空心纳米微球的制备及研究进展

空心纳米微球的制备及研究进展
空心纳米微球的制备及研究进展

湖州师范学院2012—2013学年第一学期

《纳米材料结构与性能》期末考查试卷

学院生科院班级100926 学号43 姓名成绩

论文(共100分)

根据本课程所学内容,查找国内外相关文献,围绕纳米材料的结构特性、制备方法、应用前景等撰写一篇3000字以上的综述性论文。论文题目五选一:(1) 一维纳米阵列的生长及其研究进展;(2) 空心纳米球的制备及其研究进展;

(3) 纳米太阳电池材料研究进展;(4) 纳米光催化材料研究进展;(5) 上转换纳米材料的合成及其光学性能。

通过广泛阅读中、英文的论文文献,结合国内外在所选论题方面的研究现状及发展前景,阐述自己对纳米材料及纳米科技的认识。

要求:

(1)针对性强,严格围绕所选论题;

(2)论文除正文外还应包含100字左右的中、英文的摘要300及3

-5个关键词;

(3)参考文献部分文献数应不少于5篇;

(4)论文格式严谨;

论文字数不少于3000字。

空心纳米球的制备及其研究进展

摘要:空心纳米球作为一种新的纳米结构,其特有的核——壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能。因此其在医学、制药学、材料学、染料工业等领域具有良好的应用前景。本文综述了近年来空心纳米球制备的主要方法:模板法、微乳液聚合法、自组装法,以及几种最新方法的研究和开发的最新进展,重点阐述各法的制备方法和原理,并简评其优缺点和应用领域。最后展望了空心纳米球的发展前景。

关键词:空心纳米球、制备方法、研究进展

1引言

空心纳米球由于具有低密度、高比表面积、中空结构及特殊的力学性能,在催化材料、光电材料、磁性材料、生物医药材料及轻体材料等领域有重要的应用前景。由于纳米空心球材料的优异性能及广阔应用前景,其开发研究引起了人们的广泛关注,现已形成制备纳米空心球的多种方法,如模板法[6,13,14]、微乳液法[7,10,16]、自组装法[15]等,已制备出Fe

O4[6],SiO2[13,14],ZnSe [16]等纳米空心球。

3

这些方法往往步骤较多,操作复杂,条件苛刻。因此,各大实验者积极创新,比如采用水热法与微乳法结合[2],模板法与溶胶—凝胶法的结合[12]等方法,甚至发明了电火花—超声复合加工法等其他新型制备法。

模板可以分为:conventional hard template,sacrificial template,soft template和template-free methods,那么微乳液法和胶束法可以归类于soft template。自组装法在一定程度上需要用到模板。因此本文将从模板法、自组装法两大类方法展开介绍,重点阐述各法的制备方法和原理,并总结近年来研究和开发的最新进展,简评其优缺点和应用领域。

2模板法

模板法是制备空心纳米球的重要方法,也是最常用的方法。如图1所示,先通过控制前驱体在模板表面沉积或反应,形成表面包覆层;然后用溶解、加热或

化学反应等方法除去模板,即得到空心纳米球结构。空心纳米球的大小由模板的尺寸决定[11]。

图 1 模板法制备空心纳米球的过程示意图

该方法是在空心球制备中使用最早、应用范围最广的一种方法。以下将展开直接模板法与其他创新模板法介绍。

2.1直接模板包覆法

以高分子乳胶粒模板为例,把乳胶粒模板先分散于溶剂中,通过吸附作用或化学反应(如沉淀反应、sol—gel 缩合反应等) 使产物或其前驱体直接包覆于乳胶粒外表面,形成核——壳结构,然后经焙烧或有机溶剂溶解除去模板,得到相应的空球。

该方法原理简单,用此方法已成功制备出了ZnS、CdS等多种无机材料的空心纳米球,以及有机物的核——壳结构。通常采用的模板有聚苯乙烯(PSt)、苯乙烯与甲基丙烯酸的共聚物( PSMA) 、聚甲基丙烯酸甲酯( PMMA)等。可以从物理吸附和化学反应两方面来阐述[1]。

2.1.1物理吸附作用制备纳米空心球

该方法的主要原理是乳胶粒子与壳材料间仅存在物理吸附作用,而不存在任何化学反应。如可用改性PSt 或其共聚物作为模板,其中将PSt 改性或与其它单体共聚是为了使模板表面带一定量负电荷,从而有利于通过模板与壳材料间的物理吸附作用实现壳层的包覆。该方法常用于金属及其氧化物、硫化物的空心结构的制备,如ZrO2、COS2[2]、CuO等。

2.1.2化学反应制备纳米空心球

该方法中乳胶粒与壳材料间并不是通过静电吸附从而实现包覆,而是通过化学反应包覆壳材料。该方法常用于聚合物纳米空心球材料的制备,其在无机材料纳米空心球制备中的应用并不多见。

但是这种方法的困难就在于如何选择合适的壳材料前驱体,使它既能与乳胶

核粒子反应以化学键相连,又能最终转化为壳材料[1]。

2.2水热——微乳法

丁筛霞等[2] 通过自制的纳米苯丙乳液粒子为吸附Co2+离子的载体,Co2+离子和CS2于微乳液粒子表面反应制得纳米核壳结构的苯丙乳液粒子CoS2,最后去除载体,得到纳米级CoS2空心球。

2.3溶胶——凝胶模板法

张庭伟等[12]以葡萄糖为前驱物,制备了大小不同(250~750 nm)的胶质碳球;以胶质碳球为模板,钛酸四丁酯(TBT)为前驱物,运用溶胶——凝胶法制备了大小不同(200~500 nm),壁厚可调(25~100 nm)的锐钛矿二氧化钛亚微型空心球。

即利用钛酸四丁酯为前驱物,钛酸四丁酯水解与碳球形成C/TiO2复合球作为模板,再通过高温煅烧除去碳球的在溶胶——凝胶方法中,得到了不同的二氧化钛空心球。利用同一种大小的C 球, 通过调整C/TBT 的质量比,可制得大小相同,而壁厚不同的二氧化钛空心球;利用不同大小的C 球为模板,可制得大小不同的二氧化钛空心球。这些空心球大小可控,形状规则,外壁光滑。

2.4固相一步合成法

一般的模板法制备空心球都需要处理后去除模板才能得到空心结构,不仅制备工艺复杂,而且对产物的最终形貌与性能影响较大。因此,人们又研究出了一些新的方法,如固相一部合成法[3],水相一步合成法[8],就算仍旧需要去除模板但是可以将步骤简化,一步即可。

邹洪涛等[3] 以ZnSO4·7H2O和Na3PO4·12H2O为原料,在室温研磨混合40min,然后将反应混合物在70℃烘箱中放置5 h使反应完全。首次通过室温及近室温固相化学反应,一步合成了磷酸锌空心纳米球。

该法合成方法简单,易操作,所需温度较低。

2.5水相一步合成法

吴良专等[8]研究了水相一步直接合成晶体TiO2空心球的方法,以水溶性的过氧化钛配合物(peroxo-titanium complex,PTC)为前驱体、聚苯乙(polystyrene,PS) 单分散球为模板,将模板的包覆、去除及TiO2壳层的晶化等步骤复合,通过简单的一步水溶液体系加热回流反应即可以制备单分散晶化纳米二氧化钛空心球。

与传统的模板法相比,本方法流程简单,可操作性强,显著简化了模板法合成晶化二氧化钛空心球的步骤。并且,以PTC前驱体取代有机金属化合物前驱体有效地降低了合成成本,同时,完全水相的合成路线能有效降低有毒有害物质的使用及排放,是一种环境友好的合成方法,具有较大的发展前景。

3自组装法

3.1L-b-L自组装法

L-b-L (layer-by-layer) 自组装技术[1]是以高分子乳胶粒为模板,把聚电解质与带相反电荷的壳材料或壳材料前驱物靠静电作用力逐层交替包覆于乳胶粒周围,形成多层的壳层结构,再通过不同的处理方法除去模板与聚电解质或模板后就可得到无机壳层材料、无机/有机等复合壳层材料的空心球。由于此包覆过程是靠壳材料与聚电解质间的静电吸引力实现壳材料的逐层包覆,无化学反应,因此称L-b-L自组装方法。

由该技术得到的空心球,除球壳内径可由模板粒径控制外,壳层材料的组成可按任意组成、任意层状结构和任意厚度进行可控制的组装。可根据需要选择壳层材料、根据壳层厚度要求设计交替包覆的次数,进而严格控制壳层材料的组分及其微观结构,但是它最大的局限在于聚电解质的多次吸附和洗涤提纯过程繁琐,因此相当费时。而且这种方法中也在一定程度上用到模板,因此同样需要用煅烧或溶剂溶解以除去有机物,对包覆层的最终形貌也会有很大影响。

3.2前驱物模板转化法

曹少文等[9]结合溶剂热、微波反应、模板法、前驱体热解法的优点发展了一种前驱物模板转化法,制备出多种不同组成的铁氧化物纳米片自组装空心微球。这种方法的优点之一是利用同一种前驱物在不同热处理条件下,可以得到多种不同物相的铁氧化物纳米片自组装空心微球。首先利用溶解、重结晶并发生还原作用的过程,制备出一种铁的前驱物,它是由FeC2H4O2纳米片通过自组装形成的空心微球;然后以该前驱物作为铁的源物质和模,在不同热处理条件下将前驱物转化为Fe3O4、γ-Fe2O3及α-Fe2O3纳米片自组装空心微球。

图 2 采用微波?溶剂热法(200℃)制备的前驱物纳米片自组装空心微球的

SEM (a, b)和TEM (c)照片

图 3 前驱物经不同热处理条件下热处理得到的Fe3O4 (a)和γ-Fe2O3 (b)纳米片

自组装空心微球的SEM 照片

上图表明该法制备所得的物质形貌合适,说明本法切实可行。.

3.3微波辅助溶剂热法

曹少文等[9]结合离子液体、微波反应和溶剂热法的优点,发展了一种离子液体辅助微波溶剂热法,制备出由纳米颗粒自组装形成的α-FeOOH 空心微球。通过对α-FeOOH 空心微球进行热处理制备出了由纳米颗粒组装形成的α-Fe2O3空心微球, 所制备的α-Fe2O3空心微球比分散的α-Fe2O3纳米颗粒具有更优良的光催化性能。通过在α-FeOOH 空心微球表面吸附二价铁离子的自催化作用, 制备出了具有高饱和磁化率、低剩磁和低矫顽力的Fe3O4空心微球。

4其他制备方法

除了多种方法结合创新,以改善去除模板等多步步骤,人们早就研究了多种其他方法。比如,美国伊利诺斯大学研究人员采用超声波制取二硫化钼空心纳米球[17]。方法是使金属前身物在局部热点上热分解(约5000 K),形成纳米颗粒,通过表面沾污空化去除方法,有助于形成无机簇。Mo(CO)6和硫被溶解在含胶体二氧化硅的异杜烯浆液中,用20kHz超声波(采用钛蜂音器,80w/cm2功率)发射,形成MoS2纳米颗粒。这些金属簇是孤立的,然后加热,在二氧化硅上形成均一

的MoS2壳体。最后,这些颗粒用HF酸溶液沥滤以溶解二氧化硅,得到空心MoS2

球(平均直径70 nm)。早在2006年就有利用超声的技术申请专利,在有机溶剂和水的混合溶剂中,在氨水的催化作用下,以阳离子表面活性剂作为结构导向剂,与无机硅材料共组装成具有介观结构有序结构的纳米尺寸的均匀球,高温下脱去表面活性剂,得到一种纳米尺寸大小均匀的氧化硅球。

5前景及展望

空心纳米球材料独有的隔热保温、防火耐水、防辐射和耐腐蚀特性,可在节能环保方面发挥重要的作用;内部的空腔可成为药物、染料和催化剂等的良好载体。半导体空心球材料则在光电功能转换、太阳能电池、传感器以及生物化学和DNA 检测方面则具有重要的应用前景[11]。

正是由于这些优良性能,人们早早开始研究空心纳米球的制备方法:超声波、激光烧蚀、喷雾干燥等,但是总有些许缺陷,因而人们投入较多精力在模板法、微乳法、自组装法上。模板法的模板除去会影响产物的完美程度,所以人们研究了将水热法、溶胶——凝胶法、共沉淀法等与模板法结合、一步法直接合成等,以减少其步骤,精简生产设备,减少环境污染,降低生产成本,扩大生产范围等。

未来研究的重点将是研究开发功能性空心纳米球的制备方法,通过对空心球组成、尺寸、球壁结构和厚度、球壁内外表面性质以及装载成分的调控,也可通过表面修饰和组装,引入有序功能性组分,从而获得具有一定所需功能如催化、传感和光电感应等的功能性空心纳米球材料。

6结语

材料的空心纳米球结构具有广泛的应用前景,目前已有很多空心球材料及其产品广泛应用于医学、化妆品、工业等领域。因此对于空心纳米球的制备方法及原理的深入研究,尤其是功能性空心纳米球的研发,无疑将会推动科研、工业、医疗事业及全社会的发展。可以预料,设计和制备新型的功能性空心纳米球将是今后研究的热点。

参考文献

[1]严春美,罗贻静,赵晓鹏.无机材料纳米空心球的制备方法研究进展[J].功

能材料,2006,37(7): 345—350.

[2]丁筛霞等.水热微乳液法制备锂离子阳极材料CoS2纳米空心球[J].材料开

发与应用,2011,26(3):50—53.

[3]邹洪涛等.磷酸锌空心纳米球固相一步化学合成与表征[J].2008.

[4]LI Jie,WANG Shujun,LIU Hongyan,LIU Ning. Recent Advances on the

Preparation and Characterization of Polymeric Hollow Nanospheres[J].材料

导报,2010,24(6):67—72.

[5]张萍等.聚合物空心纳米球及其在药学领域的应用[J].药学进

展,2006,30(8):350—353.

[6]马文哲等.空心超顺磁性Fe3O4纳米微球的制备与表征[J].无机材料学

报,2004,199(6):1407—1410.

[7]彭志明等.羟基磷灰石空心纳米球的制备及表征[J].广州化

工,2010,38(5):142—143.

[8]吴良专,只金芳.水相一步合成锐钛矿型二氧化钛空心球[J].物理化学学

报,2007, 23(8):1173-1177

[9]曹少文等.铁氧化物纳米晶自组装空心微球的制备、表征及其应用[J].无

机材料学报,2011,26(5):458—466.

[10]梁依经,黄伟九,田中青.微乳液法制备纳米材料研究进展[J].重庆工学院

学报,2007,21(9):88—91.

[11]贺军辉,陈洪敏,张林.无机微纳空心球[J].化学进展,2007,19(10):1488—

1494.

[12]张延伟,王培卿,张京,诸跃进.亚微型锐钛矿二氧化钛空心球的制备与表

征[J].宁波大学学报,2009,22(4):533—538.

[13]陈义旺,聂华荣,谌烈,康燕堂.以聚合物乳胶为模板经表面引发原子转移

自由基聚合制备空心二氧化硅纳米微球[J].高等学校化学学报,2005.

[14]李丽颖等.以阴离子多肽为模板合成二氧化硅纳米空心球[J].物理化学学

报,2008,24(3):359—363.

[15]杨心督等.聚乙二醇单甲醚接枝壳聚糖自组装纳米球的制备[J].中国新药

杂志,2007, 16(21).

[16]王大鸷等.微乳液法制备不同形貌低维硒化锌纳米晶[J].人工晶体学

报,2006,35(3):470—473.

[17]钱伯章摘自.Chemical Engineering,2005,112(4):15.

The preparation research of hollow nanospheres

Abstract : Hollow nanospheres as a new nanometer structure, its unique core-shell hollow structure and the thickness of the shell made it has many excellent physical and chemical properties. So it is widely used in medicine materials and dye indust ries. This article mainly reviews the most used advances such as template, microemulsion polymerization method and self-assembly method, and the latest method in the research and development of hollownanospheres in terms of preparation methods and their mechanisms, advantages, disadvantages, and the ranges of applicability. Finally, the develop-ments of hollow nanospheres are prospected.

Key words:hollow nanospheres, preparation method, research progress

纳米磁性空心微球及其与碳纳米管复合材料的制备及性能研究

目录 1前言 (1) 1.1纳米磁性空心微球概述 (2) 1.1.1纳米磁性空心微球研究现状 (2) 1.1.2纳米磁性空心微球的制备方法 (2) 1.1.3纳米磁性空心微球的应用 (8) 1.2稀土掺杂铁氧体吸波材料的研究现状 (10) 1.3碳纳米管的研究现状 (10) 1.4磁性碳纳米管复合材料的研究现状 (11) 1.5论文选题目的及意义 (12) 1.5.1论文选题目的及意义 (12) 1.5.2论文主要研究内容 (13) 2实验药品与仪器设备 (14) 2.1实验药品 (14) 2.2实验仪器 (15) 2.3样品的表征手段及条件 (15) 2.3.1X射线衍射分析(XRD) (15) 2.3.2扫描电镜分析(SEM) (16) 2.3.3透射电镜分析(TEM) (16) 2.3.4振动样品磁强计(VSM) (16) 2.3.5矢量网络分析仪 (16) 3钴铁氧体空心微球的制备及性能研究 (18) 3.1钴铁氧体空心微球的制备 (18) 3.1.1以聚苯乙烯(PS)球为模板法 (18) 3.1.2以碳微球为模板法 (18)

3.1.3溶剂热法 (19) 3.2钴铁氧体空心微球的表征与分析 (19) 3.2.1XRD分析 (19) 3.2.2形貌和粒径分析 (21) 3.2.3磁性能研究 (24) 3.2.4吸波性能研究 (26) 3.3本章小结 (27) 4钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1.1钴锌铁氧体空心微球的制备 (28) 4.1.2钴镍铁氧体空心微球的制备 (28) 4.2钴锌、钴镍铁氧体空心微球的表征与分析 (28) 4.2.1XRD分析 (28) 4.2.2形貌和粒径分析 (29) 4.2.3磁性能研究 (31) 4.2.4吸波性能研究 (34) 4.3本章小结 (37) 5稀土掺杂钴锌铁氧体微球的制备及性能研究 (38) 5.1稀土掺杂钴锌铁氧体微球的制备 (38) 5.1.1镧掺杂钴锌铁氧体微球的制备 (38) 5.1.2铈掺杂钴锌铁氧体微球的制备 (38) 5.1.3钕掺杂钴锌铁氧体微球的制备 (38) 5.2稀土掺杂钴锌铁氧体微球的表征与分析 (38) 5.2.1XRD分析 (38) 5.2.2形貌和粒径分析 (39) 5.2.3磁性能研究 (40) 5.2.4吸波性能研究 (44)

空心微球型材料的制备及应用进展

空心微球型材料的制备及应用进展/孙瑞雪等 ? 19 ? 空心微球型材料的制备及应用进展。 孙瑞雪 李木森吕宇鹏 (山东大学材料科学与工程学院,济南250061) 摘要 空心微球型材料由于具有特殊的空心结构而致使其具有许多独特的物理化学性质,因而具有广阔的应 用前景。综述了近几年来空心微球材料的制备方法,如喷雾反应法、模板法、微乳液聚合法等,并简要介绍了空心微球 型材料在药物输送系统、催化剂及建材等应用方面的研究进展。 关键词 空心微球制备应用 ProgressinPreparationandApplicationofHollow Microspheres SUNRuixue LI MusenLUYupeng (SchoolofMaterialsScienceandEngineering,ShandongUniversity,Jinan250061) Abstract Due to theirinnerhollowstructure,thehollowmicrosphereshavenlanyspecialphysicalandchemi— calpropertiesandhaveextensivepotentialapplications. Thepreparationmethodsofthehollowmicrospheres,such as spary dryingmethod,templatingmehtod,emulsionpolymerization,anditsapphcationindrugdeliverysystem,catalyzer andbuildingmaterialsfields are reviewed. KeywordshoUowmicosphere,preparation,app“cation 0 引言 近几年来,空心微球由于其独特的特性如密度小、比表面积 大、热稳定性和表面渗透性好以及较大的内部空间而受到越来越多的关注和研究[1]。许多材料如无机材料(沸石、羟基磷灰石等)、高分子材料(聚苯乙烯等)、金属氧化物(二氧化钛、氧化铝 等)以及半导体材料(氧化镓、氮化镓等)等均已被制成空心球结 构而呈现出常规材料所不具备的特殊功能,因而广泛地应用于药物缓释/控释系统、色谱分离、催化剂、涂料、微反应器以及光电材料等众多领域[2 ̄7]。目前,制备空心微球的方法主要有喷雾反应法、模板法、微乳液聚合法以及界面缩聚法等。本文主要介绍了近几年来国内外空心微球型材料的制备方法及其在应用方面的研究进展。 1 空心微球型材料的制备 制备空心微球的方法较多,但是不同类型的材料需要用不 同的制备方法才能够赋予材料特定的结构和表面性能,进而满足各种应用的要求。有研究者指出[8],目前空心微球型材料的应用和商业化受到限制的主要原因是因为空心微球的制备过程较为复杂,不易于产业化。因此,根据不同的需要,为各种材料寻找一种简单的制备空心微球的方法是非常重要和有意义的。 1.1高温熔解和喷雾反应法 高温熔解法制备空心微球的基本原理是:在较高的温度下, 将各种形状的固体颗粒熔融,并以一定的速度喷入液体介质中 冷却,形成球形颗粒。由于熔融颗粒在飞行的过程中,其内部含有的水蒸气或因本身材料分解而形成的气体在颗粒内部聚集,然后经由颗粒表面的微孔释放,从而形成空心的结构,其步骤如图1所示。 不规则形状颗粒 熔融液滴 气体聚集于颗粒内部 空心微球 图1高温熔解法制备空心微球的一般步骤 Fig.1耐picalprocedurefor hi曲teInpemturesmelti呜 pIq婀确ti帆of hollow哪舳er鹤 KaroIy等[9]采用热喷涂的方法制备了粒径为40肛m左右的 空心氧化铝微球,认为原始粉末具有多孔的结构以及较高的含水量更有利于空心球的形成。另外,我们课题组[10’11]采用等离 子喷涂的方法将羟基磷灰石粉末喷入水中制备了粒径在40~50“m之间的羟基磷灰石的空心微球,其形貌如图2所示。通过选择不同的喷涂工艺参数和原始粉末可以控制空心微球的形 图2羟基磷灰石空心微球的形貌 Fi吕2 11le唧hology oftheho¨owhydro科apatite microsphe煅 *山东省科技发展计划资助项目(032040105) 吕宇鹏:联系人,男,教授,主要从事生物医用材料的研究 Tel:0531—8395966 E-mail:dxb@sdu.edu.cn   万方数据

中药制剂纳米技术研究进展

中药制剂纳米技术研究进展 中药学:张生杰 104753091411 摘要:纳米中药是指运用纳米技术制造的、粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂,具有增加药物对血脑屏障或生物膜的穿透性等特点。本文详细介绍了纳米中药的定义、特点,同时介绍了纳米中药制剂技术方面的进展。指出了纳米中药制剂存在的问题,并作了展望。 关键词:纳米技术;中药制剂;中药现代化 1.前言 纳米即十亿分之一米,相当于10个氢原子排成直线的长度。纳米技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体。纳米技术作为高新技术,可广泛应用于材料学、电子学、生物学、医药学、显微学等多个领域,并起着重要的作用。1998年,徐辉碧教授等[2]率先提出了“纳米中药”的概念,进行了卓有成效的探索。纳米中药是指运用纳米技术制造的、粒径小于lOOnm的中药有效成分、有效部位、原药及其复方制剂。因纳米材料和纳米产品在性质上的奇特性和优越性,将增加药物吸收度,建立新的药物控释系统,改善药物的输送,替代病毒载体,催化药物化学反应和辅助设计药物等研究引入了微型、微观领域,为寻找和开发医药材料、合成理想药物提供了强有力的技术保证。运用纳米技术的药物克服了传统药 物许多缺陷以及无法解决的问题。将纳米技术应用于中药领域是中药现代化发展的重要方向之一。 中药作用的物质基础来自于中药中的活性成分,这些化学成分可能是某单一化合物(即有效成份),也有可能是所提取的某一有效部位或有效部位群,有些中药甚至以全药入药。对于从中药中提取的单一有效成份如紫杉醇、喜树碱等而言,其纳米化制备类似于合成药,因而其研究在技术上相对较易实现。纳米载药系统在这方面的应用已有一些报道,目前这类药物已有多种制剂进入临床研究阶段。从目前的情况来看,可以大量获得单一有效成份的中药并不多,这就意味着纳米载药系统在这一层次上的应用受到一定限制。中药有效部位为主要活性成份的制剂占有相当比例,这一方面体现了中药多成份、多靶点的特点,同时具有原料较有效成份容易获得,成本相对低廉的特点。因此,以有效部位作为纳米载药系统在中药研究中的切入点无疑具有更现实的意义。对于中药有效部位,由于其组成的多样性其纳米化制备是较复杂的,要研究的问题还很多。利用其结构或性质相近的特点选择适当的辅料和工艺,使其多组分同时实现纳米化,可能是解决问题的途径之一。对于中药(植物、动物和矿物)的全药,由于组成复杂且性质差异较大,实现纳米化的方法除超细粉碎以外有待进一步开发。总之纳米技术应用于中药制剂还处于起步阶段,但前景是很好的。 2.纳米中药的制备 2.1超细粉碎 粉碎是中药材加工最常用的方法之一。随着科学技术的进步,新的粉碎机械不断涌现,粉碎所能达到的粒度越来越小,使中药粉末的粒度由细粉的尺度10μm-1000μm进入到超细粉的尺度0.1μm-10μm。经过超细粉碎的中药材,最直接的效应就是由于表面积增大而导致的药物吸收增加,相应地生物利用度得到提高,服用剂量减小,资源的利用率提高。 但是,超细粉碎在中药研究中的应用还存在一些问题,首先,中药材的超细粉碎虽然

纳米空心微球

二氧化硅中空纳米微球及其导热系数小结纳米中空微球的制备与性能研究是近年来纳米科技领域的热点领域,此种材料具有中空的形态结构,粒径在纳米至微米级,具有大比表面积,低密度,稳定性好的特点[1]。由于其内部的空心结构可容纳大量的客体分子或大尺寸的客体,可以产生一些奇特的基于微观“包裹”效应的性质,使得空心微球材料在医药、生化和化工领域都有重要的作用,其大比表面积低密度等特点也是一种很好的催化材料和轻体材料[2,3]。此外中空纳米微球还具有良好的隔热性能在保温隔热领域也有良好的应用前景。 1.中空纳米微球的表征方法 2.1 扫描电镜(SEM) SEM可被用来直接观察样品的外观形貌,但不能确定内部结构。 2.2 透射电镜(TEM) TEM 是观察样品形状和内部结构最常用的表征方法。从TEM 照片上可测量出空心球的大小,球壳的厚度;用HTEM 还可以观察到球壳的微观结构。 2.3 X射线衍射(XRD) 通过对X 射线衍射分布和强度的分析可获得空心微球的晶体结构等信息。 2.4 氮气吸附 氮气吸附法可用于测试形成过程中孔径变化以及空心球内比表面积。冷文光等[1]通过氮气吸附-脱附测试研究空心微球被四氢呋喃溶解之前后的孔径分布和形貌对比。 2.4 X射线光电子能谱(XPS) XPS 是应用于分析粒子表面成分最为广泛的一种表征方法,主要分析表面元素组成、价态及含量的信息。对于空心球结构的材料,通过XPS 分析可以得到球壳的化学组成及各种成分的含量,同时可以检测出核模板是否完全去除,为空心结构的确认提供可靠的依据[2,3]。 2.5 红外光谱(FTIR) 利用FTI R 可得到材料所含有的重要官能团信息。如果在处理材料的过程中研究FTI R 中特定基团吸收峰的位移,以及某些吸收峰的出现或消失情况,还可得出材料在处理过程中的变化情况。冷文光等[1]通过红外光谱验证聚苯乙烯/二氧化硅杂化空心微球是由二氧化硅与聚苯乙烯链段共同组成。 除此之外空心微球的表征方法还有热重分析(TG)、小角X 射线散射(SAXS)、核磁 共振、磁谱等方法[1,2,3]。 2.中空纳米微球的合成 2.1模板法 模板法是制备中空纳米微球使用较为多的一种,先以特定物质制成球形模板,然后在外侧包覆上所需材料形成外壳,最后将内部模板去除就得到空心球体结构。按照外部壳体的生长方式可分为溶胶凝胶法和层层自组装法[2]。 2.1.1溶胶凝胶法 溶胶凝胶法是利用有机硅烷的水解缩合反应在模板的表面形成二氧化硅层。其优点是通过调整聚合物尺寸、聚集情况以及溶剂可以实现对胶束的尺寸和形貌进行控制。罗花娟等[4]发现在制备过程中氨水、TEOS的用量会影响到空心球的内径和空心球的壁厚,溶解模板时的温度也会对空心球的形貌产生影响。 2.1.2层层自组装法(LBL) 由G.Decher等在1991年提出,通过利用不同带电物质静电吸附作用,层层沉积。这种方法的优势在于通过调整末班尺寸和沉积的量可以更加简便的对中空二氧化硅的内径、壁厚进行控制,但其实验的设计和操作以及模板的去除都相对繁琐[2,3]。

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

空心纳米微球的制备及研究进展

湖州师范学院2012—2013学年第一学期 《纳米材料结构与性能》期末考查试卷 学院生科院班级100926 学号43 姓名成绩 论文(共100分) 根据本课程所学内容,查找国内外相关文献,围绕纳米材料的结构特性、制备方法、应用前景等撰写一篇3000字以上的综述性论文。论文题目五选一:(1) 一维纳米阵列的生长及其研究进展;(2) 空心纳米球的制备及其研究进展; (3) 纳米太阳电池材料研究进展;(4) 纳米光催化材料研究进展;(5) 上转换纳米材料的合成及其光学性能。 通过广泛阅读中、英文的论文文献,结合国内外在所选论题方面的研究现状及发展前景,阐述自己对纳米材料及纳米科技的认识。 要求: (1)针对性强,严格围绕所选论题; (2)论文除正文外还应包含100字左右的中、英文的摘要300及3 -5个关键词; (3)参考文献部分文献数应不少于5篇; (4)论文格式严谨; 论文字数不少于3000字。

空心纳米球的制备及其研究进展 摘要:空心纳米球作为一种新的纳米结构,其特有的核——壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能。因此其在医学、制药学、材料学、染料工业等领域具有良好的应用前景。本文综述了近年来空心纳米球制备的主要方法:模板法、微乳液聚合法、自组装法,以及几种最新方法的研究和开发的最新进展,重点阐述各法的制备方法和原理,并简评其优缺点和应用领域。最后展望了空心纳米球的发展前景。 关键词:空心纳米球、制备方法、研究进展 1引言 空心纳米球由于具有低密度、高比表面积、中空结构及特殊的力学性能,在催化材料、光电材料、磁性材料、生物医药材料及轻体材料等领域有重要的应用前景。由于纳米空心球材料的优异性能及广阔应用前景,其开发研究引起了人们的广泛关注,现已形成制备纳米空心球的多种方法,如模板法[6,13,14]、微乳液法[7,10,16]、自组装法[15]等,已制备出Fe O4[6],SiO2[13,14],ZnSe [16]等纳米空心球。 3 这些方法往往步骤较多,操作复杂,条件苛刻。因此,各大实验者积极创新,比如采用水热法与微乳法结合[2],模板法与溶胶—凝胶法的结合[12]等方法,甚至发明了电火花—超声复合加工法等其他新型制备法。 模板可以分为:conventional hard template,sacrificial template,soft template和template-free methods,那么微乳液法和胶束法可以归类于soft template。自组装法在一定程度上需要用到模板。因此本文将从模板法、自组装法两大类方法展开介绍,重点阐述各法的制备方法和原理,并总结近年来研究和开发的最新进展,简评其优缺点和应用领域。 2模板法 模板法是制备空心纳米球的重要方法,也是最常用的方法。如图1所示,先通过控制前驱体在模板表面沉积或反应,形成表面包覆层;然后用溶解、加热或

聚苯胺空心管和空心微球的制备

超声辅助合成聚苯胺空心管及聚苯胺空心球 谭建雄徐沛思孙丰强 (华南师范大学化学与环境学院 , 广东广州510006) 摘要以水杨酸为“软模板”,超声辅助合成了聚苯胺空心管及聚苯胺空心球,通过扫描电子显微镜(SEM)主要考察了反应温度、超声及超声时间长短、初始反应温度、引发剂过硫酸铵的用量以及水的用量等对聚苯胺形貌的影响。结果表明超声及室温条件有利于聚苯胺空心管的形成;较高的初始反应温度对低温制备聚苯胺空心微球有利;室温制备聚苯胺空心微球时,引发剂过硫酸铵的用量以及水的用量是影响聚苯胺形貌的两个重要的因素。 关键词:超声,聚苯胺,空心管,空心球 1前言 材料的形貌和结构决定了它们的性能,所以具有不同寻常的复杂形貌和结构的聚合物材料引起人们的极大关注。聚合物空心球的空心结构使其具有容纳大量客体分子的能力,从而在传递控制、轻质填料、催化作用等领域上有很大的潜在应用[1]。 最近,导电聚合物的空心微球结构由于在微胶囊包覆、药物输送、人工细胞和生物活性成分保护(如蛋白质、酶和DNA等)等领域具有广阔的应用前景,而受到广泛的关注[2]。在众多的导电聚合物中,聚苯胺(PANI)具有原料易得、结构和性能可控、合成简便、环境稳定性好等特点,是当前最具应用前景的导电聚合物品种之一[3]。空心的导电聚合物微球和粒径相同的实心导电聚合物电导率几乎相同,且空心导电聚合物微球由于自己特殊的结构特点而具有更好的可加工性和电磁性能。将此种材料应用于雷达波吸收材料的研究中,可充分发挥出中空微球质量轻,电磁性能好的优点[4]。同时聚苯胺空心球的高比表面积、低渗透率和密度使其在微反应器、生物传感器、色素合成、能量储备上的潜在应用是独一无二的。 一维聚苯胺材料的化学合成方法有模板法(template method)、接种聚合法(seeding polymerization)、界面聚合(interfacial polymerization)、稀溶液聚合(dilute polymerization)[5]。 空心球结构的制备通常采用“模板法”(硬模板) [6],但是,由于模板的使用,模板必须通过溶解或者热分解除去,以便得到一个中空的内部。这使得制备过程变得繁琐复杂,并且在除去模板的过程中难免会造成空心球结构的损坏。廉价和环保的一步合成聚合物空心球方法是非常需要的。万梅香等[7]提出了一种“无模板”的方法制备导电聚合物微/纳米结构,以水杨酸为掺杂剂制备聚苯胺,

纳米SiO2空心微球对重金属离子的吸附特性

第 23 卷第 6 期中国有色金属学报 2013 年 6 月 V ol.23 No.6 The Chinese Journal of Nonferrous Metals June 2013 文章编号:1004-0609(2013)06-1661-05 纳米 SiO2 空心微球对重金属离子的吸附特性 刘 纯 1, 2 ,殷恒波 2 ,石莉萍 1 ,王爱丽 2 ,吴占敖 3 ,吴 刚 3 ,姜 涛 3 ,沈玉堂 2 ,姜廷顺 2 (1. 北华大学 化学与生物学院,吉林132013; 2. 江苏大学 化学化工学院,镇江 212013; 3. 中国人民解放军第359医院,镇江 212001) 摘 要:选用具有高比表面、强吸附能力的二氧化硅纳米空心微球作吸附剂,对 Pb 2+ 、Cu 2+ 及 Cr 3+ 的吸附性能进 行测试。利用 Langmuir 线性方程对吸附平衡数据进行拟合。结果表明:二氧化硅纳米空心微球对重金属离子具 有较高的饱和吸附量,分别为1.256、0.681、0.563 mmol/g。饱和吸附量与重金属离子的共价指数及电荷密度有很 强的相关性,随着共价指数增加或电荷密度的降低,饱和吸附量增大;吸附常数与重金属离子电场强度(有效核电 荷数)有关,随着有效核电荷数的增加,吸附常数增大。此吸附过程具有化学吸附特征,再生的吸附剂可以重复使 用。 关键词:纳米SiO2 空心微球;重金属离子吸附;Langmuir 线性方程 中图分类号:O613.72;O647.31 文献标志码:A Adsorbability characteristic of hollow SiO2 nanospheres for heavy metal ions LIU Chun 1, 2 , YIN Heng-bo 2 , SHI Li-ping 1 , WANG Ai-li 2 , WU Zhan-ao 3 , WU Gang 3 , JIANG Tao 3 , SHEN Yu-tang 2 , JIANG Ting-shun 2 (1. School of Chemistry and Biology, Beihua University, Jilin 132013, China? 2. Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China? 3.Chinese PLA 359 Hospital, Zhenjiang 212001, China) Abstract: The adsorbability of hollow SiO2 nanospheres of high adsorption capacity and large specific surface area for Pb 2+ , Cu 2+ , and Cr 3+ ions was investigated. The absorbtion equilibrium data were fitted by Langmuir linear equation. The results show that hollow SiO2 nanospheres have high adsorption capacity for heavy metal ions, the adsorption capacities for Pb 2+ , Cu 2+ and Cr 3+ ions are 1.256, 0.681, and 0.563 mmol/g, respectively. As the fitting data shown, there is a strong correlation between the adsorption capacity and ion characteristics (covalent index and charge density). The adsorption capacity increases with the increase in covalent index or decrease in charge density. The adsorption constant is related to electric field intensity of ion (effective nuclear charge), and the adsorption constant increases with the increase in effective nuclear charge of ion. This adsorption process should belong to chemisorption. The regenerated adsorbent can be reused many times. Key words:hollow SiO2 nanosphere?heavy metal ion adsorbtion?Langmuir linear equation 含重金属的废水主要来源于采矿、金属加工、制 革、药品、橡胶、塑料以及木材加工等行业 [1] 。富含 重金属的废水污染水源及土壤,可直接危及动植物的 生存,还可经生物链被生物吸附和富集,最终在人体 基金项目:江苏省教育厅基金资助项目(11KJB530002, CX10B-259Z);吉林省教育厅“十二五”规划项目(吉科教合字[2011]第 140 号) 收稿日期:2012-05-30;修订日期:2013-03-08 通信作者:殷恒波,教授,博士;电话:0511-88787591;E-mail: yin@https://www.360docs.net/doc/81912680.html,

纳米银的制备与应用前景

纳米银的制备及其应用研究进展 华侨大学材料科学与工程学院 王健08应化0814131030 摘要:纳米材料是由纳米粒子组成的固体材料,自80时代纳米材料的概念形成后,这种材料就一直受到人们极大的关注,金属纳米材料是纳米材料的一个重要分支,它以贵金属金、银、铜为代表,其中纳米银的研究结果最多,本文主要参阅了中外09~11年的9篇纳米银的制备与应用相关文献筛选总结,并简述了近年来纳米银的制备方法及其应用研究进展,包括物理方法和化学方法。 关键词:纳米银粒子制备物理方法化学方法应用 引言 纳米粒子----也叫超微颗粒,粒径一般在1—100 nm之间,处在原子簇和宏观物体交界的过渡区域。从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统,亦非典型的宏观系统,是一种典型人介观系统,介于原子、分子和宏观物质之间。随着对各种纳米粒子的不断深入研究,促进了纳米粒子在制药业、纺织业、物理、化学、农业等各领域的广泛应用。纳米银粒子是纳米粒子的一种。在各种金属纳米粒子中,纳米银粒子自从问世以来一直深受人们的关注,这不仅是由于其具有独特的电子特性,光学特性,机械特性和催化特性,并且具有良好的抗菌性、生物兼容性和表面易修饰等优点。因此,纳米银粒子是一种非常有用的纳米材料,可以用作照相制版、生物医用材料、化工的催化剂、陶瓷材料、导电浆料、污水处理、建筑材料、润滑剂、光吸收材料、涂料、传感器、高性能电极材料等。 纳米银粒子的制备方法有很多,人们借鉴已有的制备方法,已制备出各种粒径和结构的纳米银粒子,如球形纳米银粒子、纳米银块体材料、树状纳米银、银纳米管、银纳米带、银纳米链、银纳米立方体、银纳米双凌锥、银纳米线、银纳米三棱柱、银纳米片、银纳米盘等结构,如下图列出的几种:

空心纳米球的制备方法及其研究进展

空心纳米球的制备方法及其研究进展 摘要: 空心纳米球作为一种新的纳米结构, 其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能, 从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景。本文综述了微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理, 最后总结了空心纳米球材料的研究进展。 1 引言 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。如今已问世的纳米结构有准一维纳米材料包括纳米管、纳米线、纳米棒和纳米电缆等, 而且这些纳米结构材料的制备技术已日趋成熟并逐步实用化。 空心纳米球作为一种新的纳米结构, 其一个明显的特征就是具有很大的内部空间及厚度在纳米尺度范围内的壳层。这种特殊结构使它可作为客体物质的载体, 从而在医学和制药学领域应用范围很广。此外, 空心球的特殊空心结构还使得这种材料与其块体材料相比具有比表面积大、密度小等很多特性, 因此空心纳米球的应用范畴不断扩大, 已扩展到材料科学、染料工业等众多领域。可作为轻质结构材料[ 1] 、隔热、隔声和电绝缘材料[ 2] 、颜料、催化剂载体[ 3] 等。 由于空心纳米球材料的优异性能及广阔应用前景, 其开发研究引起了人们的广泛关注, 现已形成制备空心纳米球的多种方法, 如模板法[ 4, 5] 、吸附技术[ 5] 、喷雾高温分解法[ 6, 7] 、超声化学法[ 8] 、水热法[ 9] 等。用这些方法已成功制备出CdS[ 10] 、ZrO2[ 11] 、金属Ag[ 12, 13] 、TiO2[ 14] 、Si[ 15] 、SnO2[ 1 6] 等多种无机材料空心纳米球,及聚合物空心纳米球, 如PSt [ 17, 18] 、聚甲基丙烯酸甲酯[ 19] 等。 目前关于空心纳米球的报道多局限于空心球的制备, 而对具体制备方法的阐述则比较少。模板法作为最常用的一种制备方法被广泛地用于各种材料的空心纳米球的制备中, 而其在聚合物空心纳米球制备中的应用已有文献综述报道[ 20] , 且技术已相对成熟。因此本文将综述使用微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理。 2.1 Microemulsion method Microemul sion technology was applied to produce polymer in the 1980s. Stoffer et al[ 45] fir stly polymerized the methyl methacrylate (MMA) and methacrylate (MA) by microemulsion technology. Since then , the microemul sion technology as a roused widespread concern. And now it has become an important approach to prepare the hollow nanospheres , especially for those that the diameter is small (minimum 10 ~60nm) . The preparation process has three steps[ 46] : firstly ,precur sors of target product s hydrolyze and generate oxide with aquifer or hydroxides on the surface of the droplet of microemul sion ; afterwards , the stable colloidal particles that is produced by polycondensation coat and form the core-shell structure of emul sion and gel ; at last , water or organic solvent are used to separate the product f rom the microemulsion. Then hollow nanospheres can be prepared. The process is shown in Fig. 1.

无机材料纳米空心球的制备方法研究进展_严春美

无机材料纳米空心球的制备方法研究进展* 严春美,罗贻静,赵晓鹏 (西北工业大学电流变技术研究所,陕西西安710072) 摘 要: 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。纳米空心球作为一种新的纳米结构,其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能,从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景。本文综述了模板法和由模板法发展而来的L-b-L自组装法制备无机材料纳米空心球的一般过程及原理,最后展望了纳米空心球材料的发展前景,并探讨了目前在无机材料纳米空心球研究领域中存在的问题。关键词: 无机材料纳米空心球;模板法;L-b-L自组装法 中图分类号: TB383文献标识码:A 文章编号:1001-9731(2006)03-0345-06 1 引 言 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。如今已问世的纳米结构有准一维纳米材料包括纳米管、纳米线、纳米棒和纳米电缆等,而且这些纳米结构材料的制备技术已日趋成熟并逐步实用化。 纳米空心球作为一种新的纳米结构,其一个明显的特征就是具有很大的内部空间及厚度在纳米尺度范围内的壳层。这种特殊结构使它可作为客体物质的载体,从而在医学和制药学领域应用范围很广。此外,空心球的特殊空心结构还使得这种材料与其块体材料相比具有比表面积大、密度小等很多特性,因此纳米空心球的应用范畴不断扩大,已扩展到材料科学、染料工业等众多领域。可作为轻质结构材料[1]、隔热、隔声和电绝缘材料[2]、颜料、催化剂载体[3]等。 由于纳米空心球材料的优异性能及广阔应用前景,其开发研究引起了人们的广泛关注,现已形成制备纳米空心球的多种方法,如模板法[4,5]、吸附技术[5]、喷雾高温分解法[6,7]、超声化学法[8]、水热法[9]等。用这些方法已成功制备出CdS[10]、ZrO2[11]、金属Ag[12,13]、TiO2[14]、Si[15]、SnO2[16]等多种无机材料纳米空心球,及聚合物纳米空心球,如PSt[17,18]、聚甲基丙烯酸甲酯[19]等。 目前关于纳米空心球的报道多局限于空心球的制备,而对具体制备方法的阐述则比较少。模板法作为最常用的一种制备方法被广泛地用于各种材料的纳米空心球的制备中,而其在聚合物纳米空心球制备中的应用已有文献综述报道[20],且技术已相对成熟。因此本文将综述使用模板法和由模板法发展而来的L-b-L 自组装法制备无机材料纳米空心球的一般过程及原理。 2 模板法制备纳米空心球 传统的制备空心球的方法主要是利用各种可牺牲性模板,如聚苯乙烯球[11,14,21]与二氧化硅粒子及它们的晶体阵列[16]、液滴[10]、硅球[22]、树脂球[23]、囊泡[24]、微乳液滴[25]等作为核制备空心球,因此称为模板法。其过程是首先通过物理或化学方法得到核-壳型复合粒子,然后通过加热、煅烧或溶剂溶解除去核,得到空心球,其过程可见图1 。 图1 模板法制备纳米空心球的一般步骤 Fig1Ty pical procedure for tem plate preparatio n of ino rganic hollo w nanospheres 该方法是在空心球制备中使用最早、应用范围最广的一种方法。以下根据模板的作用状态(分散态与“晶格”堆积态)及模板形态(固态与非固态)将模板法制备空心球的原理及过程分为3类详细介绍。 2.1 直接模板包覆法制备纳米空心球 这里以高分子乳胶粒模板为例。把乳胶粒模板先分散于溶剂中,通过吸附作用或化学反应(如沉淀反应、sol-gel缩合反应等)使产物或其前驱体直接包覆于乳胶粒外表面,形成核-壳结构,然后经焙烧或有机溶剂溶解除去模板,得到相应的空心球[26]。 这种方法的原理简单,是目前应用最多的制备空心球的方法之一。用此方法人们已成功制备了CdS[10]、ZrO2[11]、Si[15]、Fe3O4[27]、ZnS[28]、TiO2[29]等多种无机材料的纳微米空心球,以及有机物的核/壳结构,如PSt/PEDOC的纳米复合材料[30]等。在这些材料的制备中,常用的模板有聚苯乙烯(PSt)[15,22,27,29]、苯乙烯与甲基丙烯酸的共聚物(PSMA)[28]、苯乙烯与 345 严春美等:无机材料纳米空心球的制备方法研究进展 *基金项目:国家杰出青年科学基金资助项目(50025207);国家自然科学基金资助项目(50272054)收到初稿日期:2005-07-14收到修改稿日期:2005-09-13通讯作者:赵晓鹏 作者简介:严春美 (1981-),女,安徽黄山人,在读硕士,师从赵晓鹏教授,主要从事纳米ZnO电致发光性能研究。

空心超顺磁性Fe3O4纳米微球的制备与表征.

第19卷第6期无机材料学报 Volt 19,No? 6 2004年11月 Journal of Inorganic Materials NoV‘,2004 文章编号:1000—324X(200406—1407—04 空心超顺磁性Fe304纳米微球的制备与表征 马文哲,钱雪峰,印杰,朱子康 (上海交通大学化学化工学院,上海200240 摘要:利用聚氧乙烯.聚氧丙烯-聚氧乙烯嵌段共聚物F127作为模板采用共沉淀法制备了空心超顺磁性Fe304纳米微球并用x射线{1i亍射(XRD和透射电子显微镜(TEM进行了表征,纳米微球的大小为55,--75nm,壳的厚度为7nm左右,颗粒大小均匀、在水溶液中分散良好. 关键词:空心;超顺磁性;纳米微球;re304;F127 中图分类号:TF 123文献标识码:A 1引言 具有空心结构的磁性纳米微球是一种新颖的材料,由于在生物、靶向药物载体、功能材料等领域有重要的应用而受到人们的关注[1 ̄引.近年来已有一些关于制备空心磁性Fe304纳米微球的报道,例如Caruso.F等学者将四氧化三铁纳米粒子采用物理或者化学的方法吸附在离分子微球表面然后通过高温灼烧得到空心结构【3】等,这些方法往往步骤繁琐,所制备的空心磁性纳米微球粒径较大. 聚氧乙烯一聚氧丙烯-聚氧乙烯嵌段共聚物是一种性质独特的两亲分子,在水溶液中能自发形成胶束,其内核主要由疏水的PPO嵌段构成,外壳主要由亲水的PEO 嵌段构成[4】. 本文利用聚氧乙烯-聚氧丙烯一聚氧乙烯嵌段共聚物 F127(.m(PPO:m(PEO=30:70作为模板采用共沉淀法制备出了粒径均一、分散良好的空心超顺磁性Fe304纳米微球,并对其进行了表征.

纳米银的制备及应用研究进展

湖南工程学院 课程论文 学院化学化工学院班级化工1103 姓名吴飞学号201106010305 课程论文题目纳米银的制备及应用研究进展课程名称学科前沿讲座 评阅成绩 成绩评定老师签名 日期:2014 年10 月11 日

纳米银的制备及应用研究进展 吴飞 (湖南工程学院,湖南湘潭 411100) 摘要纳米银具有独特的热光、电磁、催化和敏感等特性,具有广阔的应用前景,是金属纳来材料研究的热点.阐述了制备纳米银的方法,包括化学还原法!光化学还原法!模板法!溶胶一凝胶法! 微乳液法激光烧蚀法等,列举了纳米银在化学反应!光学领域!杭菌领域和作为杭静电材料的主要应用,简述了纳米银制备过程中存在的不足,展望了纳米银合成研究的发展趋势. 关键词纳米银制备方法应用 Research Progress of Preparation and Application of Silver Nanomaterial Wu Fei (Hunan lnstitute of Engineering,Hunan Xiangtan 411100) Abstract Silver nanomaterial, one of the most active researeh fields in the metal nanometer materials, has a wide arnge of applications because of its unique heat , light , electricity and magnetism , catalysis and sensitive features .The prePartion methods of silver nanoparticles are discussed ,including chmeical reduction , photoehmeical reduction ,template , sol-gel method, microemulsion , laser ablation method and so on.Their main applications of nano-silver in chmeical reactions , optical field, anti-bacterial field and anti-static materials are introduced.The shortages in the fabrica -tion process of silver nanomaterial are also outlined. The developing trends of the synthetic technique in the Preparation of the silver nanomaterials are Prospected. Key words silver nanoparticle,preparation,application 前言 纳米银是指粒径为1~100 nm的金属银单质,是一种新兴的功能材料。纳米银独特的热、光、电、磁、催化和敏感等特性引起了化学、物理和材料学家的广泛兴趣,特别是一维、二维的纳米银材料,例如,单分散的纳米颗粒、纳米线、纳米棒、纳米板材和纳米立方体等被认为在化学反应、抗菌和其它领域具有很大的潜在应用。 纳米银具有很高的比表面积和表面活性川,导电率比普通银至少高20倍,因此,广泛用作催化剂材料、防静电材料、低温超导材料和生物传感器材料等阅。另外,纳米银还具有抗菌功能,可应用于医药行业。因此,研究纳米银的制备方法具有重要意义。本文就近年来应用较多的纳米银的合成方法进行了评述,并对其应用作了简要的总结。 1纳米银的应用 纳米银粉基于其粉体粒径小,而具有比表面积大、表面活性点多、催化活性高、熔点低、烧结性能好等优点,此外,它还保留了金属银的导电性好、抗菌性能好,电铸银颜色光亮的优点,使得纳米银粉在热、电、光、声、磁和催化方面具有广阔的应用前景。 1.1纳米银应用于催化领域 纳米银粉由于粒径小、比表面积和表面能高、表面活性点多、表面原子的配位情况与颗粒内部原子有很大差异,具有优良的催化活性和反应选择性,可提高反应效率,因而其催化活性和选

相关文档
最新文档