勾股定理的论文

勾股定理的论文
勾股定理的论文

勾股定理的论文

关于勾股定理

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

证明方法:

先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 ,b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2

图(1)图(2)

勾股定理的历史:

商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期

西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.

赵爽:

?东汉末至三国时代吴国人

?为《周髀算经》作注,并著有《勾股圆方图说》.

赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结

合,互不可分的独特风格树立了一个典范.以后的数学家大

多继承了这一风格并且代有发展.例如稍后一点的刘徽在

证明勾股定理时也是用的以形证数的方法,只是具体图形

的分合移补略有不同而已.

中国古代数学家们对于勾股定理的发现和证明,在世

界数学史上具有独特的贡献和地位.尤其是其中体现出来

的"形数统一"的思想方法,更具有科学创新的重大意义.事

实上,"形数统一"的思想方法正是数学发展的一个极其重

要的条件.正如当代中国数学家吴文俊所说:"在中国的传

统数学中,数量关系与空间形式往往是形影不离地并肩发

展着的......十七世纪笛卡儿解析几何的发明,正是中国这种

传统思想与方法在几百年停顿后的重现与继续."中国最早

的一部数学著作——《周髀算经》的开头,记载着一段周公

向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?"商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩'得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这个原理是大禹在治水的时候就总结出来的呵."

毕达哥拉斯定理

Pythagoras’ theorem

在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。

美國總統的證明

?伽菲尔德(James A. Garfield;1831 - 1881)

?1881 年成為美國第20 任總統

?1876 年提出有關證明

总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好

者?答案是否定的.事情的经过是这样的;

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年

人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

他是这样分析的,如图所示:

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。

1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法。

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古

代的人民早在几千年以前就已经发现并应用勾股定理这一重

要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定

理,就是指在直角三角形中,两条直角边的平方和等于斜边的

平方。如图所示,我们

图1 直角三角形

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

图2 勾股圆方图

勾股定理趣事

学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.

总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的;

勾股的发现

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?

只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。

1881年,伽菲尔德就任美国第二十任总统。后来,

勾股的证明

人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。

勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。

正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体──毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。

尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。

2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。

今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。

勾股趣事

甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!?

有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。

勾股定理的发现

人们对勾股定理的认识经历了从特殊到一般的过程,这在世界许多地区的数学原始文献中都有反映.最早发现"勾三股四弦五"这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处.勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯.中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’(即直角)的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

勾股的发现

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们用勾(a)和股(b)分别表示直角三角形的两条直角边,用弦(c)来表示斜边,则可以得到:勾2+股2=弦2亦即:a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)

满足勾股定理的数组称为勾股数(或商高数)。在西方,人们把这个定理的发现与证明归功于古希腊的毕达哥拉斯,因而称之为毕达哥拉斯定理,满足定理的数组也就称为毕达哥拉斯数。但是1945年,人们在对古巴比伦人遗留下的一块数学泥板的研究中,惊讶地发现上面竟然刻有15组勾股数,其年代远在商高和毕达哥拉斯之前,大约在公元前1900年到公元前l600年之间。这些勾股数组中有些是很大的数,即使在今天也往往是人们所不熟悉的。这个数表使人们有理由相信,古巴比伦人早已掌握了勾股定

勾股的证明

理并很可能找到了一种求得勾股数的一般方法,只不过人们还不能从其他的泥板中找出更多的证据来证明这一点。

勾股趣事

毕达哥拉斯学派倒是明确地给出了勾股数的一组公式:一组勾股数的正整数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。

后来,另一个古希腊学者柏拉图(Plato,约前427-前347)也给了另一组公式:a=2n,b=n2-1,c=n2+1,此时斜边与其中一股之差为2。

被誉为“代数学鼻祖”的古希腊数学家丢番图(Diophantus,约330-246)也在研究二次不定方程的时候,对勾股数作了一番探讨。他发现不论是毕达哥拉斯还是柏拉图的式子,都没能给出全部勾股数组,于是他找到了一个新方法:全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(m>n)是互质且一奇一偶的任意正整数。

丢番图究竟是如何得到这组式子的,人们今天已经无从知晓。重要的是,这组式子包含了全部的勾股数组!

值得一提的是,在早于丢氏三、四百年的我国古代数学巨著《九章算术》中,也提出了一组求勾股数的式子,这组式子相当于:任意给定两个正整数m,n(m>n),那么这三个正整数就是一个整勾股数组。用代数方法很容易证明这一结论。公元3世纪,我国著名数学家刘徽从几何上也证明了这一结论。

不难证明,如果上述m,n(m>n),是互质的奇数,那么用《九章算术》中的法则可以求出所有两两互质的整勾股数组。这也是我们中国古代数学家的一项杰出成就。

无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.

勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。

这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理的历史

勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。

在稍后一点的《九章算术》一书中(约在公元50至100年间)(上图),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

学生小论文

遨游勾股世界 引言:勾股定理是集合中几个最重要的定理之一,在生产生活实际中用途很大,而且在其他自然科学中也被广泛运用着。在没有深入学习勾股定理时,我觉得它十分神奇、深奥,但是学习了有关于勾股定理的知识后,我知道了“一个直角三角形斜边的平方,等于其两个直角边的平方和”,这一性质称为“勾股定理”,并且我也可以轻松的运用这项知识去解决许多问题了。那么,这项如此重要的定理是怎么被发现的,它起源于哪里,在生活中有又有什么具体的用处呢?为了更加深入地了解勾股定理,所以就在数学老师的指道下写了这篇论文。 关键词:发现证明运用拓展 一、了解勾股定理的发现历程 “一个直角三角形斜边的平方,等于其两个直角边的平方和”,看似如此简单的定理,他被发现的过程却并非如此简单:人们对勾股定理的认识经理了从特殊到一般的过程,回顾历史,几乎所有的文明古国都分别发现这个定理,当中包括希腊、中国、埃及、巴比伦、印度等。早在3000年前,我国已有“勾广三、股修四、径隅五”的结论,意思是:直角三角形中,如果勾长三、股长四,那么弦长为五。早在毕达哥拉斯以前一千多年,古代巴比伦人就已经知道了这个定理。而毕达哥拉斯是西方最早发现这个定理的人。 勾股定理是一个历史悠久的定理,从发现到显著已有五千年的历史了。古今中外,曾经有无数的数学家提出这个定理的证明,甚至曾经有一位美国总统(加非尔德)在他担任议员时也提出了一个证明。此外,这定理亦被灌以很多不同的名称,如百牛定理、勾股定理、商高定理、毕氏定理等。 二、证明勾股定理 知道吗,至今为止勾股定理的证法已多达400多种!那么我们可不可以自己亲手去证证看,用拼图的方法可不可以证呢?试试就知道: 证法一 如图,正方形ABCD的面积 =4个直角三角形的面积+正方形PQRS的面 积 ∴ ( a +b )2=1/2 ab × 4 +c2 a2 +2ab +b2 =2ab +c2 故a2+b2=c2 证法二 图1中,甲的面积=(大正方形面积) -( 4个直角三角Array形面积)。 图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三 角形面积)。 因为图1和图2的面积相等, 所以甲的面积=乙的面积+丙的面积

勾股定理的应用(讲义及答案).

勾股定理的应用(讲义) 知识点睛 1.利用勾股定理解决实际问题的处理思路: (1)理解题意,把实际问题转化为数学问题; (2)找出相应的直角三角形,并找出其______、______; (3)根据已知及所求,利用___________进行计算. 2.“勾股定理”或“勾股定理逆定理”: 条件是直角三角形时,考虑______________________; 要证明三角形是直角三角形,考虑______________________. 精讲精练 1.一艘帆船由于风向的原因先向正东方向航行了160km,然后 向正北方向航行了120km,这时它离出发点有________km. 2.我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌 方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,则敌方汽车的速度为_________km/h. 3.如图,一个梯子AB长2.5米,顶端A靠在一竖直的墙AO上,这 时梯子底端B与墙角O的距离为0.7米.梯子滑动后停在CD位置上,测得BD=0.8米,求梯子顶端A沿墙下滑了多少米?

4.一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处, 则折断处离地面的高度是_________尺.(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺) 第4题图第5题图 5.在我国古代数学著作《九章算术》中记载了一道有趣的问题, 这个问题的大意是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度是_______尺,这根芦苇的长度是 _______尺. 6.如图,公路上A,B两站相距5km,在公路附近有C,D两 所学校,DA⊥AB于点A,CB⊥AB于点B,已知AD=2km,BC=1km,现要在公路边建一个青少年活动中心E,使C,D 两所学校到E的距离相等,则青少年活动中心E应建在距离A多远处?

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 += a b c 2.勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ∠=?,则c,b=,a= ?中,90 C ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC C ∠=? ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AB=,15 AC=,求BC的长 解: 题型二:应用勾股定理建立方程

2 1 E D C B A 例2.⑴在AB C ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,C D AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长

A B C D E 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

勾股定理小论文

勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem). 在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2,即α*α+b*b=c*c 推广:把指数改为n时,等号变为小于号 据考证,人类对这条定理的认识,少说也超过4000 年! 中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。 在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。 勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

勾股定理复习讲义

2 1E D C B A 勾股定理复习 班级______姓名_________ 一.知识归纳 1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形 (1)首先确定最大边(如c ).(2)验证2 c 与2 a +2 b 是否具有相等关系. 若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2 b ,则△ABC 不是 . 3.勾股数 ①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等 题型一:直接考查勾股定理 例1.(1)在ABC ?中,90C ∠=?,17AB =,15AC =,BC = (2)在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = (3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm 练习1:求下列阴影部分的面积: (1) 正方形S = ; (2)长方形S = ; (3)半圆S = ; 2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为 例2.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 D C B A

勾股定理的十六种证明方法大学论文

勾股定理的十六种证明方法 【证法1】 此主题相关图片如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2) 整理得到:a^2+b^2=c^2。 【证法2】 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的

正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2. ∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法3】 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c^2.

勾股定理初中数学论文

勾股定理初中数学论文 1引言 勾股定理是初中数学中非常重要的一个定理[1]。它很好地解释了直角三角形中三条边之间的数量关系,对于几何学当中有关直角三角形的计算机证明问题,利用勾股定理往往能够迎刃而解,使学生快速掌握解决方法。同时,在日常生活及工作当中,勾股定理的应用也非常广泛。因此,在初中数学教学过程中,充分利用好勾股定理这一有效手段进行解题显得尤为重要。笔者结合多年的教学经验,利用勾股定理,对初中数学当中的“线段求长问题”、“求角问题”、“证明垂直问题”及“实际问题”进行了分析与探究,希望以此能够为初中数学教学提供有效依据。 2勾股定理在线段问题中的应用 在初中数学中,一些“线段求长”问题使用常规方面解决常表现的较为棘手,而使用勾股定理往往能够得以有效解决。例题1:如图1,在三角形ABC中,已知:∠ABC=90°,AB=BC,三角形的三个顶点分别位于相互平行的三条直接l1、l2、l3上,并且l1与l2之间的距离为2,l2,与l3之间的距离为3,求AC 的长度。解:过A作l3的垂线交l3于D,过C作l3的垂线交l3于E,由已知条件:∠ABC=90°,AB=BC,得:Rt△ABD与Rt△BEC全等;所以,AD=BE=3,DB=CE=5;进而得:AB2=BC2=32+52=9+25=34;在直角三角形ABC中,AC2=AB2+BC2=68,所以:AC=217姨 3勾股定理在求角问题中的应用 在初中数学当中,有些求角问题使用常规方法难以解决,而使用勾股定理则能够很快地解决。因此,将在求角问题中充分应用勾股定理便有着实质性的作用[2]。例题2:如图2,在等边△ABC中,有一点P,已知PA、PB、PC分别等于3、4、5,试问∠APB等于多少度?解:把△APC绕着点A旋转,旋转至△ABQ,让AB 和AC能够重合;此时,AP=AQ=3,BQ=PC=5,,∠PAQ=∠BAC=60°;所以,△PAQ是等边三角形;所以,PQ=3;在三角形PBQ当中,PB、BQ分别等于4、5,所以,三角形PBQ是直角三角形,其中∠BPQ=90°;所以,∠APB=∠BPQ+∠APQ=90°+60°=150°。

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 请你画出圆柱的侧面展开图. 3. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. ?精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8 cm,底面半径等于2 cm.在 圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知 AB=5 cm,树干的直径为4 cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3.如图所示,有一根高为2 m的木柱,它的底面周长为0.3 m,为了营造喜庆的气 氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正

勾股定理证明方法及论文

勾股定理的证明方法 【证法1】 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的 面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使 A 、E 、 B 三点在一条直线 上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2 . ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()2 2 21 4c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角

三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形 的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直 线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴ ()2 2212122 1 c ab b a +?=+. ∴ 2 22c b a =+. 【证法5】 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,

勾股定理的论文

勾股定理的论文 关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 ,b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 图(1)图(2) 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: ?东汉末至三国时代吴国人 ?为《周髀算经》作注,并著有《勾股圆方图说》.

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________;__________;___________.2. 请你画出圆柱的侧面展开图. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

《勾股定理》小论文

勾股定理小论文 勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a2+b2=c2这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。 远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。 中国记载勾股定理的古籍有《周髀算经》,《九章算术》。《九章算术》中,赵爽描述此图:“勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦 成玄实。以差实减玄实,半其余。以差为从法,开 方除之,复得勾矣。加差于勾即股。”用现代的数 学语言描述就是黄实的面积等于大正方形的面积 减去四个朱实的面积。2002年第24届国际数学家 大会(ICM)的会标即为该图。 加菲尔德证法在证出此结论5年后,成为美国 第20任总统,所以人们又称其为“总统证法”。 在直角梯形ABDE中,∠AEC=∠CDB=90°,

勾股定理开题报告

天津师范大学津沽学院2015届本科毕业论文(设计)选题审批表 学生姓名顾鹏飞学号 指导教师张筱玮职称教授所选题目名称:勾股定理的证明方法及应用研究 选题性质:()A.理论研究(√)B.应用研究()C.应用理论研究 选题的目的和理论、实践意义: 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后 希帕索斯根据勾股定理发现了第一个无理数( 2),导致第一次数学危机。 指导教师意见: 签字:年月日系领导小组意见: 签字:年月日备注:

天津师范大学津沽学院2015届本科毕业论文(设计)开题 报告 系别:理学系专业:数学与应用数学 论文题目勾股定理的证明方法及应用研究 指导教师张筱玮职称教授学生姓名顾鹏飞学号 一、研究目的(选题的意义和预期应用价值) 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础, 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后希帕索斯根据勾股定 理发现了第一个无理数( 2),导致第一次数学危机。 二、与本课题相关的国内外研究现状,预计可能有所突破和创新的方面(文献综述) 中国:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国:在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

勾股定理实际应用(讲义) 含答案

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 下列各组数: ①6,6,8 ②65,8 5,2 ③13,14,15 ④0.6,0.8,1.0 ⑤10,24,26 ⑥7,12,13 其中能作为直角三角形三边长的是___________.(填写序号) 3. 请你画出圆柱的侧面展开图. 4. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路 (1)__________________________; (2)__________________________; (3)_______________,利用________________进行计算. ? 精讲精练 1. 有这样一个有趣的问题:如图所示,圆柱的高等于12cm ,底面半径等于3cm .在 圆柱的下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 相对的B 点处的食物,则沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2. 如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升 到点B ,已知AB =5cm ,树干的直径为4cm .你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3. 如图所示,有一根高为2m 的木柱,它的底面周长为0.3m ,为了营造

勾股定理的应用(讲义)(含答案)

勾股定理的应用(讲义) ?知识点睛 1.利用勾股定理解决实际问题的处理思路: (1)理解题意,把实际问题转化为数学问题; (2)找出相应的直角三角形,并找出其______、______; (3)根据已知及所求,利用___________进行计算. 2.“勾股定理”或“勾股定理逆定理”: 条件是直角三角形时,考虑______________________; 要证明三角形是直角三角形,考虑______________________. ?精讲精练 1.一艘帆船由于风向的原因先向正东方向航行了160 km,然后向正北方向航行了 120 km,这时它离出发点有________km. 2.我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾 驶,他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,则敌方汽车的速度为_________km/h. 3.如图,一个梯子AB长2.5米,顶端A靠在一竖直的墙AO上,这时梯子底端B与墙角O 的距离为0.7米.梯子滑动后停在CD位置上,测得BD=0.8米,求梯子顶端A沿墙下滑了多少米?

4.一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,则折断处离地面的高 度是_________尺.(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺) 第4题图第5题图 5.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的大意 是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺. 如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度是_______尺,这根芦苇的长度是_______尺. 6.如图,公路上A,B两站相距5 km,在公路附近有C,D两所学校,DA⊥AB于点 A,CB⊥AB于点B,已知AD=2 km,BC=1 km,现要在公路边建一个青少年活动中心E,使C,D两所学校到E的距离相等,则青少年活动中心E应建在距离A多远处? D E C B A

勾股定理小论文

勾股定理 最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。 证明方法一:取四个与Rt△ABC全等的直角三角形,把它们拼成如图所示的正方形。如图,正方形ABCD的面积=4个直角三角形的面积+正方形PQRS的面积 ∴( a +b )2 =1/2 ab × 4 +c2 a2 +2ab +b2 =2ab +c2 故a2 +b2 =c2 证明方法二: 图1中,甲的面积=(大正方形面积) -( 4个直角三角形面积)。 图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三角形面积)。 因为图1和图2的面积相等, 所以甲的面积=乙的面积+丙的面积 即:c2 =a2 +b2 证明方法三: 四个直角三角形的面积和+小正方形的面积=大正方形的面积, 2ab +( a -b ) 2 =c2, 2ab +a2 -2ab +b2 =c2 故a2 +b2=c2 证明方法四:

梯形面积=三个直角三角形的面积和 1/2 × ( a +b ) × ( a +b ) =2 × 1/2 × a × b +1/2 × c × c (a +b )2 =2ab +c2 a 2 +2a b +b2 =2ab +c2 故a2 +b2=c2 这是常用的四种方法,下面是另外的四种方法: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵D、E、F在一条直线上, 且RtΔGEF ≌RtΔEBD, ∴∠EGF = ∠BED, ∵∠EGF + ∠GEF = 90°, ∴∠BED + ∠GEF = 90°, ∴∠BEG =180º―90º= 90º. 又∵AB = BE = EG = GA = c, ∴ABEG是一个边长为c的正方形. ∴∠ABC + ∠CBE = 90º. ∵RtΔABC ≌RtΔEBD, ∴∠ABC = ∠EBD. ∴∠EBD + ∠CBE = 90º. 即∠CBD= 90º. 又∵∠BDE = 90º,∠BCP = 90º, BC = BD = a. ∴BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴c2 =a2 +b2 【证法2】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点

八年级数学《勾股定理》讲义

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c ,b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

数学勾股定理小论文

数学勾股定理小论文 “兴趣是最好的老师。”在勾股定理的日常教学中,我们要注重学生兴趣的激发。 首先,老师在授课导入时可以给学生讲一下勾股定理的背景资料,如勾股定理的发展历史、勾股定理在日常生活中的运用和勾股定理的相关故事等。这样不仅可以让学生了解勾股定理的文化知识,更可以调动学生学习的好奇心和学习兴趣。其次,教师在具体授课中可以设计一些贴近生活的题目。《义务教育数学课程标准》实验稿指出:“勾股定理的教学目标是让学生体验勾股定理的探索过程,会运用勾股定理解决简单的问题”。这也能让学生主动地参与到课堂中去,能起到激发学习兴趣的作用。 光有兴趣是不行的,还需要教师有好的教学方法。 一、教师教学方法的设计要结合学生基本特征 在教学勾股定理时,教师要知道:初二学生已经对三角形及实数等一些知识有了些了解,初步具备了简单的分析和解决问题的基本技能;有了一些形象和抽象的思维能力;对勾股定理有所耳闻,但不具体。 二、设置勾股定理的教学情景 问题1:你们能求出我们常见的边长为单位1的正方形的对角线是多长吗?问题2: a2+a2=b2这个式子中,你们知道a2、b2在几何中有什么意义吗? 最后,让学生尝试画出能表达式子的图形。这有利于学生打好基础,并建立数与形结合的概念。 三、改变过去填鸭式的教学,让学生学会自主合作探究 可以让学生分成小组用折纸的方法来进一步直观地感受勾股定理的证明。如图: a+b2=■ab?4+c2 化简得:a2+b2=c2 四、学以致用 既然学习勾股定理,那么我们还要能对它进行灵活运用,但是在运用中一些学生会出现一些常见的错误,学生在审题时由于马虎会发现不了题目中的隐含条件。如:在直角△ABC中,a、b、c分别为三角形的三边,∠B为直角,如果a=6 cm,b=8 cm,求边c的长。错误解法:∵△ABC是直角三角形,∴a2+b2=c2,即62+82=c2,解得c=10 cm。分析原因:这是因为学生在审题时忽视了题目中∠B才是直角,也就是b才是斜边。所以,正确的应是:∵∠B是直角,∴a2+c2=b2,即62+c2=82,解得c=2■。当然

勾股定理在折叠问题中的应用(讲义及答案)

勾股定理在折叠问题中的应用 ? 课前预习 1. 观察图形,回顾轴对称的性质: (1)全等变换:对应边________,对应角_________; (2)对应点所连的线段被对称轴_____________. l A' B' C' C B A 2. 如图,乐乐将△ABC 沿DE ,EF 分别翻折,顶点A ,B 均落在点O 处,且EA 与 EB 重合于线段EO ,若∠DOF =139°,则∠C 的度数为( ) A .38° B .39° C .40° D .41° O F E D C B 3. 如图,有一张直角三角形纸片,两直角边AC =6,BC =8,点D 在BC 边上,将直 角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处.设DE 的长为x ,则CD =__________,BD =_________.(用含x 的代数式表示) D E A B C ? 知识点睛 1. 轴对称(折叠)的思考层次

(1)全等变换:对应边_______、对应角_______. (2)对称轴性质: ①对应点所连线段_____________________; ②对称轴上的点_______________________. (3)组合搭配:长方形背景下的折叠常出现______三角形. (4)作图:关注_______和________,有时需要依据不变特征分析转化,补全图形. ①当对称轴已知时,直接作点的对称点,找对应点; ②当对应点已知时,作对应点所连线段的垂直平分线,找对 称轴(折痕); ③当对称轴过定点时,常作弧找对应点. ? 精讲精练 1. 如图,有一张直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,点D 在BC 边 上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处,则线段CD 的长为__________. D E A B C N M F C B E D A 第1题图 第2题图 2. 如图,将边长为4 cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长为__________. 3. 如图,在长方形ABCD 中,AB =5 cm ,在DC 上存在一点E ,将△AED 沿直线AE 折叠,使点D 落在BC 边上的点F 处,若△ABF 的面积为30 cm 2,则EF 的长为_______. F E D C B A 4. 如图,在长方形ABCD 中,点E 在AB 边上,将长方形ABCD 沿直线DE 折叠, 点A 恰好落在BC 边上的点F 处.若AE =5,BF =3,则CF 的长为_______.

相关文档
最新文档