2020年高考物理一轮复习全程训练计划周测九电磁感应交变电流含解析

2020年高考物理一轮复习全程训练计划周测九电磁感应交变电流含解析
2020年高考物理一轮复习全程训练计划周测九电磁感应交变电流含解析

电磁感应交变电流

夯基提能卷⑨立足于练题型悟技法——保底分

(本试卷满分95分)

一、选择题(本题包括8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的.全部选对的得6分,选不全的得3分,有选错或不答的得0分)

1.[2019·云南曲靖一中质检]物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步.下列表述正确的是( ) A.电磁感应现象是洛伦兹最先发现的

B.电动机是利用电磁感应原理,将机械能转化为电能

C.楞次最先发现了电流的磁效应

D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果

答案:D

解析:电磁感应现象是法拉第最先发现的,选项A错误;发电机是利用电磁感应原理,将机械能转化为电能的,选项B错误;奥斯特最先发现了电流的磁效应,选项C错误;电磁感应现象是闭合电路中产生了电流,是其他形式的能转化为电能,楞次定律是能量守恒定律在电磁感应现象中的具体体现,感应电流的磁场总要阻碍引起它的磁通量的变化,感应电流具有的以及消耗的能,必须从引起磁通量变化的外界获取,要在回路中维持一定的感应电流,外界必须消耗一定的能量,选项D正确.

2.[2019·上海普陀区模拟]某教室墙上有一朝南的钢窗,当把钢窗左侧向外推开时,下列说法正确的是( )

A.穿过窗框的地磁场的磁通量变大

B.穿过窗框的地磁场的磁通量不变

C.从推窗人的角度看,窗框中的感应电流方向是逆时针

D.从推窗人的角度看,窗框中的感应电流方向是顺时针

答案:C

解析:地磁场由南向北,当朝南的钢窗向外推开时,钢窗平面与磁场平行时,没有磁感

线穿过钢窗平面,穿过钢窗平面的磁通量为0.根据楞次定律,穿过窗框平面的磁通量减小,从推窗人的角度看,窗框中产生的感应电流的方向为逆时针,故选项C正确,A、B、D错误.

3.[2019·山西清徐中学模拟]在匀强磁场中,有两条平行金属导轨a、b,磁场方向垂直a、b所在的平面向下,c、d为串接有电流表、电压表的两金属棒,如图所示,两棒以相同的水平速度向右匀速运动,则以下结论正确的是( )

A.电压表有读数,电流表没有读数

B.电压表有读数,电流表也有读数

C.电压表无读数,电流表有读数

D.电压表无读数,电流表也无读数

答案:D

解析:当两棒以相同的水平速度向右匀速运动时,回路的磁通量不变,没有感应电流产生,电流表没有读数.电压表是由电流表改装而成的,核心的部件是电流表,没有电流,指针不偏转,电压表也没有读数.A、B、C错误,故D正确.

4.

[2019·山东泰安模拟]如图在竖直方向上的两个匀强磁场B1和B2中,各放入一个完全一样的水平金属圆盘a和b,它们可绕竖直轴自由转动.用导线将a盘中心与b盘边缘相连,b盘中心与a盘边缘相连.从上向下看,当a盘顺时针转动时( )

A.b盘总是逆时针转动

B.若B1、B2同向,b盘顺时针转动

C.若B1、B2反向,b盘顺时针转动

D.b盘总是顺时针转动

答案:C

解析:①若B1、B2都竖直向上,从上向下看,当a盘顺时针转动时,其半径切割磁感线,感应电流从a′→O→b′→O′→a′;b盘电流从b′→O′,根据左手定则,安培力沿逆时针方向(俯视);②若B1、B2都竖直向下,从上向下看,当a盘顺时针转动时,其半径切割磁感线,感应电流从O→a′→O′→b′→O;b盘电流从O′→b′,根据左手定则,安培力沿

逆时针方向(俯视);③若B 1向上,B 2向下,从上向下看,当a 盘顺时针转动时,其半径切割磁感线,感应电流从a ′→O →b ′→O ′→a ′;b 盘电流从b ′→O ′,根据左手定则,安培力沿顺时针方向(俯视);④若B 1向下,B 2向上,从上向下看,当a 盘顺时针转动时,其半径切割磁感线,感应电流从O →a ′→O ′→b ′→O ;b 盘电流从O ′→b ′,根据左手定则,安培力沿顺时针方向(俯视).故A 、B 、D 错误.C 正确.

5.[2019·北京通州区摸底]如图甲所示,在垂直纸面向里的匀强磁场中,一个单匝线圈与一个电容器相连,线圈平面与匀强磁场垂直,电容器的电容C =60 μF ,穿过线圈的磁通量Φ随时间t 的变化规律如图乙所示,下列说法正确的是( )

A .电容器下极板电势高于上极板

B .线圈中磁通量的变化率为3 Wb/s

C .电容器两极板间电压为2.0 V

D .电容器所带电荷量为120 C

答案:C

解析:根据楞次定律,可判断出电容器上极板电势高于下极板,A 错误;根据图象可得

线圈中磁通量的变化率为ΔΦΔt =6-22

Wb/s =2 Wb/s ,B 错误;根据法拉第电磁感应定律有E =n ΔΦΔt

=2.0 V ,C 正确;根据Q =CU ,可得电容器所带电荷量为Q =60×10-6×2.0 C=1.20×10-4 C ,D 错误.

6.

[2019·四川广安等四市检测]如图所示,总电阻为R 的金属丝围成的单匝闭合直角三角形PQM 线圈,∠P =30°,PQ =L ,QM 边水平.圆形虚线与三角形PQM 相切于Q 、D 两点,该区域内有垂直纸面向里的匀强磁场,磁感应强度B 随时间t 变化关系为B =B 0+kt (k >0,B 0>0),则t =0时,PQ 边所受的安培力( )

A .方向向右,大小为

B 0k πL 3

27R

B.方向向左,大小为

B0kπL3

27R

C.方向向右,大小为

B0kπL3

18R

D.方向向左,大小为

B0kπL3

18R

答案:A

解析:由楞次定律可知,△PQM中感应电流为逆时针方向,PQ边的电流方向由P到Q,由左手定则可知,PQ所受的安培力方向向右;圆形磁场的半径为r=L tan30°·tan30°=

L

3

,则线圈中的感应电流大小I=

E

R

ΔB

Δt

·

S

R

=k

1

2

·π

?

?

??

?L

3

2

R

πkL2

18R

,则PQ边所受安培力F=BI·2r =B0·

πkL2

18R

·

2L

3

πkL3B0

27R

,故A正确,B、C、D错误.

7.[2019·福建漳州检测](多选)如图,理想变压器的原线圈与二极管一起接在u=2202sin100πt(V)的交流电源上,副线圈接有R=55 Ω的电阻,原、副线匝数比为2:1.假设该二极管的正向电阻为零,反向电阻为无穷大,电流表为理想电表,则( )

A.交流电源的频率为100 Hz

B.副线圈的输出功率为110 W

C.变压器的输入功率等于输出功率

D.电流表的读数为1 A

答案:BC

解析:交流电源的频率为f=

ω

100π

Hz=50 Hz.选项A错误;交流电源电压的有效值为U=220 V,设原线圈输入电压有效值为U1,则

U21

R

T=

U2

R

·

T

2

,解得U1=

U

2

=110 2 V,则副线圈电压有效值为U2=

1

2

U1=55 2 V,副线圈的输出功率P2=

U22

R

5522

55

W=110 W,选项B正确;理想变压器的输入功率等于输出功率,选项C正确;电流表的读数为I2=

U2

R

552

55

A= 2 A,选项D错误.

8.

如图所示为一理想变压器,其原线圈与副线圈的匝数比n1:n2=3:1,a、b、c、d 为4个完全相同的小灯泡,E为输出电压有效值恒定的交流电源,S为单刀双掷开关.已知当S向上闭合时,b、c、d三个小灯泡都能正常发光,则当S向下闭合时( ) A.4个小灯泡都能正常发光

B.4个小灯泡都比正常发光时要暗

C.a能正常发光,b、c、d比正常发光时要暗

D.b、c、d能正常发光,a比正常发光时要暗

答案:B

解析:设灯泡的额定电压为U,则电源的电压E=3U,当S向下闭合时,设b、c、d灯泡两端的电压为U′,灯泡b、c、d中的电流均为I,则根据电流与匝数成反比可知a灯泡中的电流为I,则a灯泡两端的电压为U′,则E=4U′,所以U′

二、非选择题(本题包括4小题,共47分)

9.

(11分)如图为一研究“电磁感应现象”的实验装置.

(1)将图中所缺的导线补接完整.

(2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后:

①将小线圈迅速插入大线圈时,灵敏电流计指针将________(填“左偏”或“右偏”).

②小线圈插入大线圈后,将滑动变阻器触头迅速向左拉时,灵敏电流计指针将________(填“左偏”或“右偏”).

答案:(1)如图所示

(2)①右偏②左偏

解析:(2)大线圈中的磁通量增加时,产生的感应电流使灵敏电流计指针向右偏.①将小线圈迅速插入大线圈时,大线圈中的磁通量增加,灵敏电流计的指针向右偏;②将滑动变

阻器的触头迅速向左拉时,小线圈中的电流减小,则大线圈中的磁通量减小,产生的感应电流使灵敏电流计的指针向左偏.

10.

(12分)轻质绝缘细线吊着一质量为m =0.42 kg 、边长为L =1 m 、匝数n =10的正方形线圈,其总电阻为r =1 Ω.在线圈的中间位置以下区域分布着磁场,如图甲所示.磁场方向垂直纸面向里,磁感应强度大小随时间变化关系如图乙所示.(重力加速度g 取10 m/s 2

)

(1)判断线圈中产生的感应电流的方向是顺时针还是逆时针?

(2)求线圈的电功率;

(3)求t =4 s 时轻质绝缘细线的拉力大小.

答案:(1)逆时针 (2)0.25 W (3)1.2 N

解析:(1)由楞次定律知感应电流的方向为逆时针方向.

(2)由法拉第电磁感应定律得 E =n ΔΦΔt =n ×12L 2ΔB Δt

=0.5 V 则P =E 2

r

=0.25 W (3)t =4 s 时,B =0.6 T ,I =E r

=0.5 A ,F 安=nBIL ,F 安+F 线=mg

联立解得F 线=1.2 N.

11.

(12分)[2019·乌鲁木齐检测]边长为L 的正方形区域内有垂直纸面向里的匀强磁场,穿过该区域的磁通量随时间变化的图象如图甲所示.将边长为L

2,总电阻为R 的正方形线圈abcd 放入磁场,线圈所在平面与磁感线垂直,如图乙所示.求:

(1)磁感应强度的变化率ΔB Δt

; (2)t 0时刻线圈ab 边受到的安培力大小.

答案:(1)Φ0L 2t 0 (2)Φ208t 0RL

解析:(1)由题意可知Φ0=B 0L 2,ΔB Δt =B 0t 0,解得ΔB Δt =Φ0L 2t 0

(2)线圈中的感应电动势为E =? ????12L 2×ΔB Δt =Φ04t 0

由闭合电路欧姆定律I =E

R ,安培力F =B 0IL

2

解得F =Φ2

08t 0RL

12.

(12分)如图,在竖直面内有两平行金属导轨A ′B ′、C ′D ′.导轨间距为L =1 m ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.在分界线MN 的左侧,两导轨之间有垂直纸面向外的匀强磁场,磁感应强度B =1 T .MN 右侧,两导轨与电路连接.电路中的两个定值电阻阻值分别为R 1=4 Ω、R 2=2 Ω.在EF 间接有一水平放置的平行板电容器C ,板间距离为d =8 cm.(g =10 m/s 2)

(1)闭合开关K ,当ab 以某一速度v 匀速向左运动时,电容器中一质量为m =8×10

-17 kg ,电荷量为q =3.2×10-17 C 的带电微粒恰好静止,试判断微粒的带电性质并求出ab 的速度v ;

(2)断开开关K ,将ab 固定在离MN 边界距离x =0.5 m 的位置静止不动.MN 左侧的磁场按B =1+0.5t (T)的规律开始变化,试求从t =0至t =4 s 过程中通过电阻R 1的电荷量.

答案:(1)带负电,6 m/s (2)16

C 解析:(1)由右手定则可得,金属棒切割磁感线产生的电流方向由b 指向a ,则电容器上极板带正电,对带电微粒进行受力分析,微粒受到的电场力与重力平衡,可得电场力方向向上,微粒带负电荷.

金属棒切割磁感线产生的电动势E =BLv

感应电流I =E

R 1+R 2

R 2两端电压U 2=IR 2

由平衡条件得mg =qU 2d

联立可得v =6 m/s

(2)由B =1+0.5t (T),可得

ΔB Δt =0.5 T/s

由法拉第电磁感应定律可得,产生的电动势

E ′=ΔB Δt

Lx =0.25 V 则感生电流I ′=E ′R 1+R 2=124

A 则通过电阻R 1的电荷量Q =I ′Δt =16

C

探究创新卷⑨ 着眼于练模拟悟规范——争满分

(本试卷满分95分)

一、选择题(本题包括8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的.全部选对的得6分,选不全的得3分,有选错或不答的得0分)

1.

如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是( )

A .先顺时针后逆时针

B .先逆时针后顺时针

C .先顺时针后逆时针,然后再顺时针

D .先逆时针后顺时针,然后再逆时针

答案:D

解析:根据右手螺旋定则可确定如图所示的电流周围的磁场方向;当检测线圈水平向南移动时,由于通电导线的磁场作用,导致穿过线圈的磁通量发生变化,从而产生感应电流,因此有:先向下的磁场在增加,则有感应电流方向逆时针;当移置正上方,向下的磁场在减小,所以感应电流方向为顺时针;当继续向南移动时,向上磁场在减弱,则有感应电流方向逆时针,故D 正确,A 、B 、C 均错误.

2.[2019·江苏泰兴模拟]如图所示电路中,原先开关S 闭合,电路处于稳定状态时,通过两电阻的电流大小分别为I 1、I 2,已知R 1>R 2,不计线圈L 的直流电阻,A 为理想电流表.在

某一时刻t1突然断开开关S,则通过电流表的电流I随时间t变化的图线可能是( )

答案:D

解析:原先开关S闭合,电路处于稳定状态时,通过两电阻的电流大小分别为I1、I2,且由R1>R2可知I1

3.[2019·江西抚州模拟](多选)电磁炉采用感应电流(涡流)加热的原理,通过电子线路产生交变磁场,把铁锅放在炉面上时,在铁锅底部产生交变的电流以加热食品等.它具有升温快、效率高、体积小、安全性好等优点.下列关于电磁炉的说法中正确的是( )

A.电磁炉面板可采用陶瓷材料,发热部分为铁锅底部

B.电磁炉面板可采用金属材料,通过面板发热加热锅内食品

C.电磁炉可以用陶瓷器皿作为锅具对食品加热

D.可以通过改变电子线路的频率来改变电磁炉的功率

答案:AD

解析:电磁炉面板如果用金属材料制成,使用电磁炉时,面板材料发生电磁感应要损失电能,电磁炉面板要用绝缘材料制作,发热部分为铁锅底部,如以陶瓷器皿等绝缘材料为锅体,则不能产生涡流,起不到加热作用,故A正确,B、C错误;锅体中涡流的强弱与磁场变化的频率有关,故D正确.

4.

[2019·四川成都七中诊断]如图,EOF和E′O′F′为空间一匀强磁场的边界,其中

EO ∥E ′O ′,FO ∥F ′O ′且EO ⊥OF ,OO ′为∠EOF 的角平分线,O 、O ′间的距离为L ,磁场方向垂直于纸面向里,一边长为L 的正方形导线框沿O ′O 方向匀速通过磁场,t =0时刻恰好位于图示位置,规定导线框中感应电流沿逆时针方向为正,则感应电流i 随时间t 变化的图象可能正确的是( )

答案:C

解析:在整个正方形导线框通过磁场的过程中,切割磁感线的边框为两竖直边框,两水平边框不切割磁感线.由于正方形导线框沿O ′O 方向匀速通过磁场,则有:①从开始到左边框到达O ′之前,导线框进入磁场切割磁感线的有效长度随时间均匀增加.根据E =BLv 得出感应电动势随时间也均匀增加,由于电阻不变,所以感应电流i 也随时间均匀增加.根据右手定则判断出感应电流的方向,结合导线框中感应电流沿逆时针方向时为正方向,得出开始时i 为正方向;②当左边框到达O ′之后,由于进入磁场切割磁感线的有效长度不变,所以感应电流i 不变.电流方向为正方向;③当左边框到达OO ′中点,右边框即将进入磁场切割磁感线时,接下来由于左边框的切割磁感线的有效长度在减小,而右边框切割磁感线的有效长度在增大,而左右边框切割磁感线产生的感应电动势方向相反,所以整个感应电动势随时间也均匀减小.电流也均匀减小,方向为逆时针方向.④当左边框到达距O 点L

4

时,左右边框切割磁感线的有效长度相等,此时感应电动势为0,电流为0.再往后跟前面过程相反.故C 正确,A 、B 、D 错误.

5.[2019·河南模拟](多选)如图甲所示,静止在水平面上的等边三角形金属闭合线框,匝数n =10,总电阻R =2.5 Ω,边长L =0.3 m ,处在两个半径均为r =0.1 m 的圆形区域内的匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合,磁感应强度B 1垂直水平面向外,B 2垂直水平面向里,B 1、B 2随时间t 的变化如图乙所示,线框一直处于静止状态,计算过程中近似取π=3.下列说法正确的是( )

A .t =0时刻穿过线框的磁通量为0.5 Wb

B .t =0.2 s 时刻线框中感应电动势为1.5 V

C .0~0.3 s 内通过线框横截面的电荷量为0.18 C

D .线框具有向左运动的趋势

答案:BC

解析:t =0时刻穿过线框的磁通量为Φ=B 1·12πr 2-B 2·16

πr 2=0.025 Wb ,选项A 错误;根据法拉第电磁感应定律可知,t =0.2 s 时刻线框中感应电动势为E =n ΔΦΔt

=n ΔB ·12πr 2Δt =1.5 V ,选项B 正确;在0~0.3 s 内通过线框横截面的电荷量q =E R ×Δt =n ΔΦΔt R

×Δt =0.18 C ,选项C 正确;由楞次定律可知,线框垂直纸面向外的磁通量增大,感应电流为顺时针方向,根据左手定则判断出安培力向右,所以线框有向右运动的趋势,选项D 错误.

6.

[2019·辽宁凌源模拟](多选)如图所示,一根直导体棒质量为m 、长为L ,其两端放在位于水平面内、间距也为L 的光滑平行金属导轨上,并与之接触良好,导体棒左侧两导轨之间连接一可控电阻,导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面.t =0时刻,给导体棒一个平行于导轨的水平初速度v 0,此时可控电阻的阻值为R 0,在导体棒运动过程中,通过可控电阻的变化使导体棒中的电流保持恒定,不计导轨和导体棒的电阻,导体棒一直在磁场中,下列说法正确的是( )

A .导体棒的加速度大小始终为a =

B 2L 2v 0mR 0

B .导体棒从开始运动到停止的时间为t =mR 0B 2L 2

C .导体棒从开始运动到停止的时间内,回路产生的焦耳热为12

mv 20 D .导体棒从开始运动到停止的时间内,回路产生的焦耳热为mv 2

答案:ABC

解析:由右手定则和左手定则可得,导体棒受到安培力水平向左,导体棒向右做减速运动,在导体棒运动过程中,通过可控电阻的变化使导体棒中的电流I 保持恒定,对导体棒由牛顿第二定律可得BIL =ma ,导体棒向右做匀减速运动,结合E =BLv ,I =E R 可得,B 2L 2v R =B 2L 2v 0R 0

=ma ,可知导体棒的加速度大小始终为a =B 2L 2v 0mR 0

,故A 正确;由导体棒做匀减速运动可得v

=v 0-at ,导体棒从开始运动到停止的时间为t =mR 0B 2L 2

,故B 正确;根据能量守恒定律可知,导体棒从开始运动到停止运动的过程中,回路产生的焦耳热为Q =12

mv 20,故C 正确,D 错误.

7.[2019·广东肇庆模拟](多选)如图甲为风力发电机的简易模型.在风力的作用下,风叶带动与其固定在一起的永磁铁转动,风叶的转速与风速成正比.某一风速时,线圈中产生的电流如图乙所示.下列说法中正确的是( )

A .磁铁的转速为10 r/s

B .图乙中电流的表达式为i =0.6sin10πt (A)

C .风速加倍时线圈中电流的有效值为0.6 2 A

D .风速加倍时电流的表达式为i =1.2sin10πt (A)

答案:BC

解析:由图乙可知,线圈的转动周期T =0.2 s ,角速度为 ω=2πT

=10π rad/s,根据ω=2πn 可知转速为5 r/s ,图乙中电流的表达式为i =0.6 sin10πt (A),故A 错误,B 正确;由转速与风速成正比可知,当风速加倍时,转速也加倍,则此时电流的最大值I m =1.2

A ,则电流的表达式为i =1.2sin20πt (A),则电流的有效值为1.22

A =0.6 2 A ,故C 正确,D 错误.

8.

[2019·福建龙岩质检](多选)如图所示,有一个“”形铁芯上绕有两个线圈,铁芯的三个竖直部分截面积相同,当线圈通电时产生的磁场都不能穿出铁芯,并且在分支处分成完全相等的两部分,现在给线圈1加电压为U 0的正弦式交流电,2接一负载电阻,此时线圈1

中的电流为I 0,线圈2中的电流为12

I 0,则线圈1、2的匝数比k 及线圈2两端的电压U 为(忽略线圈的电阻及铁芯中由于涡流而造成的电能损失)( )

A .U =2U 0

B .U =4U 0

C .k =14

D .k =12

答案:AC

解析:原线圈中的磁通量为φ时,副线圈中的磁通量为φ2,所以Δφ1Δt =2Δφ2Δt

,所以U 0=n 1Δφ1Δt ,U =n 2Δφ2Δt =12n 2Δφ1Δt ,又U 0I 0=U ·12I 0,所以U =2U 0,k =n 1n 2=14

,即A 、C 正确,B 、D 错误.

二、非选择题(本题包括4小题,共47分)

9.(11分)两根足够长的平行金属导轨间的距离为L ,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B 、方向垂直于导轨所在平面的匀强磁场.把一个质量为m 的导体棒ab 放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直且接触良好,与金属导轨接触的两点间的导体棒电阻为R 1.完成下列问题:

(1)如图甲,金属导轨的一端接一个内阻为r 的直流电源,撤去外力后导体棒仍能静止,求直流电源的电动势;

(2)如图乙,金属导轨的一端接一个阻值为R 2的定值电阻,撤去外力让导体棒由静止开始下滑,在加速下滑的过程中,当导体棒的速度达到v 时,求此时导体棒的加速度;

(3)求第(2)问中导体棒所能达到的最大速度.

答案:(1)mg R 1+r sin θBL (2)g sin θ-B 2L 2v m R 1+R 2 (3)mg R 1+R 2sin θB 2L 2

解析:(1)回路中的电流为I =E

R 1+r ,

导体棒受到的安培力为F 安=BIL ,

对导体棒受力分析知F 安=mg sin θ.

联立上面三式解得E =mg R 1+r sin θBL

. (2)当导体棒速度为v 时,产生的感应电动势E =BLv ,此时电路中电流I =E R =

BLv R 1+R 2,导体棒受到的安培力F =BIL =B 2L 2v R 1+R 2.根据牛顿第二定律有ma =mg sin θ-B 2L 2v R 1+R 2

, 解得a =g sin θ-B 2L 2v m R 1+R 2

.

(3)当B 2L 2v R 1+R 2

=mg sin θ时,导体棒达到最大速度v m ,可得 v m =mg R 1+R 2sin θB 2L 2

.

10.(12分)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面.BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:

(1)通过电阻R 的感应电流的方向和大小;

(2)外力的功率.

答案:(1)3ωBr 2

2R

,方向由C 向D (2)32μmgωr +9ω2B 2r 44R

解析:(1)在Δt 时间内,导体棒扫过的面积为

ΔS =12

ωΔt [(2r )2-r 2]① 根据法拉第电磁感应定律,导体棒上感应电动势的大小为 E =B ΔS Δt

② 根据右手定则,感应电流的方向是从B 端流向A 端.因此,通过电阻R 的感应电流的方向是从C 端流向D 端.由欧姆定律可知,通过电阻R 的感应电流的大小I 满足I =E R

联立①②③式得I =3ωBr 22R

④ (2)在竖直方向有mg -2N =0⑤

式中,由于质量分布均匀,内、外圆导轨对导体棒的支持力大小相等,其值为N .两导轨对运行的导体棒的滑动摩擦力均为f =μN ⑥

在Δt 时间内,导体棒在内、外圆导轨上扫过的弧长分别为

l 1=rωΔt ⑦

l 2=2rωΔt ⑧

克服摩擦力做的总功为W f =f (l 1+l 2)⑨

在Δt 时间内,消耗在电阻R 上的功为

W R =I 2R Δt ⑩

根据能量守恒定律知,外力在Δt 时间内做的功为

W =W f +W R ?

外力的功率为P =W

Δt

? 由④至?式得P =32μmgωr +9ω2B 2r 44R

. 11.(12分)如图甲所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“∧”形状的光滑金属导轨MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m .以MN 中点O 为原点,OP 为x 轴建立一维坐标系Ox .一根粗细均匀的金属杆CD ,长度d 为3 m ,质量m 为1 kg ,电阻R 为0.3 Ω,在拉力F 的作用下,从MN 处以恒定速度v =1 m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好).g 取10 m/s 2.

(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ;

(2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图乙中画出F -x 关系图象;

(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热.

答案:(1)E =1.5 V U CD =-0.6 V

(2)F =12.5-3.75x (N)(0≤x ≤2),图象见解析

(3)Q =7.5 J

解析:(1)金属杆CD 在匀速运动中产生的感应电动势

E =Blv (l =d ),代入数值得E =1.5 V.

当x =0.8 m 时,金属杆在导轨间的电势差为零(被短路),设此时杆在导轨外的长度为l 外,则

l 外=d -OP -x OP

d ,OP = MP 2-? ????MN 22,得l 外=1.2 m.

由楞次定律判断D 点电势高,故CD 两端电势差

U CD =-Bl 外v =-0.6 V.

(2)杆在导轨间的长度l 与位置x 的关系是

l =OP -x OP d =3-32

x , 对应的电阻R 1=l d R ,

电流I =Blv R 1

, 杆受到的安培力F 安=BIl =7.5-3.75x ,

根据平衡条件得F =F 安+mg sin θ,

得F =12.5-3.75x (N)(0≤x ≤2),

画出的F —x 图象如图所示.

(3)外力F 所做的功W F 等于F —x 图线与x 轴所围成的图形的面积,即W F =5+12.52

×2 J =17.5 J.

而杆的重力势能增加量

ΔE p =mg OP sin θ,故全过程产生的焦耳热Q =W F -ΔE p =7.5 J.

12.(12分)如图所示,MN 、PQ 是两条水平、平行放置的光滑金属导轨,导轨的右端接理想变压器的原线圈,变压器的副线圈与电阻R =20 Ω组成闭合回路,变压器的原副线圈匝数之比n 1:n 2=1:10,导轨宽L =5 m .质量m =2 kg 、电阻不计的导体棒ab 垂直MN 、PQ 放在导轨上,在水平外力F 作用下,从t =0时刻开始在图示的两虚线范围内往复运动,其速度随时间变化的规律是v =2sin20πt (m/s).垂直轨道平面的匀强磁场的磁感应强度B =4 T .导轨、导线和线圈电阻均不计.求:

(1)ab 棒中产生的电动势的表达式;ab 棒中产生的是什么电流?

(2)电阻R 上的电热功率P .

(3)从t =0到t 1=0.025 s 的时间内,外力F 所做的功.

答案:(1)E =40sin20πt (V),正弦交流电

(2)4×103

W (3)104 J

大学物理(4电磁感应定律)

第10章 电磁感应定律 第一节 法拉第电磁感应定律 1.电动势 只有静电场不能维持稳恒电流。(如电容器放电就是在静电场的作用下,电流由大到小到0的衰变过程,不能维持稳恒的电流。) 要维持稳恒的电流,必须有非静电力作功,将其它形式的能量补充给电路,即电源。 在电源内部,非静电力使电荷从负极搬回到正极板。 电动势的定义:把单位正电荷从负极通过电源内部移到正极时,非静电力F k 所作的功。 把正电荷q 经电源内部由负极移到正极时,非静电力作的功为: k k A F dl + - =?? 电动势为: 1k k A F dl q q ε+- ==?? 例:5号电池的开路电压为1.5伏,充电电池的开路电压为1.2伏,这是由化学特性决定的。 在有电流输出时,电池两端的电压比开路电压低,原因是电源内部有电阻。无内阻的电源称为“理想电源”

2.法拉第定律 精确的实验表明: 导体回路中产生的感应电动势ξ的大小与穿过回路的磁通量 的变化率d Φ/dt 成正比。 d dt εΦ=- 实验1: 磁铁插入线圈中,使线圈中的 磁通量发生变化,从而在线圈 中产生感应电动势。 实验2: 内线圈通、断电的变化产生一个 变化的磁场,在外线圈中便产生 了感应电动势,其中没有任何移 动的部件,这样产生的电动势称 为感生电动势。 3.愣次定律 (解决感应电动势的方向问题) 闭合回路中,感应电流的方向总是使得它自身产生的磁通量反抗引起感应电流的磁通量的变化。或者表述为:感应电流产生的磁

电动势方向 0d dt Φ > d dt Φ < 0d dt Φ> 0d dt Φ < 0d dt Φ > 0d dt Φ < 0d dt Φ > 0d dt Φ < 。 。 。 。 。 。 。 。 。。。。。 。 。 。 。 。 。 。 。 。。。。。 × × × × × × × × ××××× × × × × × × × × ×××××

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高中物理电磁感应交变电流经典习题30道带答案

一.选择题(共30小题) 1.(2015?嘉定区一模)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()A.均匀增大B.先增大,后减小 C.逐渐增大,趋于不变D.先增大,再减小,最后不变 2.(2014?广东)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块() A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 3.(2013?虹口区一模)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i随时间变化,使线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.图中箭头表示电流i的正方向,则i 随时间t变化的图线可能是() A.B.C.D. 4.(2012?福建)如图,一圆形闭合铜环由高处从静止开始加速下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是() A.B.C.D. 5.(2011?上海)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A.顺时针加速旋转B.顺时针减速旋转 C.逆时针加速旋转D.逆时针减速旋转 6.(2010?上海)如图,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图() A.B.C.D. 7.(2015春?青阳县校级月考)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是() A.B.C.D. 8.(2014?四川)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(﹣)T,图示磁场方向为正方向,框、挡板和杆不计形变.则() A.t=1s时,金属杆中感应电流方向从C到D B.t=3s时,金属杆中感应电流方向从D到C C.t=1s时,金属杆对挡板P的压力大小为

第7章 电磁感应 暂态过程

第7章 电磁感应 暂态过程 一、目的与要求 1.掌握法拉第电磁感应定律,能熟练地应用法拉第电磁感应定律计算感应电动势, 并能应用楞次定律判断感应电动势的方向。 2.掌握动生电动势和感生电动势、感生电场的概念、规律和计算方法。 3.理解自感和互感现象,掌握简单情况下自感系数、自感电动势,互感系数,互感 电动势的计算方法。 4.理解磁场能量的概念,掌握磁场能量的计算方法。 5.理解位移电流和全电流的概念,了解麦克斯韦方程组积分形式的物理意义。 6.了解暂态过程中的物理特征,掌握RL 、RC 串联电路暂态过程的计算方法。 二、内容提要 1.电源电动势 ?+ - ?=l E d k ε 2.法拉第电磁感应定律 t i d d Φ - =ε 3.根据产生原因不同,感应电动势可分为 (1)动生电动势 ???=b a i l B d )(v ε (2)感生电动势 ????-=Φ- =?=S L V i t t S B l E d d d d d d ε 4.根据产生方式不同,感应电动势可分为 (1)自感电动势: t I L L d d -=ε 其中I L Φ = 为自感系数,是在无铁磁质存在时,与回路中的电流无关,仅由回路的匝数、几何形状和大小以及周围介质的磁导率决定的物理量。 (2)互感电动势 t I M M d d -=ε 其中M 为互感系数,是在无铁磁质存在时,与回路中的电流无关,仅由回路的几何形 状、尺寸、匝数、周围介质的磁导率以及回路的相对位置决定的物理量。 5.磁能 自感磁能 22 1LI W m =

磁场能量密度 μ μ2212122 B H BH w m = == 磁场能量 ??==V V m m V BH V w W d 2 1 d 6.全电流安培环路定理 ∑?+=?)(d D L I I l H 其中I 为传导电流,t I D D d d Φ=,为位移电流。 7.麦克斯韦方程组 (1)通量公式: ∑?=?0 d q S S D 其中,式中的∑0 q 为高斯面内包围的自由电荷量的代数和。 0d =??S S B (2)环流公式: ? ????-=?S L t S B l E d d ∑?+=?)(d D L I I l H 8.暂态过程 (1)LR 电路的暂态过程(如图7.1)。 接通1 )e 1(t L R R I --=ε 当开关K 拨向2 t L R R I -= e ε (2)RC 电路的暂态过程(如图7.2) 充电时 )e 1(1t RC C q - -=ε 放电时 t RC C q 1e -=ε 三、例题 7-1 一长直导线通有电流I ,其附近有正方形线圈。线圈绕o o '轴以匀角速旋转。转 轴与导线平行,两者相距为b ,且在线圈平面内与其一边平行并过中心。求任意时刻线圈中的感应电动势。 分析 线圈旋转,穿过线圈所围面积的磁通量随时间变化,线圈中必有感应电动势。 用法拉第电磁感应定律求解。 解 线圈在转动过程中,通过它的磁通量随时间变化。当线圈转过角度t ωθ=时,通

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

全程训练2018届高考物理一轮总复习 周测九 电磁感应 交变电流(B卷)

周测九电磁感应交变电流(B卷) (本试卷满分95分) 一、选择题(本题包括8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的.全部选对的得6分,选不全的得3分,有选错或不答的得0分) 1. 如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是( ) A.先顺时针后逆时针 B.先逆时针后顺时针 C.先顺时针后逆时针,然后再顺时针 D.先逆时针后顺时针,然后再逆时针 2. (多选)某同学设计的家庭电路保护装置如图所示,铁芯左侧线圈L1由火线和零线并行绕成.当右侧线圈L2中产生电流时,电流经放大器放大后,使电磁铁吸起铁质开关K,从而切断家庭电路.仅考虑L1在铁芯中产生的磁场,下列说法正确的有( ) A.家庭电路正常工作时,L2中的磁通量为零 B.家庭电路中使用的用电器增多时,L2中的磁通量不变 C.家庭电路发生短路时,开关K将被电磁铁吸起 D.地面上的人接触火线发生触电时,开关K将被电磁铁吸起 3. 如图所示,A、B是两个完全相同的灯泡,D是理想二极管,L是带铁芯的线圈,其自感系数很大,直流电阻忽略不计.下列说法正确的是( ) A.S闭合瞬间,A先亮 B.S闭合瞬间,A、B同时亮 C.S断开瞬间,B逐渐熄灭 D.S断开瞬间,A闪亮一下,然后逐渐熄灭 4.如图甲,线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图乙所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应 交变电流(一)

模块综合试卷(一) (时间:90分钟 满分:100分) 一、选择题(本题共12小题,每小题4分,共计48分.1~8题为单选题,9~12题为多选题,全部选对的得4分,选对但不全的得2分,有选错的得0分) 1.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述不符合史实的是( ) A .奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系 B .安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说 C .法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 D .楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化 答案 C 解析 奥斯特通过著名的奥斯特实验,证明了电流周围存在磁场,安培提出分子电流假说,揭示了磁现象的电本质.楞次通过实验总结出感应电流的方向所遵循的规律——楞次定律. 2.一定值电阻接到电压为u 0的方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q 正. 该电阻上电压的峰值为2u 0,周期为 T ,如图1所示.则Q 方∶Q 正等于( ) 图1 A .1∶ 2 B.2∶1 C .1∶2 D .2∶1 答案 C 解析 根据题图图像可知,方波交流电的有效值U 方=u 0,正弦交流电的有效值U 正=2u 0 2 = 2u 0,一个周期内产生的热量分别为Q 方=u 0 2R T ,Q 正=2u 0 2R T ,所以Q 方∶Q 正=1∶2,C 正 确. 3.如图2所示,A 为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A 的正上方用绝缘丝线悬挂一个金属环B ,使B 的环面水平且与圆盘面平行,其轴线与胶木圆盘A 的轴线

电磁感应与交流电

1.如图所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈B中通以如图乙所示的交变电流,设t=0时电流沿逆时针方向,(图中箭头所示)。对于线圈A,在t1 ~t2时间内,下列说法中正确的是() A. 有顺时针方向的电流,且有扩张的趋势 B. 有顺时针方向的电流,且有收缩的趋势 C. 有逆时针方向的电流,且有扩张的趋势 D. 有逆时针方向的电流,且有收缩的趋势 2. 穿过一个单匝线圈的磁通量始终保持每 秒钟均匀地减少了2Wb,则 A.线圈中感应电动势每秒增加2V B.线圈中感应电动势每秒减少2V C.线圈中无感应电动势 D.线圈中感应电动势大小不变 3.在竖直向下的匀强磁场中,将一水平放置的金属棒AB,以初速度v水平抛出。空气阻力不计,如图5所示,运动过程中棒保持水平,那么下列说法中正确的是()(A)AB棒两端的电势U A < U B(B)AB棒中的感应电动势越来越大 (C)AB棒中的感应电动势越来越小(D)AB棒中的感应电动势保持不变 4.如图所示,一闭合的小金属环用一根绝缘细杆挂在固定点O处,使金 属圆环在竖直线OO′的两侧来回摆动的过程中穿过水平方向的匀强磁 场区域,磁感线的方向和水平面垂直。若悬点摩擦和空气阻力均不计, 则AD A.金属环进入和离开磁场区域都有感应电流,而且感应电流的方向相反 B.金属环进入磁场区域后越靠近OO′线时速度越大,而且产生的感应 电流越大 C.金属环开始摆动后,摆角会越来越小,摆角小到某一值后不再减小 D.金属环在摆动过程中,机械能将完全转化为环中的电能 5.如题图3所示,先后两次将一个矩形线圈由匀强磁场中拉出, 两次拉动的速度相同。第一次线圈长边与磁场边界平行,将线 圈全部拉出磁场区,拉力做功W1,第二次线圈短边与磁场边界 平行,将线圈全部拉出磁场区,拉力做功W2,则: A.W1> W2B.W1= W2C.W1< W2D.条 件不足,无法比较 6.如图所示,上下不等宽的平行金属导轨的EF和GH两部分导轨

大学物理C-练习四稳恒电流的磁场、电磁感应定律

练 习 四 稳恒电流的磁场、电磁感应定律 一、填空题 1. 如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过 abod 面的磁通量为___0.024Wb ______,通过befo 面的磁通量为____0______, 通过aefd 面的磁通量为___0.024Wb ____。 2. 如图所示,两根无限长载流直导线相互平行,通过的电流分别为I 1和I 2。则 =??1 L l d B _____)(120I I -μ_______,=??2 L l d B _____)(120I I +μ_____。 3. 试写出下列两种情况的平面内的载流均匀导线在给定点P 处所产生的磁感强度的大小. (1) B = 08I R μ ; (2) B = 0 。 4. 感应电场是由 变化的磁场 产生的,它的电场线是 闭合曲线 。 5. 如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差 M N U U -________0ln 2Ig a l t a μπ+- ______________. 二、选择题 1. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管 单位长度上的匝数相等。两螺线管中的磁感应强度大小BR 和Br 应满足:( B) (A )BR=2Br (B )BR=Br (C )2BR=Br (D )BR=4Br 2. 磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; 301

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

大学物理(吴百诗)习题答案10电磁感应

法拉第电磁感应定律 10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与 回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(4 2-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35 -?-=i ε,A 10210 0.1102.323 5---?-=??-==R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)422 123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I ,小的回路在大 的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02232 2()IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 2 03 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= (3)由楞次定律可知,小线圈中感应电流方向与I 相同。 动生电动势 10-3 一半径为R 的半圆形导线置于磁感应强度为B 的均匀磁场中,该导线以 速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高? 解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向, 在x 处 2 1(2)2m Rx R B π=+Φ,∴22m d dx RB RBv dt dt εΦ=-=-=- 由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 2RBv ε=- 负号表示电动势方向为逆时针,即上端电势高。 图10-2

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2014物理选择题百题精练:专题06 电磁感应、交变电流(第02期)

1.(多选)交流发电机电枢中产生的交变电动势为t E e m ωsin =,如果要将交变电动势的有效值提高一倍,而交流电的周期不变,可采取的方法是( ) A .将电枢转速提高一倍,其他条件不变 B .将磁感应强度增加一倍,其他条件不变 C .将线圈的面积增加一倍,其他条件不变 D .将磁感应强度增加一倍,线圈的面积缩小一半,其它条件不变 2.有以下物理现象:在平直公路上行驶的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光;降落伞在空中匀速降落;条形磁铁在下落过程中穿过闭合线圈,并在线圈中产生感应电流。在这些现象所包含的物理过程中,运动物体具有的相同特征是( ) A. 都有重力做功 B. 物体都要克服阻力做功 C. 都有动能转化为其他形式的能 D. 都有势能转化为其他形式的能 3.如图所示,一导线弯成直径为d 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法中正确的是( )

A.感应电流的方向先沿顺时针方向,后沿逆时针方向B.CD段直导线始终不受安培力 C.感应电动势的最大值E = Bdv D.感应电动势的平均值 1 8 E Bdv π = 4.(多选)如图所示,A为多匝线圈,与电键、滑动变阻器相连后接入M、N间的交流电源,B为一接有小灯珠的闭合多匝线圈,下列关于小灯珠发光说法正确的是() A.闭合电键后小灯珠可能发光 B.若闭合电键后小灯珠发光,则再将B线圈靠近A,则小灯珠更亮 C.闭合电键瞬间,小灯珠才能发光 D.若闭合电键后小灯珠不发光,将滑动变阻器滑臂左移后,小灯珠可能会发光

第三讲 电磁感应与交流电

A 1S 1234 2 S 1 R R 3 S 第三讲 电磁感应与交流电 1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( ) A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D .绕在同一铁环上的两个线圈,分别接电和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 2.如图所示,若套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看) 是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .先逆时针后顺时针方向的感应电流 D .无感应电流 3.如图所示有界匀强磁场区域的半径为r ,磁场方向与导线环所在平面垂直,导线环半径也为r, 沿两圆的圆心连线方向从左侧开始匀速穿过磁场区域。此过程中关于导线环中的感应电流i 随时间t 的变化关系图象(规定逆时针方向的电流为正)最符合实际的是( ) 4.图中A 、B 为两个相同的环形线圈,共轴并靠近放置.A 线圈中通有如图(a)所示的交变电流i ,则 ( ) A .在t 1到t 2时间内A 、 B 两线圈相吸; B .在t 2到t 3时间内A 、B 两线圈相斥; C .t 1时刻两线圈间作用力为零; D .t 2时刻两线圈间吸力最大 5.如图所示,在磁感应强度B=1.0 T 的匀强磁场中,金属杆PQ 在外力F 作用下在粗糙U 型导轨上以速度向右匀速滑动,两导轨间距离L=1.0 m ,电阻R=3.0 ,金 属杆的电阻r=1.0 ,导轨电阻忽略不计,则下列说法正确的是( ) A 、通过R 的感应电流的方向为由d 到a B .金属杆PQ 切割磁感线产生的感应电动势的大小为2.0 V C. 金属杆PQ 受到的安培力大小为0.5 N D .外力F 做功大小等予电路产生的焦耳热 6. 如图所示,平行金属导轨和水平面成θ角,导轨与固定电阻R 1、R 2相连,匀强磁场垂直 穿过导轨平面。有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值 均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上匀速滑动,当上滑的速度为v 时,受到的安培力为F ,则此时( ) A.电阻R 1的电功率为Fv/3 B. 电阻R 1的电功率为Fv/6 C.整个装置因摩擦而产生的热功率为μmgv cos θ D.整个装置消耗的机械功率为(F+μmg cos θ)v 7.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L

高中物理-电磁感应 交变电流测试题

高中物理-电磁感应交变电流测试题 一、选择题(1-7为单选,8-10为多选,每题4分,共40分) 1、所示,平行导轨间距为d,一端跨接一个电阻为R,匀强磁场的磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A.Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 2、如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减少时() A、环有缩小的趋势以阻碍原磁通量的减小 B、环有扩大的趋势以阻碍原磁通量的减小 C、环有缩小的趋势以阻碍原磁通量的增大 D、环有扩大的趋势以阻碍原磁通量的增大 3、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界00’为其对称轴.一正方形闭合导 体线框abcd,在外力作用下由纸面内图示位置从静 止开始向左做匀加速运动,若以顺时针方向为电流 的正方向,能反映线框中感应电流随时间变化规律 的图象是( ) 4、如图7所示,MN是一根固定的通电直导线,电流方向向上.今 将一金属线框abcd放在导线上,让线框的位置偏向导线的左边,两 者彼此绝缘.当导线中的电流突然增大时,线框整体受力情况为 () A.受力向右B.受力向左C.受力向上D.受力为零 5、如图11-1所示,矩形线圈的匝数为N,面积为S,内阻为r,绕OO′轴以角速度ω做匀速转动.在它从如图所示的位置转过90°的过程中,下列说法正确的是( ) A.通过电阻的电荷量为 ) (2 2r R NBS + π B.通过电阻的电荷量为 2NBS R r + C.外力所做的功为 ) ( 2 2 2 r R N S B N + ω D.外力所做的功为 ) (4 2 2 2 r R S B N + ω π 6、把一只电热器接到100 V的直流电源上,在t时间内产生的热量为Q,若将它 分别接到U1=100sinωt V和U2=50sin2ωt V的交变电流电源上,仍要产生热量Q,则所需时间分别是 A.t,2t B.2t,8t C.2t,2t D.t,t 7、如图所示的电路中,已知交变电源的电压u= (200sin100πt) V, 电阻R= 100Ω,不考虑电源内阻对电路的影响.则电流 表和电压表的读数分别为() A.1.41 A,220 V B.2 A,220 V C.1.41 A,141 V D.2 A,100 V v a b θ d

相关文档
最新文档