟踪标题;ctrl+单击标题后的图标可以返回目录) 实验目的 ●找出“人类connexin43”蛋白质上面的所有可能磷酸化位点, 并说明为什么(注释) ●找出“人类血红蛋白”上面的糖基化位点,注释结果 实验平台 ●uniprot数据库: https://www.360docs.net/doc/8119083497.html,/(查看蛋白的修饰 情况) ●预测未知蛋白磷酸化位点 DISPHOS:https://www.360docs.net/doc/8119083497.html,/disphos/

PhosphoSitePlus:https://www.360docs.net/doc/8119083497.html, 预测未知蛋白的糖基化修饰位点 N型糖基化位点预测:http://www.cbs.dtu.dk/services/NetNGlyc/ O型糖基化位点预测:http://www.cbs.dtu.dk/services/NetOGlyc/ http://www.cbs.dtu.dk/services/YinOY ang/ 实验过程 一、“人类connexin43”蛋白质磷酸化位点修饰 1、“人类connexin43”蛋白质序列下载 蛋白序列:fasta.txt

糖基化对蛋白功能影响-有图

糖基化对膜蛋白功能影响常常是很重要的,对特异的生物学功能起介导作用:1,对细胞具有保护、稳定、组织及屏障等多方面作用; 2,可作为外源性受体的特异性配体,某些糖连可作为各种病毒、细菌及寄生物的特异受体;3,糖连也可作为内源性受体的特异性配体,参与介导清除、周转及胞内穿行作用; 4,最后要说的正是我所关心的:在受精和发育生物学中,糖连在受精过程中起着重要的作用,这方面的证据有:在小鼠卵透明带糖蛋白ZP3上的O-聚糖参与精卵结合。 活细胞中去糖基化的方法: 1,衣霉素在体内阻断N-连糖, 2,将内切神经氨酸酶注入发育中的视网膜提示了多唾液酸的特异性作用--将高纯度酶注入细胞内+恰当的对照 3,将糖基修饰酶的cDNA在活细胞或动物中表达 4,在培养环境中加入凝集素或抗体把特异的聚糖封闭掉 蛋白质的修饰与加工包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化。糖基化的作用是:①使蛋白质能够抵抗消化酶的作用;②赋予蛋白质传导信号的功能;③某些蛋白只有在糖基化之后才能正确折叠。糖基一般连接在4种氨基酸上,分为2种:O-连接的糖基化(O-linked glycosylation):与Ser、Thr和Hyp 的OH连接,连接的糖为半乳糖或N-乙酰半乳糖胺,在高尔基体上进行O-连接的糖基化;N-连接的糖基化(N-linked glycosylation):与天冬酰胺残基的NH2连接,糖为N-乙酰葡糖胺,如图(图为N-连接的糖基化引自Molecular Biology of the Cell. 4th ed. 2002)。

对已知蛋白序列的: 1。蛋白酶切,2-D胶,糖链染色,可确定糖基化位点2。用糖苷酶将糖切下,NMR可分析糖单体结构 3。分离切下的糖链,质谱分析 4。 ........

糖基化修饰是生物体中最普遍的蛋白质翻译后修饰,对蛋白质

自然科学奖公示内容 项目名称硼亲和分子印迹技术及其在生命分析中的应用提名单位南京大学 项目简介糖基化修饰是生物体中最普遍的蛋白质翻译后修饰,对蛋白质的结构和功能具有重要影响,与许多重大疾病的发生和发展密切相关。抗体和凝集素是识别糖蛋白和糖基化修饰的核心手段,但抗体和凝集素存在着难以制备、识别性能不足和稳定性差等瓶颈问题。分子印迹技术是制备仿生识别材料的重要方法,但项目实施前国际上缺乏能识别蛋白质的通用和高效的分子印迹技术。自2011年以来,项目团队将前期自主发展的硼亲和识别技术与分子印迹技术相结合,创新地发展出“硼亲和光刻分子印迹法”和“硼亲和可控定向表面印迹法”等通用、便捷、高效的分子印迹技术,突破了抗体和凝集素的局限,制备出了系列高效识别糖蛋白、糖肽、聚糖和单糖的分子印迹材料,为生命分析和生物医学应用中的糖蛋白质和糖基化修饰识别奠定了重要物质基础。项目团队还将所得分子印迹聚合物与表面增强拉曼光谱相结合,发展出专一、灵敏和快速的免疫分析新方法—“硼亲和夹心法(BASA)”和单细胞分析新方法—“等离激元免疫夹心法(PISA)”等生命分析新方法,为精准疾病诊断和个性化药物筛选重要应用提供强有力的分析工具。 主要完成人情况刘震,排名1,工作单位:南京大学 完成单位:南京大学 贡献:负责项目的整体构思、方案设计、研究内容指 导、经费申请、论文和专利的撰写。 刘佳,排名2,工作单位:南京大学 完成单位:南京大学 贡献:作为主要完成人之一,发展出基于活体免疫微 萃取和表面等离激元光学检测相结合的,称为“等离 激元免疫夹心法(PISA)”的新颖单细胞分析方法, 实现了单个活细胞和活体动物中的低拷贝数蛋白的 定性及定量分析。该部分工作是本项目硼亲和分子印 迹技术的重要应用,为癌症诊断与预后、细胞质量控 制、个性化药物筛选等多个重要应用领域提供了强有 力的分析工具。 李澧,排名3,工作单位:江苏省农业科学院 完成单位:南京大学 贡献:作为主要完成人,建立了“硼亲和光刻分子印 迹法”,成功制备了能识别甲胎蛋白等糖蛋白的高性 能分子印迹材料,并构建了利用分子印迹材料替代抗 体的新颖免疫分析方法,开辟了以硼亲和作为核心作

天然产物糖基化修饰及应用

天然产物糖基化修饰及应用 摘要:天然产物广泛存在于自然界中,其数量种类繁多且结构复杂多样,具有许多生理与药理活性。糖基化修饰能增加天然产物结构和功能的多样性,已成为当今新药开发的研究热点。本文简单介绍了天然产物糖基化的基本概念,以及天然产物糖基化修饰的研究方法和在各方面的应用。 关键词:天然产物,糖基化,修饰方法,应用 天然产物广泛存在于自然界中,其数量种类繁多且结构复杂多样,许多天然产物活性成分现在已经作为治疗各类疾病的药物,还有一些作为潜在的药物,具有抗炎抑菌、抗病毒、抗氧化、抗肿瘤、抗辐射和免疫调节等诸多活性,已成为国内外天然药物开发利用研究的热点。糖基化反应可以使许多外源化合物的理化性质与生物活性发生较大的变化,例如将不溶于水的化合物转变为水溶性化合物,降低化合物的毒性,增强稳定性等[1]。本文对天然产物糖基化修饰和应用作简单综述。 糖基化是生物细胞中最重要的反应之一,与多种生理病理过程有直接关系。在微生物和植物的次级代谢过程中,糖基化也是重要的反应,即生物为了使有机分子更有效地发挥作用而进行的一种结构修饰[2]。这种天然的修饰存在于多种生物学活性不一样的天然化合物中,包括抗生素、抗癌药物、激素、甜料、生物碱以及黄酮等多种代谢产物[3]。 1 天然产物简介 天然产物是指动物、植物、、海洋生物和体内的组成成分或其代谢产物以及人和动物体内许许多多内源性的化学成分统称作天然产物,其中主要包括、、、、各种酶类、、寡糖、、、、、木质素、维生素、、、蜡、、挥发油、、糖苷类、萜类、、、、醌类、、、鞣酸类、抗生素类等天然存在的化学成分。 1.1植物源天然产物成分 来源于植物界的有效成分主要有黄酮类、类、多糖类、挥发油类、醌类、萜类、木脂素类、香豆素类、皂苷类、强心苷类、酚酸类及氨基酸与酶等。 1.2微生物及其发酵液天然产物成分 微生物是包括细菌、病毒、以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。能够提供有效成分的主要是真核生物中的真菌与藻类,以及其他(发酵)产物。来源于微生物及发酵液的有效成分主要有、酶类、抗生素类、色素类、氨基酸类、有机酸类、醇酮类、维生素类、核酸类等等。 1.3海洋天然产物有效成分 海洋占地球表面积的71%,生物量约占地球生物总量的87%,生物种类20多万种,是地球上最大的资源能源宝库,目前人们对海洋生物的认识仍相当有限,利用率仅1%左右。到目前为止海洋天然产物有效成分主要有甾醇、萜类、、不饱和脂肪酸、多糖和糖苷、大环、聚醚类化合物和多肽等。

蛋白质糖基化类型与点演示教学

蛋白质糖基化类型与 点

精品文档 收集于网络,如有侵权请联系管理员删除 1.2蛋白质糖基化类型与特点 蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质,和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明,70%人类蛋白包含一个或多个糖链,1%的人类基因组参与了糖链的合成和修饰。哺乳动物中蛋白质的糖基化类型可分为三种:N-糖基化、0-糖基化和GPI 糖基磷脂酰肌醇锚。大多数糖蛋白质只含有一种糖基化类型,但是有些蛋白多肽同时连有N-糖链、O-糖链或糖氨聚糖。 (l) N-糖基化:糖链通过与蛋白质的天冬氨酸的自由NH 2基共价连接,将这 种糖基化称为N-糖基化。N-连接的糖链合成起始于内质网(ER),完成于高尔基体。N-糖链合成的第一步是将一个14糖的核心寡聚糖添加到新形成多肽链的特征序列为Asn-X-Ser/Thr(X 代表任何一种氨基酸)的天冬酰胺上,天冬酰胺作为糖链受体。核心寡聚糖是由两分子N-乙酰葡萄糖胺、九分子甘露糖和三分子葡萄糖依次组成,第一位N-乙酰葡萄糖胺与ER 双脂层膜上的磷酸多萜醇的磷酸基结合,当ER 膜上有新多肽合成时,整个糖链一起转移。寡聚糖转移到新生肽以后,在ER 中进一步加工,依次切除三分子葡萄糖和一分子甘露糖。在ER 形成的糖蛋白具有相似的糖链,由Cis 面进入高尔基体后,在各膜囊之间的转运过程中,原来糖链上的大部分甘露糖被切除,但又由多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。血浆等体液中蛋白质多发生N-糖基化,因此N-糖蛋白又称为血浆型糖蛋白。 (2) O-糖基化:糖链与蛋白质的丝氨酸或苏氨酸的自由OH 基共价连接。0-糖基化位点没有保守序列,糖链也没有固定的核心结构,组成既可是一个单糖,也可以是巨大的磺酸化多糖,因此与糖基化相比,0-糖基化分析会更加复杂。0-连

糖基化

糖基化 所谓糖基化即体内的葡萄糖分子或其他糖类分子错误 地粘贴到蛋白质上,引起蛋白质变性,这一有害反应与氧化反应一样对衰老起着推动作用,也是引发糖尿病并发症的重要因素。? 此处我们所讲的糖基化,特指血液中的糖和体内细胞粘贴到一起的反应,也是造成糖尿病各类并发症的病因所在。?要了解它的三围? 一围“粘上去”:健康的人体也会产生这种反应,但血液中的糖与细胞粘贴到一起后,会随着血糖浓度下降而自然脱落。(这时此反应的特点是高度可逆化)?二围“粘上去下不来”):对于糖尿病患者,由于血糖浓度高于正常水平,血液中的糖与细胞粘贴上,数小时后才能脱落。在这个过程中,糖会越粘越多,并与细胞产生了化学反应,粘贴变得牢固,造成部分细胞被糖化,丧失细胞本身的生理功能。(这是的特点是正反应大于逆反应)?三围“粘贴在一起”:当细胞表面糖分越积越多,数周后产生一系列化学反应,它的体积就会增大5-10倍。随着体积增大,两个细胞就会粘贴在一起,这两个细胞就会失去功能,这个现象属于不可逆转现象,就会产生晚期糖基化末产物AGES,只能等待细胞自然死亡。目前发现AGES与人体衰老有着密切的关系。这时的特点是此反应不可逆,同时细胞失去正常功能,体积

增大5-10倍。?----------------------------------------------?糖基化终产物(Advanced Glycation End products,AGE),是指在非酶促条件下,蛋白质、氨基酸、脂类或核酸等大分子物质的游离态氨基与还原糖的醛基经过缩合、重排、裂解、氧化修饰后产生的一组稳定的终末产物。该反应称为糖基化反应又称为美拉德反应,最早由法国食品化学家Maillard于1912 年提出。直到1980年AGE的病理生理意义才被发现,体内蓄积的AGE被证明参与多种疾病的病理变化,尤其是糖尿病、炎症、神经退行性疾病和心血管疾病。时刻关注AGE 值,对健康具有重要意义!?正常情况下,随着年龄的增长,AGE在我们体内是缓慢蓄积的,例如在婴幼儿体内各器官几乎不含AGEs,可在成人体内却含有AGEs,并随着年龄增长而增加。但是在糖尿病(或前期)患者体内,由于血糖处于长期的高水平或剧烈波动状态,就会导致AGE的加速形成,产生的过量AGE会在我们体内堆积,附着在健康的细胞、关节、器官、皮肤,及身体的其他系统上,通过直接或间接的作用导致糖尿病及其并发症的发展。AGE主要通过以下3个方面促进糖尿病的发生与发展:①AGE导致胰岛β细胞凋亡,并直接修饰胰岛素,导致胰岛素功能异常,还可抑制胰岛素信号通路,最终导致胰岛素抵抗。②AGE与细胞外基质大分子交联,阻碍其正常降解;同时使其生成增加,导致基底膜增厚、硬化。③AGE与细胞膜上的受体RAGE结合,

蛋白质糖基化工程

蛋白质糖基化工程 赵洪亮 刘志敏 3 (军事医学科学院生物工程研究所 北京 100071) 摘要 糖基化是蛋白质的一种重要的翻译后修饰,对蛋白质的结构和功能有重要影响。蛋白质 糖基化工程是通过对蛋白质表面的糖链进行改造,从而改良蛋白质性质的一种技术。综述了蛋白质糖基化工程的原理、方法和应用。关键词 蛋白质糖基化 糖基化工程 蛋白质改造 收稿日期:2003206212 3通讯作者,电话:010********* 1 蛋白质的糖基化及其作用 糖基化是蛋白质的一种重要的翻译后修饰[1] 。 根据糖链和肽链的连接方式的不同,蛋白质的糖基化可分为N 2糖基化和O 2糖基化。 N 2糖基化是通过糖链的还原端的N 2乙酰氨基葡萄糖(G lc 2NAc )和肽链中某些Asn 侧链酰氨基上的氮原子相连。能接有糖链的Asn 必须处于Asn 2X 2Ser ΠThr 3残基构成的基序(m otif )中,其中X 可为除Pro 的任意的氨基酸残基。 O 2糖基化的结构比N 2糖基化简单,一般糖链较短,但是种类比N 2糖基化多得多。肽链中可以糖基化的主要是Ser 和Thr ,此外还有酪氨酸、羟赖氨酸和羟脯氨酸,连接的位点是这些残基侧链上的羟基氧原子。 蛋白质分子表面的糖链可对蛋白质分子的结构产生深远的影响,其主要的功能有:111 糖基化影响蛋白质分子的生物活性 对于某些蛋白质分子如人绒毛膜促性腺激素 (hCG )而言,糖基化是其发挥生物学活性必需的。同时研究表明,改变蛋白质的糖基化还可以使蛋白 分子产生新的生物学活性[2] 。112 糖基化增加蛋白质的稳定性 糖基化可增加蛋白质对于各种变性条件(如变 性剂、热等)的稳定性[3] ,防止蛋白质的相互聚集[4] 。同时,蛋白质表面的糖链还可覆盖蛋白质分子中的某些蛋白酶降解位点,从而增加蛋白质对于 蛋白酶的抗性[5] 。 113 糖基化与蛋白质的免疫原性 一方面,蛋白质表面的糖链可诱发特定的免疫 反应,另一方面,糖链又可遮盖蛋白质表面的某些表位从而降低其免疫原性。114 糖基化与分子识别 长期以来,细胞表面的糖链被认为是“分子天线”参与细胞识别。研究表明,糖链还参与抗原与抗体[6]及抗体Fc 段与其受体FcR 的相互识别[7] 。115 糖基化与蛋白质的可溶性 研究表明,蛋白质表面的糖链可增加蛋白质分 子的溶解性[8] 。 116 糖基化影响蛋白质的转运 蛋白质表面的糖可作为蛋白分子的胞内定位信号,如糖蛋白N 2糖链经修饰,带有甘露糖262磷酸后,这些糖蛋白(多数是水解酶)就被分拣和投递到 溶酶体中。糖基化还可增加糖蛋白的分泌效率[9] 。117 糖基化影响治疗用蛋白的疗效 对于治疗用蛋白,糖基化还可影响蛋白药物在 体内的半衰期[10]和靶向性[11] 。 2 蛋白质糖基化工程 所谓蛋白质糖基化工程,就是通过对蛋白质表面的糖链进行改造,从而改良蛋白质性质的一种技术。常用的对糖链进行改造的方法有:(1)通过定点突变技术增加或减少蛋白质的糖基化位点,从而增加或减少蛋白质表面的糖链。(2)在体外通过 化学[2]或酶法[12] 对糖链进行修饰。(3)细胞内由一系列糖苷酶和糖基转移酶组装成糖基化途径(glycosylation pathway )来催化蛋白质的糖基化。通 第23卷第9期 中 国 生 物 工 程 杂 志 CHI NA BI OTECH NO LOGY 2003年9月

蛋白质修饰位点预测详解

蛋白质修饰位点预测详 解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

蛋白质修饰位点分析目录

(特别提示:ctrl+单击目录下的标题链接,可以跟踪标题;ctrl+单击标题后的图标可以返回目录) 实验目的 ●找出“人类connexin43”蛋白质上面的所有可能磷酸化位点,并 说明为什么(注释) ●找出“人类血红蛋白”上面的糖基化位点,注释结果 实验平台 ●uniprot数据库: (查看蛋白的修饰情况) ●预测未知蛋白磷酸化位点 DISPHOS: PhosphoSitePlus: ●预测未知蛋白的糖基化修饰位点 N型糖基化位点预测: O型糖基化位点预测:

实验过程 一、“人类connexin43”蛋白质磷酸化位点修饰 1、“人类connexin43”蛋白质序列下载 蛋白序列: 2、uniprot数据库查看蛋白磷酸化位点 网站链接: 3、在线软件预测指定蛋白磷酸化位点 (1)DISPHOS 预测未知蛋白磷酸化位点 网站链接: ●开始预测 ●结果 DISPHOS由蛋白序列预测蛋白磷酸修饰位点,总共有37个丝氨酸修饰位点,13个苏氨酸修饰位点,16个酪氨酸修饰位点。但是根据打分,只有8个丝氨酸修饰位点可能存在。 (2)PhosphoSitePlus预测指定蛋白磷酸化位点 网站链接: ●开始预测

●结果 筛选参考文献来源多于5篇的磷酸化修饰位点,丙氨酸磷酸化修饰位点数目为1、丝氨酸为17、苏氨酸数目为1、酪氨酸数目为7。 4、“人类connexin43”蛋白质磷酸修饰结论 在线数据库查询和在线软件预测结果基本一致,“人类connexin43”蛋白质磷酸位点数量相对一般蛋白质较多,且丝氨酸磷酸修饰位点最多。“人类connexin43”蛋白质极有可能是一种活性较高的蛋白质,与机体的生物活性显着相关。 通过各种文献阅读和网络筛选发现connexin43蛋白质是一种哺乳动物连接蛋白,是主要的细胞缝隙连接蛋白,其表达的异常与多种疾病的发生有关。 二、“人类血红蛋白”糖基化位点修饰 Ncbi下载人类血红蛋白的蛋白序列保存为: 1、N型糖基化位点预测 网站链接: ●开始预测 ●结果

相关文档
最新文档