以平面波展开法分析光子晶体能带结构.

以平面波展开法分析光子晶体能带结构.
以平面波展开法分析光子晶体能带结构.

以平面波展開法分析光子晶體能帶結構

廖淑慧講師

中州技術學院電子工程系

黃坤賢學生

黃照智學生

中州技術學院電子工程系

摘要

光子晶體的主要特色在於所謂的光子能隙—電磁波無法在能隙中傳播。雖然三維的光子晶體被認為是最具應用潛力的,但是二維光子晶體的結構在製程上卻佔有較易製作的優勢,所以在光電元件裝置及相關研究領域上亦廣為使用。我們使用平面波展開法,分別計算一維和二維光子晶體的能帶結構。根據理論分析的結果,我們發現一維光子晶體無論介電常數差異如何,總是存在著光子能隙。對於二維正方晶格的結構計算,我們發現正方晶格對TM波有能隙,對TE波則無。

關鍵詞: 光子晶體,光子能隙,平面波展開法

壹﹑前言

當半導體中的電子受到晶格的週期性位勢(periodic potential)散射時,部份波段會因破壞性干涉而形成能隙(energy gap),導致電子的色散關係(dispersion relation)呈帶狀分佈,此即所謂的電子能帶結構(electronic band structure)。西元1987年,E. Yablonovitch 與S. John不約而同地提出相關見解[1][2],說明類似的現象亦存在於所謂的光子系統中。根據他們提出的研究報告顯示,在介電係數呈週期性排列的三維介電材料中,電磁波被散射後,某些波段的電磁波強度將會因破壞性干涉而呈指數衰減,無法在該材料內傳遞,這樣的現象相當於在對應的頻譜上形成能隙,因此,色散關係也具有帶狀結構,此即所謂的光子能帶結構(photonic band structure)。這種具有光子能帶結構的介電物質,就稱為光子晶體(photonic crystal)。

事實上,在三維光子能帶結構的概念尚未被提出之前,科學家們對於一維的光子晶體(層狀介電材料) 的研究早已行之多年。電磁波在一維的光子晶體中的干涉現象早已應用在各種光學實驗以及相關的應用產品之中,例如作為波段選擇器、濾波器、繞射光柵元件或反射鏡等。因為科學界一直未能以「晶格」的角度來看待週期性光學材料,所以遲遲未能將固態物理上已發展成熟的能帶理論運用在這方面。直到1989年,Yablonovitch與Gmitter首次嘗試在實驗上證明三維光子能帶結構的存在[3],終於引起相關研究領域的注意,並且開始大舉投入這方面的研究。

目前,光子晶體在光通訊系統中已有非常多的應用,例如光開關、光放大器、光交換等元件,甚至於非線性光子晶體光纖、多模態光子晶體光纖等,都在光電領域中有著非常具大的應用潛力。若能在元件中或電路製作前,先以演算法分析所需的光子晶體,必能為龐大的半導體製程省下大量的費用。

目前計算光子能帶結構的數值方法最常見的主要有: 平面波展開法(plane wave expansion method, PWM)[4]-[7]有限元素法(finite element method, FEM)[8]-[10]及時域有限差分法(finite difference time domain, FDTD)[11]-[14]。在本論文中將利用平面波展開法,計算一維與二維光子晶體的色散曲線(dispersion curve),找出其能隙所在。

貳﹑光子能帶結構分析

平面波展開法主要的功能是用來求解光子晶體的色散關係(dispersion relation)。透過平面波展開法,可以了解光子晶體能隙的形成,並且可以利用超晶胞(supercell)的技巧求解含有缺陷(defect)的光子晶體的色散關係。

考慮一無源、線性、非損耗性(0=ρ)介質的Maxwell 方程式如下: t

H E ??-=?? 0μ (1) t E E r o ??εε=?? (2) 0E =?? (3) 0H =?? (4) 其中E 為電場強度,H 為磁場強度,r ε為相對介電常數,o ε、o μ為真空中的介電常數和導磁係數。

假設電場與磁場都是時間的諧和場,可令: t j e r E t r E ω)(),( == (5) t j e r H t r H ω)(),( == (6)

將(5)及(6)式代入(1)、(2)式中,整理之後可得到磁場的赫姆霍茲方程式(Helmholtz's equation):

)()()(122r H c

r H r r o ωεε=???? (7) 其中ω和c 分別為光在真空中的角頻率及光速,)r (r ε為介電常數函數。根據布洛赫定

理(Bloch's Theorem),在週期性排列結構中的電磁場可以用平面波展開如下: r G k j G G e e h r H ?+∑∑=)(,?)(λλλ (8) 其中G 為倒晶格向量,1=λ、2,k 為布洛赫波向量(Bloch's wave vector),G h ,λ為磁場沿著λe

?方向的係數,λe ?為兩個與)G k ( +相互垂直的單位向量。

由於)

r (1r ε為一週期函數,所以可用傅立葉級數展開之: ∑?κ=κ≡εG r G j r e )G ()r ()r (1 (9) Ωκ=κ?-Ω

???d e )r (V 1)G (r G j (10) 其中Ω為單位晶格(unit cell),V 為單位晶格的體積。

接著將(8)及(9)式代入(7)式,透過一些整理後可得到一特徵方程式如下:

??????????=????????????????'?'?-'?-'?++-∑G G G G G h h c h h e e e e e e e e G k G k G G ,2,122',2',111211222'')'(ωκ (11) 由(11)式,可根據不同的k

值解出對應特徵值{ωn }及特徵向量{}

G h ,λ。若只考慮二維的問題時,(11)式可分解為兩個特徵值方程式,分別對應於橫磁波(TM mode)和橫電波(TE mode)。

一﹑橫磁波(TM mode)

假設電磁波的傳播方向在x-y 平面上)0k (z =,在TM 模態下僅考慮z E 、x H 和y H 三個場量,則(11)式可化簡如下:

G G G h c h G G G k G k ,122

'

',1)'()'()(ωκ=-++∑ (12) 二﹑橫電波(TE mode)

在TE 模態下,電場方向在x-y 平面上,磁場在z 方面上(z H 、x E 和y E ),(11)式可化簡如下:

G G G h c h G G G k G k ,222

'',2)'()'()(ωκ=-+?+∑ (13)

若考慮一維的問題,k 和G 只有兩個方向,分別是+x 與-x ,此時可將21?,?e e

分別取為z e y e

??,??21==,所以,特徵方程式可簡化為: G G G h c h G G G k G k 22

'')'()'()(ωκ=-++∑ (14) 在此情況下,E 和H 都在y-z 平面,所以TE mode 和TM mode 的情況是一樣的。

參﹑結果分析

在本論文中,我們使用了一部份參考文獻[15].中的數據,以作為確認數值演算的結果依據。

在一維光子晶體結構中,無論介電常數比值為何,只要1≠b

a εε,永遠存在著能隙(圖1.)。由圖1.、圖2.及圖3.能隙的比較,我們也發現介電常數差額愈小者,能隙亦較

小。

對於二維光子晶體結構,則主要計算正方晶格(square lattice)結構排列的二維光子晶體,探討其在橫磁波與橫電波下的色散特性曲線。

考慮一介電質圓柱在x-y 平面的週期排列,圓柱在z 方向上無窮延伸出去,晶格基底向量(primitive lattice vector)為)0,1(a a 1= ,)1,0(2a a = ,a 代表晶格間距,R 為圓柱半徑,圓柱的材質為鋁(Al ,其介電常數9.8=a ε)。正方晶格的倒晶格還是正方晶格,

倒晶格基底向量(reciprocal lattice vector)為)0,1(a 2b 1π= ,)1,0(a 2b 2π= ,根據(9)、(10)式可以求得)G ( κ如下所示:

0G if )f 1(1f 1)G (b a =-ε+ε=κ (15) 0G if )

R G ()R G (J 2f )11()G (1b a ≠ε-ε=κ (16) 上式中1b =ε,2

c R a R a a f π==為填充係數(filling factor),R a 為圓柱的截面積,c a 為單位晶胞的面積,)x (J 1為貝索函數(Bessel function)。令a 2.0R =,選取足夠的G ,利用(12) 、 (13) 、 (15) 及(16)式,代入不同的k 值求出其對應的特徵值,分別畫出TM 模態下和TE 模態下的色散曲線如圖4.、圖5.所示。由圖4.、圖5.可發現,此狀況下的晶格排列在TM 模態下存在著一光子晶體能隙,但在TE 模態下並未發現能隙的存在。

肆﹑結論

經由對光子晶體能帶的特性曲線探討,我們更加確信利用適當設計的週期性介電質結構與適合的介電係數,可以在光波範圍內的色散關係中產生能隙結構。因為在能隙範圍內,任何傳播方向的電磁波均無法傳遞,所以,我們可以配合不同的幾何結構與材料相關參數,設計出具有不同能隙位置與不同能隙大小的光子晶體。

光子晶體的理論發展已日益成熟。實驗的部分,隨著半導體製程的進步,近年來,用在光波段的光子晶體已被製造出來,並驗證了理論,引起電機、電子、物理、通訊等相關研究領域的注意,並且開始大舉投入這方面的研究。光的平行處理能力以及光速般的處理速度,讓光子晶體和積體光學在高運算量及高資訊量、高速度的系統上必能表現其潛力。未來經由積體光路與電子電路整合,將能發揮更大的效用。

圖1.The one dimentional photonic band structure of a multilayer film with lattice constant a and alternating layers of different widths. The width of theεa=11.58 layer is 0.2a, and the width of theεb=1 layer is 0.8°

.

圖2.The one dimentional photonic band structure of a multilayer film with lattice constant a and alternating layers of different widths. The width of theεa=8.9 layer is 0.2a, and the width of theεb=1 layer is 0.8a.

圖3.The one dimentional photonic band structure of a multilayer film with lattice constant a and alternating layers of different widths. The width of theεa=5.2 layer is 0.2a, and the width of theεb=1 layer is 0.8a.

圖4.The TE mode photonic band structure for a square array of dielectric columns with R=0.2a.The band structure is for a crystal consisting of alumina(εa=8.9) rodsembedded in air(εb=1).

圖5. The TM mode photonic band structure for a square array of dielectric columns with R=0.2a.The band structure is for a crystal consisting of alumina(εa=8.9) rodsembedded in air(εb=1).

誌謝

本研究工作之完成承蒙中州技術學院專題研究計畫(編號:CCUT-94-EE09)之經費

補助,也參考了Shangping Guo先生提供的Matlab cod e,特此致謝。

參考文獻

[1].E.Yablonovitch,"Inhibited spontaneous emission in solid-state physics and

electronics."Phys.Rev.Lett.58,2059(1987).

[2].S.John."Strong localization of photons in certain disordered dielectric superlattices,

"Phys.Rev.Lett.58,2068(1987).

[3].E.Yablonovitch and T.J.Gmitter, "Photonic band structure: the face-centered-cubic

case."Phys.Rev.Lett.63,1950(1989).

[4].K.M.Ho,C.T.Chan,and C.M.Soukoulis, "Existence of a photonic gap in periodic

dielectric structures."Phys.Rev.Lett.65,3152(1990).

[5]. J.Arriaga,B. Meneses, " Band structure of air-photonic crystal fiber cladding."Physica E

17,443(2003)

[4]. Shangping Guo and Sacharia Albin, " A simple plane wave implementation for photonic

crystal calculations."Opt. Express 11, 167(2003),

[6].J.Arriaga,J.C. Knight,P.St.J. Russell,"Modeling the propagation of light in photonic

crystal fibers, "Physica D 189,100(2004).

[7].Tao Pan,Fei Zhuang,Zhen-Ya Li, "Absolute photonic band gaps in a two-dimensional

photonic crystal with hollow anisotropic rods."Solid State Communications 129,501(2004).

[8].K.Saitoh andM.Koshiba, "Chromatic dispersion control in photonic crystal

fiber:application to ultra-flattened dispersion." Opt. Express 11,843(2003).

[9].T.Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in

nonlinear holey fibers." Opt. Express 11,1481(2003).

[10]. K.Saitoh ,Y.Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal

fibers." Opt. Express 12,3940(2004).

[11].Dennis M. Sullivan, "Electromagnetic simulation using the FDTD method." New York,

IEEE Press,2000.

[12].Allen Taflove,Susan C. Hagness, "Computational Electrodynamics."2nd edition,

Boston/London, Artech House,2000.

[13].T. Uusitupa, K. Karkkainen, and K.Nikoskinen, "Studying 120° PBG waveguide bend

using FDTD."Microwave and Optical Technology Letters,39,326(2003).

[14].R.Todd Lee and Glenn S.Smith, "A conceptually simple method for incorporating

periodic boundary conditions into the FDTD method." Microwave and Optical Technology Letters,45,472(2005).

[15].D. Joannopoulos, R. D. Meade, J. N. Winn, "Photonic Crystals-Molding the Flow

of Light, " New Jersey ,Princeton University Press, 1995.

,

Plane Wave Expansion Method for Photonic Crystal Band Structure

Computations

Shu-Hui Liao

Department of Electronic Engineering, Chungchou Institute of Technology

Kun-Hsien Huang

Department of Electronic Engineering, Chungchou Institute of Technology

Chao-Chih Huang

Department of Electronic Engineering, Chungchou Institute of Technology

Abstract:

The major property of photonic crystals is photonic band gap—a frequency region where propagating waves are forbidden. Although three dimensional photonic crystals may provide the most potential applications, two dimensional photonic crystals have also been widely studied, since they are much more easier to fabricate, and may be used in optical and electronic system or devices. The plane wave expansion method is used to calculate photonic band gaps for one dimensional and two dimensional structures. According to the theoretical analysis, we find that band gaps always appear in one dimensional photonic crystal for any dielectric contrast. It seems that the smaller the contrast,the smaller the gaps. For the case of two dimensional structures, the square lattices are studied,and we find that the photonic crystal has a complete band gap for the TM modes between the first and the second bands, but not for the TE modes.

Keywords: photonic crystal, photonic band gap, the plane wave expansion method

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇(以下简称< Bandgap >)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2. 关于 Floquet (弗洛盖) 波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p 由此我判断Floquet 波矢就是Bloch (布 洛赫)波矢,但“帮助”文档中有: )sin a n cos a (sin k k 21211F ,以正格子基矢21a ,a 表示 (其文没有任何几何插图和物理说明),使我决定必须在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,

a 是晶格方向的单位 1b , a a a 32 a i ) a a (a a a x 02223213 2 ) a a (a a a 3211 32

里渊区六方结构光子晶体的布图2. 4.二维光子晶体主方程 COMSOL 在< Bandgap > “模型开发器” [电磁波,频域] 写出方程形式如下: 0)()(0 2 01 E j k E r r , 在< Bandgap >中,下面目录 [波方程,电] 中直接简化为, 020 E k )E (r 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 )(D 1 )(B 30 )(t B E 2 )(t D J H 4 E D ,H B ,E J 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。 本文档不考虑磁性质,0 ,0 J ,1 r 传播模态电场函数 COMSOL 表达为: )(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5 , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

以平面波展开法分析光子晶体能带结构.

以平面波展開法分析光子晶體能帶結構 廖淑慧講師 中州技術學院電子工程系 黃坤賢學生 黃照智學生 中州技術學院電子工程系 摘要 光子晶體的主要特色在於所謂的光子能隙—電磁波無法在能隙中傳播。雖然三維的光子晶體被認為是最具應用潛力的,但是二維光子晶體的結構在製程上卻佔有較易製作的優勢,所以在光電元件裝置及相關研究領域上亦廣為使用。我們使用平面波展開法,分別計算一維和二維光子晶體的能帶結構。根據理論分析的結果,我們發現一維光子晶體無論介電常數差異如何,總是存在著光子能隙。對於二維正方晶格的結構計算,我們發現正方晶格對TM波有能隙,對TE波則無。 關鍵詞: 光子晶體,光子能隙,平面波展開法 壹﹑前言 當半導體中的電子受到晶格的週期性位勢(periodic potential)散射時,部份波段會因破壞性干涉而形成能隙(energy gap),導致電子的色散關係(dispersion relation)呈帶狀分佈,此即所謂的電子能帶結構(electronic band structure)。西元1987年,E. Yablonovitch 與S. John不約而同地提出相關見解[1][2],說明類似的現象亦存在於所謂的光子系統中。根據他們提出的研究報告顯示,在介電係數呈週期性排列的三維介電材料中,電磁波被散射後,某些波段的電磁波強度將會因破壞性干涉而呈指數衰減,無法在該材料內傳遞,這樣的現象相當於在對應的頻譜上形成能隙,因此,色散關係也具有帶狀結構,此即所謂的光子能帶結構(photonic band structure)。這種具有光子能帶結構的介電物質,就稱為光子晶體(photonic crystal)。 事實上,在三維光子能帶結構的概念尚未被提出之前,科學家們對於一維的光子晶體(層狀介電材料) 的研究早已行之多年。電磁波在一維的光子晶體中的干涉現象早已應用在各種光學實驗以及相關的應用產品之中,例如作為波段選擇器、濾波器、繞射光柵元件或反射鏡等。因為科學界一直未能以「晶格」的角度來看待週期性光學材料,所以遲遲未能將固態物理上已發展成熟的能帶理論運用在這方面。直到1989年,Yablonovitch與Gmitter首次嘗試在實驗上證明三維光子能帶結構的存在[3],終於引起相關研究領域的注意,並且開始大舉投入這方面的研究。

赝势平面波方法

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶 体能带的C O M S O L模拟 Prepared on 22 November 2020

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇 (以下简称)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2.关于Floquet (弗洛盖)波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例 中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p ?-+=由此我判断Floquet 波矢就是Bloch (布洛赫)波矢,但“帮助”文档中有:)sin a n cos a (sin k k 21211F ααα ?+=,以正格子基矢21a ,a 表示(其文没有任何几何插图和物理说明),使我决定必须 在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,在空气介质中周期性排列,形成二维六方结构人造晶体。a 是晶格常数。 z ? 是z 方向的单位矢量

以上根据倒格子基矢定义计算出1b ,2b 及其分量。由倒格子基矢1b ,2b ,构建长方格子的布里渊区也是长方结构如图2: 4.二维光子晶体主方程 COMSOL 在“模型开发器”[电磁波,频域]写出方程形式如下: 0)()(0 201=--????-E j k E r r ωεσεμ, 在中,下面目录[波方程,电]中直接简化为, 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 E D ε=,H B μ=,E J σ= 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。本文档不考虑 磁性质,0=ρ,0=J ,1=r μ 传播模态电场函数COMSOL 表达为: )(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5ω-= , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。 由(2)两端取旋度,将(4)代入得: 22t E )E (??-=???? με,μεω22=k 绝缘介质,22020 20022n k c k r r r r ===μεωμμεεω,

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

第四章平面波

第四章 平面波 本章从麦克斯韦方程及物质的本构关系出发,研究在均匀介质中平面波的传播及其主要特征。首先讨论线性、均匀、各向同性介质中均匀平面波的传播,再推广到各向异性介质中的情况。比平面波更复杂的电磁波也可用平面波展开,本章对此也作了讨论。最后讨论平面波传播的传输线模型,为以后用传输线模型求解复杂的场问题打下基础。 4.1得出电场强度E 与磁场强度H 满足的波方程,4.2从波方程得到简单介质中的平面波解,4.3、4.4讨论平面波的极化特性以及平面波在有耗介质中的传播,4.5介绍色散与群速的基本概念,4.6与4.7分别研究电各向异性介质和磁各向异性介质中平面波的传播特征。4.8讨论髙斯波束的平面波展开,4.9证明电磁波沿某一方向传播可与特定参数传输线上电压、电流波的传播等效,即电磁波传播的传输线模型。 4.1 波方程 3.4已分析过,麦克斯韦方程组中两个旋度方程是独立的。在两个旋度方程中电场强度E 与磁场强度H 耦合在一起。从解方程角度看,先要将E 跟H “去耦”,即从两个旋度方程消去H (或E ),然后得到只关于E (或H )的方程。 本节讨论无源、简单介质中麦克斯韦方程的解,所谓无源,就是指所研究的区域内不存在产生电磁场的源J 与ρv 。对于简单介质,ε、μ是常量。在这种特定情况下,将物质的本构关系(3.4.1)、(3.4.2)代入麦克斯韦方程(3.2.8)~(3.2.11),得到 ??E =–j ωμH (4.1.1) ??H = j ωεE (4.1.2) ??E = 0 (4.1.3) ??H = 0 (4.1.4) 式(4.1.1)、(4.1.2)两个方程中,只有E 和H 两个独立的场量,但E 和H 耦合在一起。为了从这两个方程得到只关于E 或H 的方程,对式(4.1.1)取旋度,并将式(4.1.2)代入,得到 ()()()E E H E μεωωεωμωμ2=-=??-=????j j j 利用恒等关系()()E E E 2 ?-???=????,而根据式(4.1.3),0=??E ,所以上式成 为 022=+?E E μεω (4.1.5) 同样对式(4.1.2)取旋度,将式(4.1.1)代入,并利用式(4.1.4)及上面的矢量运算恒等关系,得到 022=+?H H μεω (4.1.6) 式(4.1.5)、(4.1.6)可合并写成 () 022 =???+? H E k (4.1.7) 式中 μεω22=k (4.1.8)

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

一维光子晶体的禁带宽度分析

闽江学院 本科毕业论文(设计) 题目一维光子晶体的禁带宽度分析 学生姓名 学号 系别电子系 年级03 专业电子科学与技术 指导教师 职称副教授 完成日期2007.05.16

目录 摘要 (2) ABSTRACT (3) 第一章绪论 (4) 1.1什么是光子晶体? (4) 1.2光子晶体理论计算方法 (5) 1.3光子晶体的应用 (8) 第二章一维光子晶体基本理论 (9) 2.1光子禁带的产生 (9) 2.2一维光子晶体的特征矩阵 (11) 第三章一维光子晶体带隙变化规律的研究 (13) 3.1带隙随厚度比的变化 (13) 3.2带隙随折射率差的变化 (16) 3.3带隙随角度的变化 (19) 3.4厚度比与折射率差同时变化下的最大带隙 (22) 总结 (24) 参考文献 (25)

摘要 光子晶体的研究领域非常广泛,涉及到光学的方方面面。由于它所具有的特殊的性质,故被称为光的半导体,足见它对光学领域的影响力。虽然这个领域的工作也才刚开始10年多一点,但是进展非常地快。通过对这个领域的深入研究.不仅对光子晶体研究本身有意义,而且对光学领域的理论发展也具有重要的价值。使得人们对光的理解更加深入。 介绍了一维光子晶体的基本概念和原理系统综述了对一维光子晶体的研究进展和应用前景。 作为一维光子晶体的应用基础,一维光子晶体的禁带是研究的重点。一维光子晶体的带隙决定了工作频率范围,因此研究其带隙变化规律是其应用的关键,通过改变各种参数确定带隙的依赖因素及其定量关系。 通过传输矩阵的方法分析了一维光子晶体禁带的特性,讨论了影响带宽的因素,说明了相对带宽对光子晶体设计的重要性。在这个基础上讨论了扩展一维光子晶体带宽的方法,:1、使各层介质的厚度d微微变化,形成规则递增,达到展宽禁带的目的。2、角度 逐渐变化,使晶体在角度域化互相叠加,达到扩展带宽的目的。3、使晶体的折射率n1逐渐变化(n2=4.6),达到扩展带宽的目的。通过画出改变各种参数的情况下的带隙曲线图,得到带隙随各参数变化的规律,从而达到对一维光子晶体带隙变化规律的分析。 关键词:光子晶体;光子禁带;相对带宽;展宽。

几种常见晶体结构的特点分析

几种常见晶体结构的特点分析 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个-Cl ,每 个-Cl 紧邻6个+Na (上、下、左、右、前、后),这6个离子构 成一个正八面体。设紧邻的Na +与Cl -间的距离为a ,每个Na +与12 个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。 由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1121=? +,晶体中Na +数与Cl -数之比为1:1,则此晶胞中含有4个NaCl 结构单元。 2. 氯化铯晶体 每个Cs +紧邻8个Cl -,每个Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻的Cs +与Cs +间的距离为 a 2 3,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812164112818=+?+?+?,-Cl 在晶胞内其数目为8,晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。 3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的 CO 2分子数为4216818=?+?。 4. 金刚石晶体(晶体硅同)

每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=? ,拥有的C-C 键数为1616=?,则C 原子数与C-C 键数之比为2:11:2 1=。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的最小环为十二元环,其中有6个Si 原子和6个O 原子,含有12个Si-O 键;每个Si 原子被12个十二元环共有,每个O 原子被6个十二元环共有,每个Si-O 键被6个十二元环共有;每个十二元环所拥有的Si 原子数为211216=?,拥有的O 原子数为16 16=?,拥有的Si-O 键数为26 112=?,则Si 原子数与O 原子数之比为1:2。 6. 石墨晶体 在石墨晶体中,层与层之间是以分子间作用力结合,同层之间是C 原子与C 原子以共价键结合成的平面网状结构,故石墨为混合型晶体或过渡型晶体。在同层结构中,每个C 原子与3个C 原子紧邻成C-C 键,键角为?120,其中最小的环为六元环,每个C 原子被3个六元环共有,每个C-C 键被2个六元环共有;每个六元环拥有的C 原子数为2316=?,拥有的C-C 键数为32 16=?,则C 原子数与C-C 键数之比为2:3。

第3章 赝势平面波方法(I)

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第4.1.1节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? (3.1) 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之 一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个-Cl ,每个-Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +与Cl -间的距离为a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+?,-Cl 数为44 1121=?+,晶体中Na +数与Cl -数之比为1:1,则此晶胞中含有4个NaCl 结构单元。 2. 氯化铯晶体 每个Cs +紧邻8个Cl -,每个Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,-Cl 在晶胞内其数目为8,晶体中的+Cs 数与-Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 16818=?+?。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=? ,拥有的C-C 键数为1616=?,则C 原子数与C-C 键数之比为2:11:2 1=。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的最小环为十二元环,其中有6个Si 原子和6个O 原子,含有12个Si-O 键;每个Si 原子被12个十二元环共有,每个O 原子被6个十二元环共有,每个Si-O 键被6个十二元环共有;每个十二元环所拥有的Si 原子数为211216=?,拥有的O 原子数为16 16=?,拥有的Si-O 键数为26 112=?,则Si 原子数与O 原子数之比为1:2。

几种常见晶体结构的应用与拓展

几种常见晶体结构的应用与拓展

几种常见晶体结构的应用与拓展 中学课本中列举了NaCl、CsCl、金刚石、石墨、干冰、二氧化硅等典型晶体的结构示意图。它们的结构都是立体的,如何从平面图想像出三维实物的结构形态,这是解决有关问题的关键。 首先可以利用直观结构模型,逐步建立起准确、清晰的立体形象,提高空间想像力。 其次还需掌握基本的解题技巧:在晶体结构中切割一个基本结构单元,弄清该单元中点、边、面为多少个基本结构单元所共有。构成晶体的结构粒子是按着一定的排列方式所形成的固态群体。在晶体结构中具有代表性的最小重复单位叫晶胞。 根据晶体的晶胞,求粒子数的方法: ①处于顶点上的粒子:同时为8个晶胞共有,每个粒子有1/8属于晶胞。 ②处于棱上的粒子:同时为4个晶胞共有,每个粒子有1/4属于晶胞。 ③处于面上的粒子;同时为2个晶胞共有,每个粒子有1/2属于晶胞。 ④处于体心的粒子:则完全属于该晶胞。

中学阶段所需掌握的 几种晶体结构类型及 有关问题: 一、离子晶体 图3 干冰晶体 图1 N aCl晶体 图2 CsCl晶体 图4 金刚石晶体 图5 SiO2 晶体 图6 石墨晶体

NaCl型(如图1) 1.在晶体中,每个Na+同时吸引个Cl-,每个Cl-同时吸引着个Na+,阴、阳离子数目之比是。 2.在晶体结构中,每个晶胞由个小立方体构成,每个小立方体的8个顶点分别由个Na+、个Cl-相邻占据,每个小立方体含Na+:个、含Cl-:个。故每个晶胞有NaCl微粒个。 3.在晶体中,经过立方体的中心Na+的平面有三个,每个平面的四个顶点上的Na+都同晶体中与中心Na+最接近且距离相等。所以,在晶体中,每个Na+周围与它最接近的距离相等的Na+的个数共有个。同理,每个Cl-周围与它最接近且距离相等的Cl-的个数也有个。 CsCl型(如图2) 1.在晶体中,每个Cl-吸引个Cs+,每个Cs+吸引个Cl-,Cs+与Cl-的个数比为。 2.每个基本结构单元中(小立方体)含Cl-:个,含Cs+个。

几种常见晶体结构复习专题

几种常见晶体结构分析 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排 列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上的微粒属于该单元中所占的份额为12,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距 离最近且相等的Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na +有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl - 周围有8个Cs +,与一个Cs + 距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 3、氟化钙 晶格能 1.概念:气态离子形成__1____mol 离子晶体释放的能量。 2.影响因素: 晶格能—???? ??离子带电荷越多离子半径越小→越大 3.晶格能对离子晶体性质的影响。 晶格能越大,形成的离子晶体越__稳定____,而且熔点越__高____,硬度越__大____。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C 原子 紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C 原子被12个六元环共用,每C —C 键共6个环,因 此六元环中的平均C 原子数为6×112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2 图1 图2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

几种典型晶体结构的特点分析

几种典型晶体结构得特点分析 徐寿坤 有关晶体结构得知识就是高中化学中得一个难点,它能很好地考查同学们得观察能力与三维想像能力,而且又很简易与数学、物理特别就是立体几何知识相结合,就是近年高考得热点之一。熟练掌握NaCl、CsCl、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解与掌握一些严重得分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体得结构特点。均摊法得根源原则就是:晶胞任意位置上得原子如果就是被n个晶胞所共有,则每个晶胞只能分得这个原子得1/n。 1、氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na+紧邻6个,每个紧邻6个(上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻得Na+与Cl-间得距离为a,每个Na+与12个Na+等距离紧邻(同层4个、上层4个、下层4个),距离为。由均摊法可得:该晶胞中所拥有得Na+数为,数为,晶体中Na+数与Cl-数之比为1:1,则此晶胞中含有4个NaCl结构单元。 2、氯化铯晶体 每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+,这8个离子构成一个正立方体。设紧邻得Cs+与Cs+间得距离为,则每个Cs+与6个Cs+等距离紧邻(上、下、左、右、前、+ 后)。在如下图得晶胞中Cs数为,在晶胞内其数目为8,晶体中得数与数之比为1:1,则此晶胞中含有8个CsCl结构单元。 3、干冰

每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中得CO 2分子数为。 4、金刚石晶体 每个C原子与4个C原子紧邻成键,由5个C原子形成正四面体结构单元,C-C键得夹角为。晶体中得最小环为六元环,每个C原子被12个六元环共有,每个C-C键被6个六元环共有,每个环所拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为。5、二氧化硅晶体 每个Si原子与4个O原子紧邻成键,每个O原子与2个Si原子紧邻成键。晶体中得最小环为十二元环,其中有6个Si原子与6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有得Si原子数为,拥有得O原子数为,拥有得Si-O键数为,则Si原子数与O原子数之比为1:2。 6、石墨晶体 在石墨晶体中,层与层之间就是以分子间作用力结合,同层之间就是C原子与C原子以共价键结合成得平面网状结构,故石墨为混合型晶体或过渡型晶体。在同层结构中,每个C原子与3个C原子紧邻成C-C键,键角为,其中最小得环为六元环,每个C原子被3个六元环共有,每个C-C键被2个六元环共有;每个六元环拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为2:3。 7、C 60分子 C 60就是由60个C原子组成得类似于足球得分子,由欧拉定律可推知该分子中有12个正五边形与20个正六边形。每个C原子与其她3个C原子紧邻成键,

相关文档
最新文档