水分子间氢键作用决定水面特性

水分子间氢键作用决定水面特性
水分子间氢键作用决定水面特性

水分子间氢键作用决定水面特性

美国每日科学网站10月5日报道,日本理化学研究所、日本东北大学及荷兰的一些研究人员为科学界围绕水面水分子结构长期存在的争论找到了答案。

研究人员通过结合相关理论与实验,首次确定了空气与水分界面的水之所以呈现出独有的特性,是因为水分子的结合。

水作为地球表面最富有的化合物,是生命存在的必要条件,它也改变了人类文明的进程。空气与水的界面也许是最为常见的液态界面,它让人可以从大气和环境化学、细胞生物学及再生医学等各个方面洞悉水表面的特性。然而,尽管这样的界面无处不在,它的结构却仍是个谜。

在这个谜团的核心是水表面振动光谱的两个宽波段,它们类似冰块和液态水中的宽波段。这些宽波段究竟是一个水分子内部结合的氢键的产物,还是相邻水分子之间结合的产物,还是相邻水分子之间结合的产物,这一直是科学界激烈争论的话题。一种普遍但存在争议的假设是,其中一个光谱段在水面形成了“冰砖”四面体结构,不过这种说法本身也存在着问题。

研究人员试图通过理论与实验相结合的全面研究方法来化解这一争论。他们在实验中使用了日本理化学研究所开发的功能强大的光谱学技术,有选择性地挑选水面分子,并迅速测量其光谱。为了消除分子结合产生的影响,他们使用了用D2O(重水)和HOD(只是一个氢原子的水,有一个氢被替代)稀释的水。这样一来,就消除了在一个分子内的OH键结合现象(因为只有一个OH键),同时减少了溶液中OH键的浓度,进而阻止了分子间的结合。

在消除了其他因素的影响后,研究人员最终确定,水面之所以有着独特的特性,不是源自“冰状”结构,而是因为水面的水分子之间强大的氢键作用。

初中化学《水的性质》教学设计(推荐文档)

3.1 水 第2课时水的性质 教学目标: 1.知识与技能 (1)知道水是一种重要的分散剂 (2)初步认识悬浊液、乳浊液、溶液的概念,辨析它们的区别 (3) 掌握二氧化碳、生石灰、硫酸铜和水的反应以及水合现象,懂得结晶水合物 2.过程与方法 (1)观察、收集生活中的实例,交流各种分散体系。 (2)通过实验,记录、观察二氧化碳、生石灰、硫酸铜反应,学习水的化学性质。 3.情感态度与价值观 (1)体验各种分散体系对人类生活生命的重要意义 (2)培养仔细观察的科学实验态度 重点和难点: 教学重点:二氧化碳、生石灰、硫酸铜和水的反应 教学难点:区别溶液、悬浊液、乳浊液 教学用品: 药品:植物油、汽水、食盐、蒸馏水、泥土、生石灰、石蕊、硫酸铜 仪器:烧杯、试管、玻璃棒、药匙、镊子、吸管 教学过程: [展示]烧杯中有浮动的冰,鱼照样能自由的生存。这是为什么? 今天我们就来学习“水”,解释这一现象。 [提问]物质的物理性质包括哪几方面? [提问]水是我们最熟悉的物质,就你知道的,观察到的水具有哪些物理性质? [板书] 3.1水 三、水的性质 1.水的物理性质:无色、无味、液体。在标准状态下,沸点100℃,凝固点0℃。 [提问]看书p70表,比较一下水的密度,说说水在什么温度时密度最大? [板书]4℃时,水的密度最大。 [讲述]由于,4℃时,水的密度最大,0℃时密度却变小,这种现象称为反膨胀,这种性质跟分子的缔合有关。 正由于水具有的这种反常膨胀的奇特性质,使冰能浮在水面上,在寒冷的冬天,水生生物在河流和湖泊中的以生存。 (解释课开始时的现象) 2.水的特性: 1)缔合性 [设问]为什么在工厂里、我们生活中,通常我们用冷水来降低物质的温度,又用温水去预热物质,起到节约能源的作用呢? [讲述]由于水就有吸收大量热量的功能 [讲述]水还有极高的溶解和分散其他物质的能力。 [演示]饮料、注射用药水 [板书] 2)分散性

水分子吸收峰

水分子对红外线吸收是由于其结构中的羟基(OH)的伸缩振动和变角振动而产生的。其吸收波长随水分相互间或水分子和其他分子间所形成的氢键结合程度而变化,纸张中水分在红外线波段有四条吸收带,分别在1.18微米,1.4微米,1.94微米和2.92微米处。 日前,世界上使用的红外线水分仪都选用1.94微米作为测虽波长。因为在这个波段中可用普通光学玻璃作为仪表中的光学元件,检测用的硫化铅光敏元件的探测峰值较接近这个波段范围,探测灵敏度较高,同时水分子对1.94微米波段的吸收峰较大,而被测纸张中的纤维对1.8—2.0微米波段无吸收峰,减小了纤维对测量的影响。 水的光谱特征主要是由水本身的物质组成决定,同时又受到各种水状态的影响。地表较纯洁的自然水体对0.4~2.5μm 波段的电磁波吸收明显高于绝大多数其它地物。在光谱的可见光波段内,水体中的能量-物质相互作用比较复杂,光谱反射特性概括起来有一下特点: (1)光谱反射特性可能包括来自三方面的贡献:水的表面反射、水体底部物质的反射和水中悬浮物质的反射。 (2)光谱吸收和透射特性不仅与水体本身的性质有关,而且还明显地受到水中各种类型和大小的物质——有机物和无机物的影响。 (3)在光谱的近红外和中红外波段,水几乎吸收了其全部的能量,即纯净的自然水体在近红外波段更近似于一个“黑体”,因此,在1.1~2.5μm 波段,较纯净的自然水体的反射率很低,几乎趋近于零。 土壤的光谱反射特征 土壤反射率显得很少有“峰和谷”的变化。这是因为影响土壤反射率的因素较少作用在固定的波段范围。影响土壤反射率的因素有:含水量、土壤结构(砂、壤、粘土的比例)、表面粗糙度、铁氧化物的存在以及有机物的含量。这些因素是复杂的、可变的、彼此相关的。例如,土壤的含水量会降低反射率。对于植被在大约1.4um、1.9um和2.7um处水的吸收波段上,这种影响最为明显(粘土在1.4um和2.2um处也有氢氧基吸收带)。 土壤含水量与土壤结构密切相关:粗粒砂质土壤常常排水性好,因而含水量低,反射率相对高;反之,排水性不好的细粒结构土壤一般具有较低的反射率。然而,在缺水情况下,土壤自身会出现相反的趋势:粗粒结构土壤比细粒土壤看上去更深。所以,土壤的反射属性仅在特殊条件下才出现一致性。另外两个降低土壤反射率的因素是表面粗糙度和有机物的含量。在土壤中含有铁的氧化物也会明显降低反射率,至少在可见光波段如此。 水的光谱反射特征 考虑水的光谱反射率时,也许最明显的特征是在近红外及更长波波段的能量吸收问题。简单地说,不管我们说的是水体本身(如湖泊、河流)还是植被,土壤中含有的水都会吸收这一波段的能量。 当波长小于大约0.6um时,清澈的水只能吸收相对很少的能量,这些波长内的水具有高透射率的特点,其最大值在光谱的蓝绿区。但随着水的浑浊程度的变化(因水中含有有机物和无机物),会引起透射率继而反射率的急剧变化。例如,因土壤侵蚀而含有大量悬浮沉积物的水,其可见光的反射率一般比相同地区内的“洁净水”高得多。

水的基本性质

3月22日为世界水日,3月22~3月28日中国水周 2011年世界水日宣传主题:城市用水:应对都市化挑战 (Water for cities:responding to the urban challenge) 2011年中国水周宣传主题:严格管理水资源,推进水利新跨越 2012年“世界水日”的主题是“水与粮食安全”(Water and Food Security) 宣传口号: 水是生命之源、生产之要、生态之基 珍惜水、节约水、保护水 保障饮水安全,维护生命健康 珍惜水、节约水、保护水 2013年“世界水日”的宣传主题是“水合作”(Water Cooperation) 我国纪念2013年“世界水日”和“中国水周”活动的宣传主题为“节约保护水资源,大力建设生态文明”。 2014年3月22日是第二十二届“世界水日”,3月22—28 日是第二十七届“中国水周”。 联合国确定2014年“世界水日”的宣传主题是“水与能源(Water and Energy)”。 我国纪念2014年“世界水日”和“中国水周”活动的宣传主题为“加强河湖管理,建设水生态文明”。 水的起源 地球刚诞生时,没有河流、海洋,更没有生命,它的表面是干燥的,大气层中也很少有水分。现在自然界各种水体中的水从何而来?地球上的水究竟来自何方呢?这个令人费解的问题从古至今,吸引着无数中外智者的兴趣。大多数学者认为,地球上水的起源与地球本身的起源密切相关。但是,到底地球上的水是怎么来的,现在有许多假说,例如凯萨廖夫等人提出的全球大洋水体来源的假说达32种之多。 荷兰的天文学家奥特认为,地球上水的主要来源是我们这颗行星的内部的岩石圈和上地幔。这些岩石在一定的温度和适宜的条件下(如火山爆发)脱水,从而形成了地球的水。也有人认为岩石在熔化中完全混合时,含有硅酸盐75% ,含水2%。在地球形成初期,火山爆发频繁,从而加快了地球水的形成。 全部假说可大致分为两类:一类是自生的,一类是外来的。 主张地球上的水是自生的人认为: 水是在玄武岩先熔化后冷却形成原始地壳的时候产生的。最初地球是一个冰冷的球体。此后,由于存在地球内部的铀、钍等放射性元素开始衰变,释放出热能,因此地球内部的物质也开始熔化,高熔点的物质下沉,易熔化的物质上升,从中分离出易挥发的物质:氮、氧、碳水化合物、硫和大量水蒸气。试验证明当1 m3花岗岩熔化时,可以释放出26 L的水和许多完全可挥发的化合物。地下深处的岩浆中含有丰富的水,岩浆可以溶解30%的水。火山口处的岩浆平均含水6%,有的可达12%,而且越往地球深处含水量越高。据此,有人根据地球深处岩浆的数量推测在地球存在的45亿年内,深部岩浆释放的水量可达现代全球大洋水的一半。由于地球内部的高温,地球的水还在增加,在研究中,有资料表明,大洋面近年内上升了。水流到地球的表面与蒸汽和气体一起逸入大气圈,仿佛现在火山喷发时所发生的事件一样。当时,约30亿年前的火山活动比现在强烈、普通而频繁。因此,地球形成之日起,在地球内部、表层都可以产生水。从现代火山活动情况看,几乎每次火山喷发都有约75%以上的水汽喷出。1906年维苏威火山喷发的纯水蒸气柱高达13000米,一直喷发了20个h。阿拉斯加卡特迈火山区的万烟谷,有成千上万个天然水蒸气喷出孔,平均每秒种可喷出97~6450C的水蒸汽和热水约23000m3。 主张地球上的水是外来的人认为:地球形成的时候,就从宇宙俘获了大量的水,以后逐

水分子簇中氢键作用

水分子簇中氢键作用 张建平 赵 林 王林双 (天津大学化工学院天津 300072) 摘要概述了近年来为揭示水分子簇存在形态的成因所做的理论和实验研究,指出除范德华力外,氢键和似共价键是水分子间的主要作用力。总结了水分子簇中氢键的四种作用方式,包括协同效 应、氢键的转动、氢键的振动以及氢键变换;分别讨论了这四种作用方式以及似共价键对水分子簇存 在状态的影响,最后对该领域的研究前景作了展望。 关键词水分子簇氢键似共价键 Hydrogen Bonds in Water Clusters Zhang Jianping, Zhao Lin, Wang Linshuang (School of Chemical Engineering,Tianjin University, Tianjin 300072) Abstract Theoretical and experimental studies that reveal the formation of water clusters have been summarized. Besides van der Waals force, hydrogen bonds and quasi-covalent bonds between water molecules are major forces. Four kinds of kinetic motions of hydrogen bonds in water clusters are outlined, including cooperative effect, rotation, vibration and inter conversion, and the effects on the structure of water clusters caused by quasi-covalent bonds and H-bond kinetic motions are explained in detail. Finally, the perspective in this research field is also discussed. Key words Water clusters, Hydrogen bond, Quasi-covalent bond 水是大自然赋予我们的宝贵资源,也是人类赖以生存的必要条件,关于水分子簇结构与功能的研究已成为当今科研前沿的热点之一,其深层研究可望为揭示物理化学、生命科学等领域的本质问题提供有力工具[1~3]。 近年来,随着光谱科学和微观测试技术的发展以及分子轨道理论的介入,水分子簇的研究进入了量子时期,从而为揭示水分子簇存在形态的成因提供了实验和理论依据。基于蒙特卡罗模拟的极化-解离多体经验势能函数(PD-PEF)[4]在计算(H2O)n(n=2~8)的水分子簇的结构特征和分子尺度过程中,将氢原子视为单一的裸露质子,由于其充分考虑到分子间氢键及分子内部作用力的影响,适于计算水分子簇的结构特征参数。在六元水分子簇稳定性的研究中[5,6],应用从头计算法的独立分子模型,通过平动矢量和欧拉角将簇中每个分子的位置和取向逐一标定,总结出六水分子簇的五种结构形式,并通过计算氢键强度及自由能的大小,得出环状六水分子簇具有最稳定结构的结论。进入上世纪90年代以来,美国加州大学Berkeley实验室设计的远红外振转隧道光谱仪能够清晰观测到分子间的振转谱线,为深层次研究氢键作用下水分子簇的微观结构开辟了一条崭新的途径[7]。 张建平 男,28岁,博士生,现从事废弃物处理和水的功能化研究。E-mail: jianpingzhang@https://www.360docs.net/doc/833420993.html, 国家自然科学基金资助项目(20376054) 2005-03-04收稿,2005-08-30接受

水结成冰时密度减小——用氢键理论来解释

水结成冰时密度减小----------用氢键理论来解释在一般情况下,当物体的温度升高时,物体的体积膨胀、密度减小,也就是通常所讲的“热胀冷缩”现象。然而水在由0℃温度升高时,出现了一种特殊的现象。人们通过实验得到了P-t曲线,即水的密度随温度变化的曲线。由曲线可见,在温度由0℃上升到4℃的过程中,水的密度逐渐加大;温度由4℃继续上升的合过程中,水的密度逐渐减小;水在4℃时的密度最大。水在0℃至14℃的范围内,呈现出“冷胀热缩”的现象,称为反常膨胀。水的反常膨胀现象可以用氢键、缔合水分子理论予以解释。 物质的密度由物质内分子的平均间距决定。对于水来说,由于水中存在大量单个水分子,也存在多个水分子组合在一起的缔合水分子,而水分子缔合后形成的缔合水分子的分子平均间距变大,所以水的密度由水中缔合水分子的数量、缔合的单个水分子个数决定。具体地说,水的密度由水分子的缔合作用、水分子的热运动两个因素决定。当温度升高时,水分子的热运动加快、缔合作用减弱;当温度降低时,水分子的热运动减慢、缔合作用加强。综合考虑两个因素的影响,便可得知水的密度变化规律。 在水中,常温下有大约50%的单个水分子组合为缔合水分子,其中双分子缔合水分子最稳定。多个水分子组合时,除了呈六角形外(如雪花、窗花),还可能形成立体形点阵结构(属六方晶系)。每一个水分子都通过氢键,与周围四个水分子组合在一起。图中只画出了中央一个水分子同周围水分子的组合情况。边缘的四个水分子也按

照同样的规律再与其他的水分子组合,形成一个多分子的缔合水分子。由图可知,缔合水分子中,每一个氧原子周围都有——4个氢原子,其中两个氢原子较近一些,与氧原子之间是共价键,组成水分子;另外两个氢原子属于其他水分子,靠氢键与这个水分子组合在一起。可以看出,这种多个分子组合成的缔合水分子中的水分于排列得比较松散,分子的间距比较大。由于氢键具有一定的方向性,因此在单个水分子组合为缔合水分子后,水的结构发生了变化。一是缔合水分子中的各单个分子排列有序,二是各分子间的距离变大。 在液态水变成固态水时,即水凝固成冰、雪、霜时,呈现出缔合水分子的形状。此时,水分子的排列比较“松散”,雪、冰的密度比较小。 将冰熔化成水,缔合水分子中的一些氢键断裂,冰的晶体消失。0℃的水与0℃的冰相比,缔合水分子中的单个水分子数目减少,分子的间距变小、空隙减少,所以0℃的水比0℃的冰密度大。用伦琴射线照射0℃的水,发现只有15%的氢键断裂,水中仍然存在有约85%的微小冰晶体(即大的缔合水分子)。若继续加热0℃的水,随着水温度的升高,大的缔合水分子逐渐瓦解,变为三分子缔合水分子、双分子缔合水分子或单个水分子。这些小的缔合水分子或单个水分子,受氢链的影响较小,可以任意排列和运动,不必形成双分子、三分子、多分子缔合和立体形点阵结构(属六方晶系)那样的“缕空”结构,而且单个水分子还可以“嵌入”大的缔合水分子中间。在水温升高的过程中,一方面,缔合数小的缔合水分子、单个水分子在水中

水的定义、特点与影响因

第一章绪论 是一门研究食品(包括食品原料)的组成,特性以及其产生的化学变化的科学。 ●食品加工和保藏过程中重要的可变因素有温度,时间,温度变 化的速度,产品的成分, pH,气相的成分和水分活度。其中温度也许是最重要的。 第二章水 ●水为什么是食品体系中最重要的部分? 1.水在食品中的存在形式是食品加工与保藏的基础。 2.水是一种良好的溶剂 3.水可支持必须的生物化学反应,可作为反应剂和反应介质。4.以物理方法截留的水,使组织具有一定的形态,硬度和弹性5.食品的水分含量与其易腐性之间存在一定关系 ●结合水的定义及特点

存在于溶质或其他非水组分相邻处,具有与同一体系中体相水显著不同的那部分水。 特点:1.与体系水相比,结合水具有被阻碍的流动性。 2.高水分食品中,结合水占总水量的一小部分。 3.低温下(-40度或更低)不能冻结。 4.不能作为外加溶质的溶剂。 水分活度 1.根据热力学平衡定律, a w=f/fo f——表示溶剂的逸度,fo——表示纯溶剂的逸度. 2.溶液是理想溶液,热力学平衡条件下, a w =P/Po 水分活度是指食品上方的水分蒸汽压与相同温度下纯水的 蒸汽压的比值 3.食品体系不符合上述条件,一般使用相对蒸汽压RVP表示。 RVP= P/P0= %ERH/100 ERH——百分平衡相对湿度 注意:1)RVP是样品内在性质,ERH是与样品平衡的大气性 质。 2)仅当样品与它的环境达到平衡时等式成立。 测定意义: 1.水分活度说明水与各种非水成分的缔合的强度。参与强缔合的

水比弱缔合的水在较低程度上支持降解的活力。 2.水分活度比水分含量能较好的预示食品的稳定性,安全性和其 他性质。 测定方法:冰点测定法;水分活度仪法;扩散法 与温度的关系: 1.在一定温度范围,Aw与1/T呈负相关关系 2.取决于产品种类,10℃温度导致0.03~0.2的RVP变化。当食品中 水分含量增加时,温度对水分活度的影响程度也提高。 3.在冰点以上的温度时,水分活度是食品组成和温度的函数,并以 食品的组成为主。在冰点以下时,水分活度只与温度有关。 水分吸着等温线(MSI) 在一定温度下,食品的水分含量与它的水分活度之间的关系。 即在等温条件下,以食品含水量为纵坐标,以Aw为横坐标作 图,所得曲线称为水分的吸着等温线 意义: ①在浓缩、干燥过程样品脱水的难易程度与Aw有关 ②配制食品混合必须避免水分在配料之间的转移 ③测定包装材料的阻湿性的必要性 ④必须测定什么样的水分含量能够抑制微生物生长 ⑤需要预测食品的化学和物理稳定性与水分含量的关系 MSI形状:大多数食品的等温吸湿线都成 S形,含有大量糖及可溶性小分子但不富含高聚物的水果、糖果以及咖啡提取物的等温吸湿线呈

分子间作用力和氢键

分子间作用力和氢键 一、分子间作用力 NH3、Cl2、CO2等气体,在降低温度、增大压强时,能凝结成液态或固态。在这个过程中,气体分子间的距离不断缩短,最后由不规则运动的混乱状态转变为有规则排列的固态。这说明物质的分子之间必定存在着某种作用力,能把它们的分子聚集在一起。这种作用力叫做分子间作用力,又称范德华力。 我们知道,化学键是原子结合成分子时,相邻原子间强烈的相互作用,而分子间作用力与化学键比起来要弱得多。分子间作用力随着分子极性和相对分子质量的增大而增大。 分子间作用力的大小,对物质的熔点、沸点、溶解度等有影响。对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。例如,卤素单质,随着相对分子质量的增大,分子间作用力增大,它们的熔点、沸点也相应升高(见图1-8),四卤化碳也有类似的情形(见图1-9)。

二、氢键 前面已介绍过某些结构相似的物质随着相对分子质量的增大分子间作用力增大,以及它们的熔点和沸点也随着升高的事实。但是有些氢化物的熔点和沸点的递变与以上事实不完全符合。让我们来看一下图 1-10。从图上可以看出,NH3、H2O和HF的沸点反常。例如,HF的沸点按沸点曲线的下降趋势应该在-90℃以下,而实际上是20℃;H2O的沸点按沸点曲线下降趋势应该在-70℃以下,而实际上是100℃。 为什么HF、H2O和NH3的沸点会反常呢?这是因为它们的分子之间存在着一种比分子间作用力稍强的相互作用,使得它们只能在较高的温度下才能汽化。经科学研究证明,上述物质的分子之间存在着的这种相互作用,叫做氢键。 氢键是怎样形成的呢?现在以HF为例来说明。在HF分子中,由于F 原子吸引电子的能力很强,H——F键的极性很强,共用电子对强烈地偏

分子间作用力和氢键---教案和练习

分子间作用力和氢键---教案和练习 分子间作用力和氢键 1、分子间作用力 定义:把分子聚集在一起的作用力。又称范德华力。 特点:1)比化学键弱得多,它主要影响物质的熔点、沸点、溶解性等物理性质,而化学键主要影响物质的化学性质 2)分子间作用力只存在于绝大多数共价化合物和非金属单质分子(包括稀有气体)之间 3)变化规律:对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点越高。如I2>Br2>Cl2>F2 2、氢键 NH3、H2O、HF等分子之间存在着一种比分子间作用力稍强的相互作用,这种相互作用叫氢键注意:1)氢键不是化学键,通常看做一种较强的分子间作用力 2)NH3、H2O、HF的分子之间既存在分子间作用力,又存在氢键 3)氢键的形成使物质的熔沸点升高,对物质的溶解度硬度等也影响。 1.下列物质中属于含有共价键的离子化合物的是() A. Ca(OH)2 B. MgCl2 C. H2O D. NH4Cl 2.某元素的原子最外层只有1个电子,它跟卤素结合时,所形成的化学键( ) A.一定是离子键 B.一定是共价键 C.可能是离子键,也可能是共价键 D.以上说法都不正确 3.国际无机化学命名委员会在1989年作出决定,把长式元素周期表原先的主、副族及族号取消,从左到右改为第1~18列,碱金属族为第1列,稀有气体元素为第18列. 按这个规定,下列说法不正确的是() A. 第15列元素的最高价氧化物为R2O5 B. 第2列元素中肯定没有非金属元素 C. 第17列元素的第一种元素无含氧酸 D. 第16、17列元素都是非金属元素 4.(2012·海南)下列有关化学用语使用正确的是( )

高中化学氢键-分子间作用力

1.化学键:相邻的两个或多个原子(或离子)之间强烈的相互作用叫做化学键。 2.化学键的存在: (1)稀有气体单质中不存在; (2)多原子单质分子中存在共价键; (3)非金属化合物分子中存在共价键(包括酸); (4)离子化合物中一定存在离子键,可能有共价键的存在(Na2O2、NaOH、 NH4Cl),共价化合物中不存在离子 键; (5)离子化合物可由非金属构成,如:NH4NO3、NH4Cl 。 3.化学反应的本质:一个化学反应的的过程,本质上就是旧化学键断裂和新化学键形成的过程。 4.金属键:金属晶体中,金属阳离子与自由电子之间的强烈静电作用。 5.配位键:电子对由一个原子单方面提供而跟另一个原子共用而形成的共价键。 (1)孤对电子:原子最外层存在没有跟其它原子共用的电子对。 (2)虽然配位键和其它键的形成不同,但一旦形成后则与其它共价键无任何区别。 6.分子间作用力 定义:把分子聚集在一起的作用力叫做分子间作用力(也叫范德华力)。 (1)分子间作用力比化学键弱得多,是一种微弱的相互作用,它主要影响物质的熔、沸点等物理性质,而化学键主要影响物质的化学性质。 (2)分子间作用力主要存在于由分子构成的物质中,如:多数非金属单质、稀有气体、非金属氧化物、酸、氢化物、有机物等。 (3)分子间作用力的范围很小(一般是300-500pm),只有分子间的距离很小时才有。 (4)一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。如卤素单质:

为什么HF、H2O和NH3的沸点会反常呢? (1)形成条件:原子半径较小,非金属性很强的原子X,(N、O、F)与H原子形成强极性共价键,与另一个分子的半径较小,非金属性很强的原子Y (N、O、F),在分子间H与Y产生较强的静电吸引,形成氢键 (2)表示方法:X—H…Y—H(X.Y可相同或不同,一般为N、O、F)。 (3)氢键能级:比化学键弱很多,但比分子间作用力稍强 (4)特征:具有方向性。 (5)氢键作用:使物质有较高的熔沸点(H2O、HF 、NH3)使物质易溶于水 (C2H5OH,CH3COOH)解释一些 反常现象。 结果1:氢键的形成会使含有氢键的物质的熔、沸点大大升高。如:水的沸点高、氨易液化等。这是因为固体熔 化或液体汽化时,必须破坏分子间作用力和氢键。 结果2:氢键的形成对物质的溶解性也有影响,如:NH3极易溶于水。

1、水的组成、性质和用途

专题复习:水和氢 1、水的组成、性质和用途 2、水的污染源: ①工业生产中的三废: 、 、 ;②生活污水的任意排放; ③农业生产中农药化肥的任意使用。 防治污染的方法: 。 3 (1)物理性质 通常情况下氢气是 色、 味的气体,密度比空气 ,是相同条件下密度最 的气体, (2)化学性质 常温下化学性质稳定,在高温或点燃条件下与许多物质反应。 ①可燃性: H 2 + O 2 = a 纯净的氢气在氧气或空气中能 燃烧,发出 色或 现象 色火焰,放大量热,有水生成。 b 氢气与空气或氧气混合气体点燃会发生 现象。 ②跟氧化铜的反应:H 2 + CuO = 现象:黑色氯化铜逐渐变成 色,且管壁有水珠生成。 在高温条件下,氢气也能与Fe 2O 3、Fe 3O 4、WO 3等金属氧化物发生置换反应,请写 出相应的化学方程式: H 2 + Fe 2O 3= H 2 + Fe 3O 4= H 2 + WO 3= (3)用途:① ② ③ ④ 4 (1)实验室制法 点燃 △ △ △ △ 组成:水是由 元素和 元素组成的,其化学式为 。 物理性质: 色、 气味、 味道的液休,凝固点 ℃,沸点 ℃,4℃时密度最 ,为1g/cm 3,冰的密度比水 。 ①通电分解:化学方程式为 ②与某些酸性氧化物反应,举例 ③与某些碱性氧化物反应,举例 ④与某些盐形成结晶水合物,举例 性质 化学性质

反应原理:采用金属(如Zn、Fe、Mg、Al等)与稀酸或稀酸发生置换反应制得,其中最适宜的药品是Zn或Fe跟稀盐酸或稀硫酸。 Zn + HCl Zn + H2SO4 Fe + HCl Fe + H2SO4 操作步骤:①②③④⑤ 收集方法:①② 验纯方法:。 注意事项:①②③ (2)工业制法 工业上常采用电解水法、天然气催化分解法和水煤气转换法获得H2。电解水制 得的H2纯度可达99.5%~99.8%。电解水的化学方程式 为。 研究探讨: 1、点燃可燃性气体(如:H 2、CO、CH4等)与空气或氧气混合气体为什么可能会发生爆炸现象?混有空气或氧气杂质的氢气点燃时,一定能发生爆炸吗? 为什么? 2、有人认为用氢气还原氧化铜实验时,未直接点燃氢气,因此不需要检验氢气纯度。这 种说法正确吗? 3、检验用向下排空气法收集的氢气的纯度时,听到爆鸣声,为什么要用拇指堵住该试管口一会儿再收集检验,或另换一支试管再收集检验? 4、实验室制取氢气时,能否使用稀硝酸和浓硫酸? 能否使用浓盐酸?能否使用Na、K、Ca 5、如何用实验证明蜡烛的成分中含有氢元素? 精题训练: 一、三思而选(每小题只有一个选项是正确答案) 1、你认为确定一瓶标签残缺的试液是否是BaCl2溶液的最佳方法是: ( )A.讨论B.实验C.调查D.上网 2、下列生活中的做法不科学的是( ) A.用食醋除水壶中的水垢B.给菜刀涂菜油,防止生锈 C.用燃放鞭炮的方法防御“非典”D.用食盐水选种子 3、南宁市良东污水处理厂是一座利用外国政府贷款兴建的现代化城市污水处理厂,它是改善南宁市水资源的一项绿色环保工程.防治水污染,保护水资源,关系到人类生存.水污染防治的关键是控制“污染源头”。你认为引起水污染的直接原因是( ) ①工业废水的任意拌放②滥用农药化肥③水中有动植物生长④生活污水未经处理而任意

水的性质

● 1.水的物理性质:纯水是没有颜色、没有气味和没有味道的无色液体;在标准大气压下,水的凝固点是0℃,沸点是100℃,水的密度在4℃时最大。 2.水的化学性质:通电 (l)水通电或高温时会分解:2H2O=====2H2↑+O2↑ (证明水由氢和氧二种元素组成或分子在化学变化中可分) (2)与某些氧化物反应,如 CO2+H2O=H2CO3 SO3+H2O=H2SO4 CaO+H2O=Ca(OH)2 (3)与某些盐反应形成结晶水合物,如 CuSO4+5H2O=CuSO4·5H2O 3 4 (1)饱和溶液与不饱和溶液 在一定温度下,在一定量的溶剂里,不能继续溶解某种溶质的溶液称为这种溶质的饱和溶液,还能继续溶解某种溶质的溶液称为这种溶质的不饱和溶液。饱和溶液和不饱和溶液一般情况下可相互转化:增加溶剂或升温 饱和溶液不饱和溶液 减少溶剂或增加溶质或降低温度 (2)浓溶液和稀溶液 浓溶液不一定是饱和溶液,稀溶液也不一定是不饱和溶液。但对同一种溶液,相同温度下,饱和溶液一定比不饱和溶液的浓度大。 5.物质的溶解情况 (1)溶解性:用来定性描述物质的溶解情况,一般用易溶、可溶、微溶、难溶来描述。

(2)影响物质溶解性的因素有:溶质和溶剂的性质,温度、压强等 (3)固体溶解度:一定温度下,100克溶剂中溶解溶质达到饱和状态时所溶解的质量。如不指明溶剂,通常所说的溶解度就是指物质在水里的溶解度。大多数固体的溶解度随温度的升高而增大(Ca(OH)2等除外)。气体的溶解度一般随温度的升高而减小,但随压强的增大而增大。 (4)溶解度曲线:用直角坐标系表示物质在不同温度下的溶解度。 6. 7 溶质的质量分数=溶液的质量 溶质的质量 = 溶剂的质量 溶质的质量溶质的质量 + 8.水是生物生存所需的最基本的物质之一。人体质量的2/3以上是水分,生物的生命活动和经济的发展都离不开水,保护水资源人人有责。 典型例题解析 (3个例题) 【例1】下列说法中正确的是 ( ) A 凡是无色、均一、稳定的液体都是溶液 B .一种物质的饱和溶液一定比它的相同质量的不饱和溶液所含的溶质多 C .食盐溶液中各部分的质量分数不相同 D .m 克食盐与n 克水混和振荡,形成的溶液质量一定≤(m +n )克 【精析】解答此题必须从理解溶液的概念入手,溶液是一种稳定的混合物,其各部分是均一的,故C 不正确,但无色、均一、稳定的液体不一定是溶液,如水是纯净物,因此A 也不对。B 中溶液未指明温度,难以比较,此说法也不对。 【解答】D 【失分警示】本题考查的知识点有溶液的概念、饱和溶液与不饱和溶液概念,有一定的综合性,必须同时掌握这两个知识点,尤其是B 选项,同学们理解上往往有误区,不注意温度这个因素,导致失分。 【例2】将质量分数为5.2%的NaOH 溶液,放入电解水的简易装置中通电,一段时间后实验结果符合表溶液的溶质质量分数变大,应大于原溶质质量分数5.2%,由水中氢、氧元素质量比可知,生成氧气质量应为氢气质量的8倍。 【解答】B 【失分警示】NaOH 放入要电解的水中,其目的是增强水的导电性,加快水电解的速度,自身没有发生变化。很多同学不理解它的作用,被它给混淆了,导致失分是很可惜的。 【例3】如图是甲、乙、丙三种固体物质的溶解度曲线,请据图回答: (1)随着温度的升高,溶解度反而减小的是 ;在 ℃时,甲与丙的溶解度相等。 (2)T3℃时,甲物质的饱和溶液中溶质、溶剂与溶液的质量之比为 。

分子间作用力和氢键---教案和练习

分子间作用力和氢键 1、分子间作用力 定义:把分子聚集在一起的作用力。又称范德华力。 特点:1)比化学键弱得多,它主要影响物质的熔点、沸点、溶解性等物理性质,而化学键主要影响物质的化学性质 2)分子间作用力只存在于绝大多数共价化合物和非金属单质分子(包括稀有气体)之间3)变化规律:对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点越高。如I2>Br2>Cl2>F2 2、氢键 NH3、H2O、HF等分子之间存在着一种比分子间作用力稍强的相互作用,这种相互作用叫氢键 注意:1)氢键不是化学键,通常看做一种较强的分子间作用力 2)NH3、H2O、HF的分子之间既存在分子间作用力,又存在氢键 3)氢键的形成使物质的熔沸点升高,对物质的溶解度硬度等也影响。 1.下列物质中属于含有共价键的离子化合物的是() A. Ca(OH)2 B. MgCl2 C. H2O D. NH4Cl 2.某元素的原子最外层只有1个电子,它跟卤素结合时,所形成的化学键( ) A.一定是离子键 B.一定是共价键 C.可能是离子键,也可能是共价键 D.以上说法都不正确 3.国际无机化学命名委员会在1989年作出决定,把长式元素周期表原先的主、副族及族号取消,从左到右改为第1~18列,碱金属族为第1列,稀有气体元素为第18列. 按这个规定,下列说法不正确的是() A. 第15列元素的最高价氧化物为R2O5 B. 第2列元素中肯定没有非金属元素 C. 第17列元素的第一种元素无含氧酸 D. 第16、17列元素都是非金属元素 4.(2012·海南)下列有关化学用语使用正确的是( )

A.NH4Br的电子式: B.S2-的结构示意图: C.乙酸的分子式:CH3COOH D.原子核内有l8个中子的氯原子: 5.(2011·江苏卷)下列有关化学用语表示正确的是( . ) A.N2的电子式: B.S2-的结构示意图: C.质子数为53,中子数为78的碘原子: D.H2O的电子式为 .. .. H:O:H -+?? ?? ?? 6.(2012·大纲版)下列关于化学键的叙述,正确的一项是( )

氢键的形成以及对物质性质的影响教学内容

氢键的形成以及对物质性质的影响

精品文档 氢键的形成以及对物质性质的影响 090901135 姚瑶 摘要:本文主要论述了氢键的本质,形成,种类以及对物质性质的影响,阐述了氢键形成的条件以及分子中存在氢键物理和化学性质的变化。 关键词:氢键,形成条件,影响 在高中化学课本必修2第二章中讲微粒之间的相互作用力涉及到氢键的内容,NH3,H2O,HF等分子之间存在一种比分子间作用力稍强的相互作用,这种相互作用叫氢键。氢键是已经以共价键与其他原子键合的氢原子与另一个原子间产生的分子间作用力。 原子半径较小,非金属性很强的原子X(N,O,F)与H原子形成强极性共价键,与另一个分子中半径较小,非金属性很强的原子Y(N,O,F)产生较强的静电吸引,形成氢键,通式X-H…Y-H(X,Y可同可不同,一般为N,O,F)。氢键可以分为分子间氢键和分子内氢键。根据氢键的形成条件,CHF3满足氢键形成条件,但CHF3能否形成分子间氢键?形成氢键必须满足俩个基本条件,第一:分子中必须有一个与电负性很强的元素形成强极性键的氢原子,第二:另一分子中必须有带孤对电子对,电负性大,且原子半径小的元素(如F,O,N等),因为氢原子的特点是原子半径小,结构简单,核外只有一个电子,无内层电子,它与电负性大的元素形成共价键后,电子强烈电负性大的元素一边,使氢几乎成为赤裸的质子,呈现相当强的正电负性,因此它易与另一分子中电负性大的元素接近,并产生静电吸引作用,从而形成氢键。但分析CHF3的结构,其中的H原子是不符合形成氢键条件的,因为H是和电负性不太大的C原子相连的。在CHF3分子中,三个F原子和C相连,F原子电负性很大,是否会由于三个F对C的作用从而诱导H有了较大的正电性而能够形成氢键呢?我们知道,若分子间形成氢键,则同类型化合物的熔沸点将出现异常现象。因为氢键的形成会使分子间有了较强的结合力,化合物的熔点和沸点会显著升高。如某些氢化物的沸点递变顺序:NH3>PH3>AsH3>SbH3结构和组成相似的分子型物质,沸点随分子量增大而升高,但这里却出现意外,原因是HF,H2O,NH3分子间形成了氢键。再考虑CHF3,若能形成分子间氢键,那么在CHX3的同类型化合物中也应出现沸点变化的异常现象,而通过实验数据却给出了否定答案 三卤甲烷 CHF3 CHCl3 CHBr3 CHI3 沸点 -82.2 61.7 149.5 218 CHF3的气化热为16.7KJ/mol属于一般极性分子的范德华力的作用能范围,也不显现分子间氢键的存在。由此可知,无论从分子结构分析还是实验数据验证,都是不支持CHF3能形成分子间氢键的。 收集于网络,如有侵权请联系管理员删除

利用Gauss98计算软件研究单分子乙醇和单分子水分子之间的氢键(精)

利用Gauss98计算软件研究单分子乙醇和单分子水分子之间的氢键 mg0824110 朱磊,缪强 南京大学化学化工学院 摘要:单分子醋酸和单分子水之间的氢键作用,听起来虽然简单,但是由于醋酸中含有两类氢和两类氧,水中存在一个氧和两个氢,这使得实际存在的氢键作用的方式变得多样化。运用GaussView和Gauss98程序对醋酸和水之间的氢键进行研究。实验结果表明,单分子醋酸和单分子水之间形成单个氢键或者双氢键。在研究的四种形成单个氢键的情况下有两种情况下的氢键能量很接近。形成双氢键时总的能量明显低于形成单氢键时的总能量。 关键词:Gauss98程序,GaussView,醋酸,水,氢键 Abstract: Acetic acid single-molecule and single hydrogen bonds between water molecules, although it sounds simple, but because of acetic acid contains two types of two types of hydrogen and oxygen in the water there is a two hydrogen and oxygen, making the actual existence of the hydrogen bonding More variety in the way. GaussView use of acetic acid and Gauss98 process of the hydrogen bonds between

水的性质和生理作用.

一、水的性质 水无嗅无味,是一种结构不对称而具有偶极离子的极性分子,化学反应活性较差。因此,水在动物营养生理过程中表现出的很多性质和作用都与此密切相关。水与动物营养生理有关的性质如下: 1. 水有较高的表面张力。水与动物体蛋白质的活性基或碳水化合物的活性基以氢键相结合,形成胶体。胶体具有一定的稳定性,使组织细胞具有一定的形态、硬度和弹性。 2. 水的比热大。水的比热高于其他固体和液体的比热,如1g水从14.5℃上升到15.5℃需要4.184焦尔即1卡(Cal)的热,而玻璃仅0.5J/g℃ (0.12Cal/℃,铁比热0.46J/g℃(0.11Cal/℃。这一特性对动物调节体内热平衡起作十分重要的作用。 3. 水的蒸发热高。1g水在37℃时完全蒸发,需吸收2260千焦尔或549千卡的热量。对无汗腺动物在热环境条件下,通过呼吸散热,维持正常体温,实为一种有效方法。 4. 动物机体内与细胞和组织中蛋白质结合的水,不能自由移动,即使冷却到-30℃—-40℃,也不会结冰,但在特定条件下,遇到强冷过程或解冻不慎,则有细胞破裂和动物死亡的危险。 二、水的生理作用 水的营养生理作用很复杂,动物生命活动过程中许多特殊生理功能都有赖于水的存在。 1.水是动物机体的主要组成成分。水是动物机体细胞的一种主要结构物质。早期发育的胎儿,含水高达90%以上,初生幼畜80%左右,成年动物50-60%。一般规律是随年龄和体重的增加而减少。水和空气一样,是动物生命绝对不可缺少的一种物质。 2.水是一种理想的溶剂。因水有很高的电解常数,很多化合物容易在水中电解,以离子形式存在,动物体内水的代谢与电解质的代谢紧密结合。多数细胞质是胶体和晶体的混合物,使得水溶解性特别重要。此外,水在胃肠道中作为转运半固状食糜的中间媒介,还作为血液、组织液、细胞及分泌物、排泄物等的载体。所以,体内各种营养物质的吸收、转运和代谢废物的排出必须溶于水后才能进行。

对结构化的水分子团的全新认识

对结构化的水分子团的全新认识 简述了过去对水分子团的结构上的错误认知,指出液态水的分子团结构不是固定大小的统一状态,而是包含了各种大小的水分子簇,它只能有一个平均值。它随体系中蓄含于氢键上的能量变化而发生水分子团簇的形态改变。 标签:小分子团水;氢键;水合体;磁化水;长寿之乡;微分子簇;电气石 氢键能量坐落于水分子间的氢键上,特别是蓄积于弱氢键上,它是一种氢键势能。它可以由外加在液态水上的声、光、电、磁和热能等强能量或物理场作用而转化产生,既可以蓄积也可以传导。能量的强度是维持整个水体系的分子团大小的关键因素,能量的传导散失、会造成分子团形态的变化。分析表明,氢键能量显示医学功效的关键在于人体水份达到的能量强度。能量一旦传导散失或稀释、中和而丧失,水团簇就会退回原来的普通分子团簇形态,它的医学功效也就不一样。水的团簇结构、内含能量形式及水合作用是三位一体的。 绝大部分物质都是氢键能量的良导体,此传导性会造成众多的小分子团功效实验的失败。 介绍了中国所有52个长寿乡的长寿原理,是由于其人体内水份的微子簇化,是一种由地下热电性矿的静电场作用而产生的水合氢键能的独特表现。人体水份获得充足能量后,使得水分子团簇与各种营养物质、人体蛋白质和DNA相缔合,形成新的活性水合体,从而产生对人体有益的功效。 总结了微分子簇水及其水合体对人体某些疾病的调理、改善作用等方面的数据统计,和高静电场方法获得的微分子簇水在延长动物寿命和提高SOD酶活性方面的实验研究。 1中国长寿之乡的迷题 中国的54个长寿之乡主要分布在長江以南的19个(含香港)省市;东起崇明岛、西至喀什;南自海南澄迈、北达山东莱州。中国的这些长寿之乡不仅长寿,其平均寿命要高于中国平均水平3~14岁;而且还是天然医院,很多非寿乡人在寿乡疗养,其疾病可以不治而愈;而离开寿乡又旧病复发。 对于长寿之乡的长寿和改善疾病的原因,国内外众多学者做过很多调查研究,秦俊法等[2,3]总结出了各地包括气候、地理环境、基因遗传、水质微量元素、生活习俗、饮食习惯、民族风俗等十几种因素。但是,学术界一直没能就长寿的根本原因得出一致的结论。那些与长寿乡有着同样的地理环境、饮食习惯和人文风俗的寿乡邻近区域,却是非长寿地区;这种在相同生活条件下,寿乡高出周边相邻地区平均寿命3~14岁的现象,以及寿乡特有的天然医院功效,用上述常规思维来解释是很难让人信服的。

全国地区中学化学竞赛试题:氢键和分子间作用力(19题57题)

全国地区中学化学竞赛试题:氢键和分子间作用力(19 题57题) A组 1.固体乙醇晶体中不存在的作用力是 A 离子键 B 共价键 C 氢键 D 分子间力 2.固体草酸晶体中不存在的作用力是 A 离子键 B 共价键 C 氢键 D 分子间作用力 3.在下列物质的晶体中,既有共价键又有分子间作用力的是 A 二氧化硅 B 氦 C 氨 D 铜 4.在单质晶体中,一定不存在 A 离子键 B 分子间作用力 C 共价键 D 金属离子与自由电子间的作用 5.下列物质晶体中,同时存在极性键、非极性键和氢键的是 A SO3 B H2O C C2H5OH D C2H6 6.共价键、离子键和范德华力都是微观粒子之间的不同作用力,下列物质:① Na2O2; ② SiO2;③石墨;④金刚石;⑤ NaCl;⑥白磷,其中含有两种结合力的组合是 A ①②⑤ B ①③⑥ C ②④⑥ D ①②③⑥ 7.碘晶体升华时,下列所述内容发生变化的是 A 分子内共价键 B 分子间的作用力 C 分子间的距离 D 分子内共价键的键长 8.下列物质变化时,需克服的作用力不属于化学键的是 A HCl溶于水 B I2升华 C H2O电解 D 烧碱熔化 9.下列各组中的两种固态物质熔化(或升华)时,克服的微粒间相互作用力属于同种类型的是 A 碘和碘化钠 B 金刚石和重晶石 C 冰醋酸和硬脂酸甘油酯 D 干冰和二氧化硅 10.根据人们的实践经验,一般来说,极性分子组成的溶质易溶于极性分子组成的溶剂,非极性分子组成的溶质易溶于非极性分子组成的溶剂,称为相似相溶原理。根据“相似相溶原理”判断,下列物质中,易溶于水的是;易溶于CCl4的是。 A NH3 B HF C I2 D Br2 11.右图中A、B、C、D四条曲线分别表示ⅣA、VA、ⅥA、 ⅦA旅元素的气态氢化物的沸点,其中表示ⅥA族元素气态氢 化物沸点的是曲线;表示ⅣA族元素气态氢化物沸点 的是曲线;同一族中第3、4、5周期元素的气态氢化 物沸点依次升高,其原因是;A、B、C曲线 中第2周期元素的气态氯化物的沸点显著高于第3周期元素气 态氢化物的沸点,其原因是。 12.请写出下列物质性质的变化规律与哪种作用力有关?

相关文档
最新文档