正方体和正四面体

正方体和正四面体
正方体和正四面体

第 1 页 共 4 页

高中化学竞赛辅导专题讲座——三维化学

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。

第一节 正方体与正四面体

在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:

【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)

【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢?

如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取

CD 中点E ,截取面ABE (如图1-2所示),过A 、

B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么

∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO

和AB 的关系还是有一定难度

的。先把该题放下,来看一题初中化学竞赛题: 【例题2

】CH 4分子在空间呈四面体形状,1个C 原

子与4个H 原子各共用一对电子对形成4条共价键,如

图1-3所示为一个正方体,已画出1个C 原子(在正方体

中心)、1个H 原子(在正方体顶点)和1条共价键(实线表

示),请画出另3个H 原子的合适位置和3条共价键,任

意两条共价键夹角的余弦值为 ①

【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方

体的顶点上,正方体余下的七个顶点可分成三类,三个为

棱的对侧,三个为面对角线的对侧,一个为体对角线的对

侧。显然三个在面对角线对侧上的顶点为另三个氢原子的

位置。

【解答】答案如图1-4所示。

【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

第 2 页 共 4 页 正四面体的棱长即为正方体的棱长的2倍,它们的中心是互相重合的。

【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2,

由余弦定理得cos α=(AO 2+BO 2-AB 2)/2AO ·BO =-1/3

【解答】甲烷的键角应为 π-arccos1/3

【练习1】已知正四面体的棱长为2,计算它的体积。

【讨论】利用我们上面讲的思想方法,构造一个正方体,那么正四面体就相当于正方体削去四个正三棱锥(侧面为等腰直角三角形),V 正四面体=a 3-4×(1/6)×a 3。

若四面体相对棱的棱长分别相等,为a 、b 、c ,求其体积。

我们也只需构造一个长方体,问题就迎刃而解了。

【练习2】平面直角坐标系上有三个点(a 1,b 1)、(a 2,b 2)、(a 3,b 3)求这三个点围成的三角形的面积。

【讨论】通过上面的构造思想,你能构造何种图形来解决呢?是矩形吧!怎样表达面积呢?你认为下面的表达式是否写得有道理?

S △=(max{a 1,a 2,a 3}-min{a 1,a 2,a 3})×(max{b 1,b 2,b 3}-min{b 1,b 2,b 3})-21(21a a -21b b -+32a a -32b b -+13a a -13b b -) 【练习3】在正四面体中体心到顶点的距离是到底面距离的几倍,能否用物理知识去理解与解释这一问题呢?

【讨论】利用物理中力的正交分解来解决这一问题,在平面正三角形中,从中心向顶点构造三个大小相等,夹角为120o的力F 1、F 2、F 3。设F 1在x 轴正向,F 2、F 3进行正交分解在x 、y 轴上,在x 轴上的每一个分力与F 1相比就相当于中心到底面与到顶点距离之比,而两个分力之和正好与F 1抵消,即大小相等。显然中心到顶点距离应为到底边距离的2倍。

在空间,构造四个力F i (i =1,2,3,4),F 1在x 轴正向(作用点与坐标原点重合),F 2、F 3、F 4分解在与x 轴与yz 面上,yz 面上三个力正好构成正三角形,而在x 轴(负向)上有三个分力,其之和与F 1抵消,想想本题答案应为3吗?当然这个问题用体积知识也是易解决的。

让我们再回到正题,从上面的例题1,2中,我们

了解了正四面体与正方体的关系,虽然这是一个很浅显

易懂的结论,但我们还是应该深刻理解和灵活应用,帮

助我们解决一些复杂的问题。先请再来看一个例题吧:

【例题3】SiC 是原子晶体,其结构类似金刚石,

为C 、Si 两原子依次相间排列的正四面体型空间网状结

构。如图1-5所示为两个中心重合,各面分别平行的大

小两个正方体,其中心为一Si 原子,试在小正方体的

第 3 页 共 4 页

顶点上画出与该Si 最近的C 的位置,在大正方体的棱上画出与该Si 最近的Si 的位置。两大小正方体的边长之比为_______;Si —C —Si 的键角为______(用反三角函数表示);若Si —C 键长为 a cm ,则大正方体边长为_______cm ;SiC 晶体的密度为________g/cm 3。(N A 为阿佛加德罗常数,相

对原子质量 C.12 Si.28)②

【分析】正方体中心已给出了一个Si 原子,那么与Si 相邻的四个C 原子则在小正方体不相邻的四个顶点上,那么在大正方体上应画几个Si 原子呢?我们知道每个碳原子也应连四个硅原子,而其中一个必为中心的硅原子,另外还剩下4×3=12个硅原子,这12个点应落在大正方体上。那么这12个又在大正方体的何处呢?

前文介绍正方体时曾说正方体有12条棱,是否每一条棱上各有一个碳原子?利用对称性原则,这12个硅原子就应落在各棱的中点。让我们来验证一下假设吧。

过大正方体的各棱中心作截面,将大正方体分割成八个小正方体,各棱中点、各面心、顶点、中心构成分割后正方体的顶点。原来中心的硅原子就在分割后八个正方体的顶点上了,由于与一个碳原子相邻的四个硅原子是构成一个正四面体的。利用例2的结论,分割后的正方体上另三个硅原子的位置恰为原来大正方体的棱心(好好想一想)。那么碳原子又在分割后的正方体的哪里呢,毫无疑问,在中心。那么是否每个分割后的正方体的中心都有碳原子呢?这是不可能的,因为只有四个碳原子,它们应该占据在不相邻的四个正方体的中心。碳原子占据四个硅原子构成的最小正四面体空隙的几率为1/2,那么反过来碳原子占据碳原子四面体空隙的几率又是多少呢?也1/2吧,因为在空间,碳硅两原子是完全等价的,全部互换它们的位置,晶体是无变化的。

我们可以把大正方体看成SiC 晶体的一个基本重复单位,那么小正方体(或分割后的小正方体)能否看成一个基本重复单位呢?这是不行的,因为有的小正方体中心是有原子的,而有些是没有的。

大小两个正方体的边长应是2:1吧,至于键角也就

不必再说了。最后还有一个密度问题,我们将留在第二

节中去分析讨论。

【解答】如图1-6所示(碳原子在小正方体不相邻

的四个顶点上,硅原子在大正方体的十二条棱的中点上) 2:1 arcos (-1/3) 43/3 153/2N A a 3 【练习4】金刚石晶体是正四面体型的空间网状结构,课本上的金刚石结构图我们很难理解各原子的空间关系,请用我们刚学的知识将金刚石结构模型化。

【练习5】在例题3中,如果在正方体中心不画出Si

原子,而在小正方

图1-6

第 4 页 共 4 页 体和大正方体上依旧是分别画上C 原子和Si 原子,应该怎么画呢?

【讨论】还是根据例题3 的分析,在例题3中,将大正方体分割成小正方体后,我们所取的四个点在大正方体上是棱心和体心,那么我们是否可以取另外四个点呢?它们在大正方体中又在何位置呢?与原来的位置(棱心+体心)有什么关系呢?

【练习参考答案】

1.331a ;))()((61222222222b a c a c b c b a -+-+-+

2.该表达式是正确的;

3.3倍

4.只需将例题3中将Si 原子变成C 原子,就是我们所需的金刚石结构模型,大正方体就是金刚石的晶胞(下文再详述)。

5.可以取另外四个点,C 原子的位置无变化,Si 原子在大正方体的面心和顶点上(这不就是山锌矿的晶胞吗?下文再详述);与原来的位置正好相差了半个单位,即只需将原来的大正方体用一水平面分成两等份,将下面部分平移到上面一部分的上面接上即可。

本文不着重探讨其中涉及纯理论的内容,大家可参考相应的竞赛书籍和大学教材。

高考数学必背经典结论-正四面体性质

必背经典结论---提高数学做题速度! 立体几何(必背经典结论) 之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2 (正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离, 若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 3 6 (正方体体对角线l 32=) (3) 正四面体的体积为3 12 2a (正方体小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61=)

(6)外接球的半径为 a 4 6 (是正方体的外接球,则半径正方体体对角线l 2 1 =) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线l 6 1 =) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 16a b c ; (4)底面面积S △ABC (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 22221111 OH a b c =++; (8)外接球半径 (9)内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++

第一节 正方体与正四面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-…… 它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE (如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交 BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找 出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度的。先把该题放下,来看一题初中化学竞赛题: 【例题 2】CH 4分子在空间呈四面体形状,1个C 原子与4 个H 原子各共用一对电子对形成4条共价键,如图 1-3所示为一 个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正 方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适 位置和3条共价键,任意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因 为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上, 正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面 对角线的对侧,一个为体对角线的对侧。显然三个在面对角线对 侧上的顶点为另三个氢原子的位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不 相邻的四个顶点(不共棱)可构成一个正四面体,正四面体的棱 长即为正方体的棱长的2倍,它们的中心是互相重合的。 【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2, 图1-1 图1-2 图1-3 图1-4

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体蕴藏正方形中

正四面体蕴藏正方体中 我们在立体几何的学习中,探讨得最多的空间图形是正方体。例如,我们考虑两直线之间的相交(垂直)、平行、异面关系;两平面之间的相交(垂直)、平行关系;两异面直线之间的距离;两平行平面之间的距离;两相交平面之间的二面角等等,都可以借助正方体形象、直观、简洁地引入、刻画、研究。而正方体本身所具有的简洁美、对称美、和谐美也留给我们深刻的印象。因而,我们最熟悉的空间图形是正方体,我们最容易把握的空间图形也是正方体。正四面体是另一个我们探讨得很多的空间图形,正四面体同样体现了数学的简洁美、对称美、和谐美。但相比较而言,正四面体中的直线之间的平行关系;平面之间的垂直、平行关系;两平行平面之间的距离等等,都不很直观、典型。正四面体中几何元素之间尽管和谐,但有时候也不容易把握。 我们说我们对正方体比对正四面体更熟悉、更容易把握的一个更重要的理由是,正方体中蕴藏着正四面体。例如,如图3的正方体EBFA-CGDH 中,蕴藏着两个典型的正四面体,正四面体D-ABC 和正四面体H-EFG 。从而就为我们利用较熟悉的正方体认识较不熟悉的正四面体带来了可能。一般而言,单纯地利用正四面体本身的点、线、面、体这些几何量之间的某些关系进行研究,技巧性更强,推导更繁杂,更容易出错。而借助正方体来研究正四面体,计算量更少,几何量之间的关系更加简明、直观,做完后我们的把握更大。下面我们举一些例子进行说明。 例1 (2003年高考理科数学新课程卷选择题最后一题):一个四面体的所有棱长都为2,四个顶点在同一个球面上,则此球的表面积为 ( ) A.3π B.4π C.33π D.6π B A B Q E C 图1 图2 图3 分析1:如图1所示,正四面体D-ABC 的棱长为a ,中心为O 点,D 在底面ABC 上的射影为P 点,连接OA 、OB 、OC,显然,O 到平面ABC 、BCD 、ABD 、ACD 的距离 都等于OP ,且ABC D V -=4ABC O V -,即3 1 ?ABC S ??DP=4?ABC S ??OP ,即DP=4 OP 。

正方体和正四面体

第 1 页 共 4 页 高中化学竞赛辅导专题讲座——三维化学 近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取 CD 中点E ,截取面ABE (如图1-2所示),过A 、 B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度 的。先把该题放下,来看一题初中化学竞赛题: 【例题2 】CH 4分子在空间呈四面体形状,1个C 原 子与4个H 原子各共用一对电子对形成4条共价键,如 图1-3所示为一个正方体,已画出1个C 原子(在正方体 中心)、1个H 原子(在正方体顶点)和1条共价键(实线表 示),请画出另3个H 原子的合适位置和3条共价键,任 意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方 体的顶点上,正方体余下的七个顶点可分成三类,三个为 棱的对侧,三个为面对角线的对侧,一个为体对角线的对 侧。显然三个在面对角线对侧上的顶点为另三个氢原子的 位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

高中数学正四面体与正方体

正四面体与正方体 在实践中,正方体是最常见的多面体;在理论上,所有的多面体都可看作是由正方体演变而来. 我们认定了正方体是多面体的“根基”. 我们在思考: (1)正方体如何演变出正四面体? (2)正方体如何演变出正八面体? (3)正方体如何演变出正三棱锥? (4)正方体如何演变出斜三棱锥? 【考题1】 (正四面体化作正方体解) 四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.3π3 D.6π 【说明】 本题如果就正四面体解正四面体,则问题就不是一个小题目了,而是有相当计算量的大题. 此时的解法也就沦为拙解. 【拙解】 正四面体棱长为?2底面ABC 是边长为2的正三角形△ABC 的 高线BD =2 3·2=26 (斜高VD =26)?△ABC 的边心距HD =31·26=?6 6正四面体V —ABC 的高 .332)66()26( 2222=-=-=HD VD VH 正四面体外接球的半径为高的43 ,即R =43·.2 3332= 故其外接球的表面积为3π. 答案是A. 【联想】 1、2、3的关系 正四面体的棱长为 2,这个正四面体岂不是由棱长为1的 正方体的6条“面对角线”围成? 为此,在棱长为1的正方体B —D 1中, (1)过同一顶点B 作3条面对角线BA 1、BC 1、BD ; (2)将顶点A 1,C 1,D 依次首尾连结.

则三棱锥B —A 1C 1D 是棱长为2的正四面体.于是正四面体问题可化归为对应的正方体解决. 【妙解】 从正方体中变出正四面体 以2长为面对角线,可得边长为1的正方体ABCD —A 1B 1C 1D 1,这个正方体的体对角线长为3,则其外接球的半径为23,则其外接球的表面积为S =4πR 2=4π (2 3)2=3π 以 2为棱长的正四方体B —A 1C 1D 以1为棱长的正方体有共同的外接球,故其外接球的表面积也为 S =3π. 【寻根】 正方体割出三棱锥 在正方体中割出一个内接正四面体后,还“余下”4个正三棱锥. 每个正三棱锥的体积均为1/6,故内接正四面体的体积为1/3 . 这5个四面体都与正方体“内接”而“共球”. 事实上,正方体的内接四面体(即三棱锥)共有 12C 48 =58个. 至此可以想通,正方体为何成为多面体的题根.

正四面体的性质最终版

正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全 2a ; (2)体积 3 a ; (3)对棱中点连线段的长 d= 2 a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1arccos 3 (7)外接球半径 a ; (8)内切球半径 r= 12 a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; ②直角顶点O 在底面上的射影H 是△ABC 的垂心; ③体积 V= 1 6 a b c ; ④底面面积S △ABC ⑤S 2 △BOC =S △BHC ·S △ABC ; ⑥S 2 △BOC +S 2 △AOB +S 2 △AOC =S 2 △ABC ⑦ 2222 1111 OH a b c =++; ⑧外接球半径 ⑨内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 四面体的性质探究 如果从面的数目上来说,四面体是最简单的多面体。 一.四面体性质 A B C D O H

A B D C O S 1 S 2 S 3 S 4 1.四面体的射影定理:如果设四面体ABCD 的顶点A 在平面BCD 上的射影为O ,△ABC 的面积为S 1,△ADC 的面积为S 2,△BCD 的面积为S 3,△ABD 的面积为S 4,二面角A-BC-D 为θ1-3 ,二面角A-DC-B 为θ 2-3 ,二面 角A-BD-C 为θ3-4 ,二面角C-AB-D 为θ1-4 ,二面角C-AD-B 为θ2-4 ,二面角B-AC-D 为θ 1-2 ,则 S 1 = S 2cos θ1-2 + S 3cos θ1-3 + S 4cos θ1-4 S 2 = S 1cos θ1-2 + S 3cos θ2-3 + S 4cos θ2-4 S 3 = S 1cos θ1-3 + S 2cos θ2-3 + S 4cos θ3-4 S 4 = S 1cos θ 1-4 + S 2cos θ 2-4 + S 3cos θ 3-4 2.性质2(类似余弦定理) S 12 = S 22 + S 32 +S 42 - 2S 2S 3 cos θ2-3 - 2S 2S 4 cos θ2-4 - 2S 3S 4 cos θ3-4 S 22 = S 12 + S 32 +S 42 - 2S 1S 3 cos θ1-3 - 2S 1S 4 cos θ1-4 - 2S 3S 4 cos θ3-4 S 32 = S 12 + S 2 2 +S 42 - 2S 1S 2 cos θ1-2 - 2S 1S 4 cos θ1-4 - 2S 2S 4 cos θ2-4 S 42 = S 12 + S 22 +S 32 - 2S 1S 2 cos θ1-2 - 2S 1S 3 cos θ 1-3 - 2S 2S 3 cos θ 2-3 特别地,当cos θ1-2 = cos θ 1-4 = cos θ 2-4 = 0,即二面角C-AB-D 、 C-AD-B 、B-AC-D 均为直二面角(也 就是AB 、AC 、BC 两两垂直)时,有S 32 = S 12 + S 22 +S 42 , 证明:S 32 = S 3S 1cos θ1-3 + S 3S 2cos θ 2-3 + S 3S 4cos θ 3-4 = S 1 S 3cos θ 1-3 + S 2 S 3cos θ 2-3 + S 3 S 4cos θ 3-4 = S 1(S 1 - S 2cos θ 1-2 + S 4cos θ 1-4 )+S 2(S 2 - S 1cos θ 1-2 + S 4cos θ 2-4 )+ S 4(S 4 - S 1cos θ1-4 + S 2cos θ 2-4 ) = S 12 + S 22 +S 42 - 2S 1S 2 cos θ 1-2 - 2S 1S 4 cos θ1-4 - 2S 2S 4 cos θ 2-4 二.正四面体的性质 设正四面体的棱长为 a ,则这个正四面体的 (1)全面积 S 全 2a ; (2)体积 V= 3 12 a ; (3)对棱中点连线段的长a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 a ; (8)内切球半径 r= 12 a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高).

正四面体

<<正四面体>>课堂实录 成都航天中学 邓成兵 (一)情景引入: 师:正四面体是最为简约而又优美的多面体,它有4个顶点、4个面、6条相等的棱,它 是一种特殊的正三棱锥——底面边长等于侧棱长。在历年的高考数学试题中,多次出现正四面体的有关计算问题,主要有三种类型:(1)正四面体的计算;(2)正四面体与正方体的计算;(3)正四面体与球的计算。下面请同学们展示一下你们得到的正四面体有关性质.首先哪位同学上台展示你们小组的成果: (二)、知识碰闯; 万天平(学生):我们组得到的性质如下: ①、它们6条棱均相等; ②、相邻棱的夹角为0 60;(①、②这两条性质比较简单就不用证明) ③、相对棱的两条异面直线垂直(对棱垂直) ④、对棱的中点是这两条棱的公垂线且长为a 22(以下把正四面体的边长设 为a )。

⑤、相邻的两个面的二面角相等且余弦值为 1 ⑥、侧棱与底面所成的角相等且余弦值为 3 3 容易知道侧棱与底面所成的角相等,∠PAO 为PA 与底面ABC 所成的角。可求AO= 3 a 3,PA=a ,PO ⊥面ABC 即PO ⊥AO ;在R t ΔPAO 中,cos ∠PAO= 3 3 PO AO = ⑦、相邻两个面中平行与交线的中位线与棱的交点所成的四边形为正方形。 (由于时间关系,同学们下来做)例1:已知S-ABC 为正四面体,且E 、F 、G 、H 分别为四 面体的四个面的中心; (1)、求证:四面体EFGH 为正四面体; (2)、求 ABC S FHG E S :--表表S (3)、求 ABC S FHG E V :--V 廖红菊(学生):我们组得到的性质是: ⑧、正四面体的外接球的半径与正四面体棱长的关系是:a 4 6 R = 分别取BC 、PA 的中点D 、E ,连结DE ,则DE 为PA 、BC 的公垂线段,且与高1PO 的交点O 是外接球的球心,连结AO 、AD 。

旋转式正方体和正四面体

一、设计目的 设计一个程序使得运行后生成一个旋转的正方体和一个可旋转的正四面体,旋转过程中伴随着颜色的变化。 二、算法描述 运用多个glV ertex3f函数赋予颜色,以及运用多个选择语句,实现消息转变。根据题目要求,分别选择正方体和正四面体,分别作左上右下旋转和水平逆时针(从上方看)旋转。正方体的六个面采用不同的颜色,正四面体的三个可见面则采用多色分布镶嵌。 程序要运用多个函数有: GLvoid ReSizeGLScene(GLsizei width, GLsizei height)(调整和初始化GL窗口); int InitGL(GLvoid)(初始化); int DrawGLScene(GLvoid)(GL场景绘制); GLvoid KillGLWindow(GLvoid)(选择正确方式选择窗口或关闭窗口);AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle);(调整窗口大小来创建合适的窗口); int WINAPI WinMain( HINSTANCE hInstance, HINSTANCE h PrevInstance, LPSTR lpCmdLine, int nCmdShow)(主函数) 三、程序代码 #include //需要用到的各个头文件 #include #include #include HDC hDC=NULL; HGLRC hRC=NULL; HWND hWnd=NULL; HINSTANCE hInstance; bool keys[256]; bool active=TRUE; bool fullscreen=TRUE; GLfloat rtri; GLfloat rquad;

相关文档
最新文档