反应堆保护系统(RPR)

反应堆保护系统(RPR)
反应堆保护系统(RPR)

186

§1.6.4 反应堆保护系统(RPR )

一、 系统功能

反应堆保护系统(RPR )是指由所有电器件、机械器件和线路(从传感器一直到执行机构的输入

端)组成的产生保护信号的系统,它必须满足以下要求:

(1) 能自动触发有关的系统(需要时包括停堆系统)动作,以保证发生预计运行事件时,核

电厂的主要参数不超过规定的限值;

(2) 能检测事故工况并触发为减轻这些事故工况后果所需的系统动作; (3) 能抑制控制系统的不安全动作。

图(1)示出反应堆保护系统(RPR )在整个反应堆安全系统的位置。

图(1)

反应堆安全系统组成图

RPR 系统与全体保护仪表组件的联系可分为

热工仪表

和核仪表两部分,这些仪表组件从模拟测量

中触发逻辑信号,因此,

RPR 系统的上游端与以下主要系统相连:

保护系统 保护执行系统

反应堆安全系统(紧急停堆系统工程安全设施系统)

RPN系统的下游端与给出停堆或保护动作安全命令的传递系统相连,安全命令的种类有:停闭反应堆停闭

反应堆冷却剂泵跳闸

汽机脱扣

保护信号蒸汽管隔离

安全壳隔离状态A,B

安全注射

安全壳喷淋

给水隔离

辅助给水启动

柴油发电机组启动

保护系统的安全作用是:

在下面两种情况下:

1、当控制系统失效而导致产生错误指令时

187

2、在异常的事件情况下,包括故障(incidents)和事故(accidents)状态

保护三大核安全屏障(即燃料包壳、一回路压力边界和安全壳)的完整性,当运行参数达到危及三大屏障完整性的阈值时,紧急停闭反应堆和启动专设安全设施。

二、系统描述

1、系统设计准则

双重二取一 M=A(A+B)(C+D)

三取二 M=A C+AB+BC

四取二 M=AB+AC+AD+BC+BD+CD

图(2) 逻辑符合电路例(断电方式)

188

(1)冗余度(Recundancy)原则。每个保护参数按其功能只需设置一个保护通道,但为了提高系统的可靠性,往往增设一个或几个功能完全相同、彼此独立的通道——冗余设置。为使反应堆有高度的连续运行性能,这些多重通道一般又按照“三取二”或“四取二”等逻辑组合(如图4-44)。

(2)单一故障准则。单一故障是指使某个部件不能执行其预定安全功能的随机故障。保护系统作为一个重要的安全系统,在其任何部位发生可信的单一随机故障时仍能执行其正常功能。在单一故障分析中,不考虑发生一个以上的随机故障。

(3)保护参数多样性。即针对反应堆每一事故工况,设置几个保护功能相同的保护参数,这样,即使在其中一个保护参数的全部保护通道同时失效的最坏情况下,仍能确保反应堆安全。

(4)失效安全原则。即当设备故障时,应使设备处在有利于反应堆安全状态,(如失电时安全棒立即落棒)。

(5)在线检查可试验性。在线检查是指在反应堆运行过程中,任何时候均能手动或自动检查系统的完好性,发现故障时能立即加以排除。

(6)独立性原则。各保护通道应由独立线路供给可靠仪表电源(安全级),并应考虑实体隔离;应该避免使保护系统和控制系统的相互连接。

2、运行工况和事故的分类

运行工况,指符合正常运行和预计运行事件定义的那些工况。

预计运行事件:在核电厂运行寿期内预计出现一次或数次偏离正常运行的所有运行过程。由于设计时已采取了适当的措施,这类事件不会使安全重要物项明显损坏,也不会导致工况。

事故工况指核电厂运行中极少出现的对运行工况的严重偏离。若有关的专设安全设施不能按设计的要求发挥作用,则放射性物质的释放可能会达到不可接受的程度。

压水堆的运行工况按所预计的发生频率和对公众可能带来的放射性后果,通常分作以下四类:第Ⅰ类——正常运行和运行瞬态过程,它包括

1、核电厂的正常启动、停闭和稳态运行;

2、带有允许偏差的故障运行,如发生燃料包壳泄漏、一回路冷却剂放射性水平升高、蒸汽发生器管子有泄漏等,但未超过规定的最大允许值;

3、运行的瞬态过程:电站的升温升压,或降温冷却,以及在允许范围内的负荷变化等。

第Ⅱ类——常见故障。属于这类工况的,是指那些不会导致燃料棒损坏或堆冷却剂系统超压而使冷却剂压力边界破坏的常见故障,它可能迫使反应堆停闭;如处理不当,也可能造成严重的事故。它包括

1、反应堆启动时控制棒组件不可控地抽出;

2、在反应堆功率运行时,控制棒组件不可控地抽出;

3、控制棒组件落棒;

4、硼失控稀释;

5、部分失去冷却剂流量;

6、失去正常给水;

7、给水温度降低;

8、负荷过分增加;

9、隔离环路的启动;

10、甩负荷事故;

11、失去外电源;

12、一回路卸压事故

13、主蒸汽系统卸压事故;

14、功率运行时,安全注射系统误动作;

15、汽轮发电机组故障。

第Ⅲ类——稀有事故。在核电厂寿期内,这类事故一般极少出现。处理这类事故时,为了防止或限制对环境的辐射危害,需要安全系统投入。这类事故有:

1、一回路系统管道小破裂;

2、二回路系统蒸汽管道小破裂;

3、燃料组件误装载;

4、满功率运行时一根控制棒组件失控抽出;

5、放射性刻废气事故释放;

6、放射性刻废液事故释放;

7、全厂断电事故;

189

8、蒸汽发生器管子断裂。

第Ⅳ类——极限事故。这类事故预期不会发生,但一旦发生,就会释放出大量的放射性物质,因此被视为“设计基准事故”,属于这类事故有

1、一回路系统冷却剂大量流失,堆芯失去冷却——失水事故;

2、二回路蒸汽管道大破裂;

3、一台冷却剂泵转子卡死;

4、燃料操作事故;

5、弹棒事故。

各类工况所可能造成的影响和后果是:

1、第1类工况

燃料不应受到任何损坏

不应要求启动任何保护系统或专设安全设施

2、第2类工况

燃料不应受到任何损坏

任何屏障不应受到损坏(本身故障除外)

采取措施后机组应能再启动

它不应是后果更严重的3类或4类事故的起源

3、第3类工况

一些燃料元件可能损坏,但其数量应该是有限的

一回路和安全壳的完整性不应受到影响(本身故障除外)

它不应是后果更为严重的4类事故的起因

4、第4类工况

可能有些燃料元件损坏,但其数量应有限。为一回路和反应堆厂房的持久性所必需的系统

功能不应当变坏。

三、保护系统的组成

通过对要防止的反应堆事故的分析,特别是对引起这些事故的原因分析,可以确定安全保护系统的目的和应采取的措施。

1、燃料包壳

燃料包壳的破裂会引起燃料的损坏,导致放射性产物释放到一回路。压水堆堆芯传热的原理建立在液相水冷却燃料的基础上,对流换热的公式为:

△P=h·s·△T

式中:△P——传递的热量

△T——包壳与冷却剂水的温度差

h——对流换热系数

s——换热面积

由上式可以看出,包壳温度随着导出功率而上升,因此要限制反应堆的核功率;另外在功率恒定时,对流换热的恶化,包壳温度也将上升。为了确保反应堆的安全,可以允许反应堆的某些点有轻微的泡核沸腾,但是应该绝对避免中燃料包壳表面形成蒸汽膜(偏离泡核沸腾,D.N.B),因为此时热交换显著下降,包壳将烧毁。

如果规定最大热流密度为φ2时,可以将沸腾的类型限制在区域A的那种泡核沸腾,以便在反应堆燃料包壳的任何一点都不会发生烧毁。

2、一回路

要避免的事故是因为应力过度增大造成的破裂。这些应力可能中一回路压力高或温度快速变化下产生,另外,中子通量密度的快速变化,也将引起温度的快速变化。

3、安全壳

当一回路管道断裂,冷却剂大量泄漏,将使安全壳因内部压力上升而破裂,这也是应避免的事故。所以,保护一回路的所有措施同时也保护安全壳。

此外,安全壳还受到压水堆专设安全设施之一——安全壳喷淋系统的保护,而安全壳喷淋系统将由安全保护系统提供的信号而启动,并同时触发反应堆紧急停闭。

保护系统包括:

1、反应堆事故停堆线路:它的用途是紧急停闭反应堆。事故停堆线路能切断控制棒组传动

190

机构电路电源,使调节棒组和停堆棒组靠重力作用落入堆芯。

2、专设安全线路:在反应堆发生失水事故或蒸汽管道破裂事故时,触发停堆,并提供信号使专设安全设施如安全注射系统、安全壳隔离系统、安全壳喷淋系统以及辅助给水系统动作,防止事故扩大。

3、允许线路:在反应堆正常启动、停闭或者提升功率过程中,或在某些特殊情况下,为保证反应堆的运行更安全,允许线路建立改变某些设备或某些安全保护系统状态的信号。

4、连锁线路:当出现某些异常情况而又要避免反应堆事故停堆时,这些线路限制的应堆功率以避免达到紧急停堆阈值,并且象某些允许线路那样朝更安全方向改变机组的状态。

1、紧急停堆保护线路

需要紧急停堆的主要工况见表(3),保护参数见表(4)。

表(3)紧急停堆的主要工况

191

表(4) 600MW电功率水堆核电厂停堆保护参数

当反应堆保护回路发出停堆指令时,控制棒驱动机构的动力电源被断开,所有的安全棒和调节棒,不管其在何位置,均在约两秒钟之内依其自重全部落入堆芯,反应堆迅速处于次临界。

2、专设安全设施保护通道

压水堆核电厂专设安全设施的主要保护对象见表(5)。表4(6)是专设安全设施动作线路安全保护

192

193

SI

SI

图(3)紧急停堆综合逻辑图

194

表(6)专设安全设施的保护对象

表4(7)专设安全设施安全保护参数

195

4、允许线路(P信号)

196

允许信号按反应堆状态允许或禁止某些停堆保护功能,以便实现按反应堆不同功率水平完成相应保护动作。例如,中子功率测量有三个不同量程(源量程、中间量程和功率量程),与此相应各通道都设有相对应的功率高紧急停堆,在正常启动过程中,如果通量测量指示是正常的,在达到相应的定值点以前,操纵员必须手动闭锁相应停堆信号源量程1个,中间量程1个,以使提升功率能继续进行。

这些允许信号,当功率重新下降后,能自动将这些停堆功能闭锁解除。表(9)为允许信号表。

表(9)允许信号表。

197

5、禁止线路(C信号)

这些信号及时限制堆功率,以避免停堆。有两类禁止信号:一类针对控制棒,另一类针对汽轮机。详见表(10)。

198

监测监控安全保障措施(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 监测监控安全保障措施(通用版)

监测监控安全保障措施(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 一、概述: 矿井安全监测监控系统为KJ90NA型,装备主机2台,一用一备,备用主机能在5分钟内启动,地面1个、井下4个分站,安全监测系统主电缆从矿调度室引来,自主井下井。地面主要采集矿井提升、通风、压风等重要设备的开停,风机风硐内负压、风速、瓦斯的实时参数。井下对采煤、掘进、运输、排水、通风等主要设备的开停,采煤及掘进面的瓦斯,水仓水位,主要风门的开关,采区及回风巷测风站的风速、瓦斯等参数进行实时采集处理、信息传输、超限报警断电、远方控制及避难硐室内外环境实时监测等。为确保矿井监控系统稳定,可靠、正常运行,充分发挥安全保障作用,特制定了监控系统安全保障措施。 二、安全保障措施: 1、在每一个采掘工作面作业规程中,必须设计监控系统设备的种类、数量、位置。信号电缆和电源电缆的敷设,控制区域等做出明确

核电厂仪控系统数字化改造关键要素探究

核电厂仪控系统数字化改造关键要素探究 发表时间:2019-04-29T16:41:05.820Z 来源:《建筑学研究前沿》2018年第36期作者:林永嘉 [导读] 核电厂老旧仪控系统的数字化改造已经成为趋势。就数字化系统本身而言,在技术上没有明显的风险,与全新的核电厂相比,改造工作有众多的约束条件。 福建福清核电有限公司福建福州 350318 摘要:核电厂老旧仪控系统的数字化改造已经成为趋势。就数字化系统本身而言,在技术上没有明显的风险,与全新的核电厂相比,改造工作有众多的约束条件。由于技术的进步和数字化仪控系统的广泛应用,已有改造指导对数字化技术本身的关注已经不再重要。针对指导的关注点与现实脱节的情况,为了能够成功进行仪控系统的数字化改造,本文提出了改造的实施策略,分析了改造时必须关注的要素,给出了相应的建议。 关键词:仪控系统;数字化;改造;关键要素 引言 随着当前社会经济的快速发展,人们在生产生活中对电能的需求量也快速增加,在此过程中关于核电站的建设和应用也引起了广泛的关注。区别于传统的火力发电以及水力发电,核电站在运行中具有能耗低、污染小、电能产出稳定的特点,实际应用中能为区域电能的稳定供应奠定良好的基础。核电站的运行原理为:通过核装置运行产生热量,之后通过加热水蒸气,转换机械能的方式推动发电机进行发电,以此实现能量转换的过程。在此过程中,分析仪控系统作为核电站运行中的主要控制单元,其运行状态以及效果也引起了研究人员及维护人员的重视。笔者针对当前核电站仪控系统数字化改造进行简要的剖析研究,以盼能为我国核电企业发展核电装置的仪控系统数字化改造提供参考。 1核电站数字仪控系统简介 核电站在运行中主要通过仪表盘及控制系统进行各类组件的控制运行。在实际运行中,机组的安全可靠、经济运行在很大程度上取决于仪表控制系统的性能水平。从我国已经建成的和在建的核电工程来看,我国核电站仪控系统技术在发展中历经了三个阶段。第一阶段是以模拟量组合单元仪表为主的控制系统,如正在运行的我国300MW秦山核电站主控制系统应用的FOXBORO公司的SPEC200组装仪表,大亚湾2×980MW核电站主控制系统采用的Baily9020系统也属于这一类。其模拟量仪表采用小规模集成电路运算放大器为基础的元件来控制,逻辑量仪表采用继电器等硬逻辑电路来控制。因而系统所需要的仪表控制器件数量多,运行操作管理和维护工作任务重,大部分采用手动操作,主控室格局占用空间异常大。第一阶段发展中主要以模拟量组合单元进行系统控制,该类控制模式在应用中存在控制延迟以及手动作业过多的现象。第二阶段在发展中以第一阶段系统控制技术为基础,增加了数字量控制技术,实际应用中通过数字量和模拟量控制的混合应用,有效提升了控制系统的应用效果,并且减少了手动控制操作量,对于系统控制质量的提升效果显著。但在核岛系统的运行中,仍然采用以小规模集成电路运算放大器为核心的模拟单元量,进行系统的模拟控制。常规岛及辅助岛部分,则结合数字化PLC自动化控制系统进行控制运行,实际应用中通过软件的自动化检测,有效减少了就地控制柜的设置数量,以及硬性接线的数量,提升了系统运行的稳定性和可靠性。第三阶段称为全数字化仪表控制系统阶段,该阶段在技术应用中以DCS技术为核心,实现了全面系统运行的数字化、自动化、分布式控制,增强了系统运行的智能性和可靠性。实际应用中,DCS技术结合PLC技术全方面地应用在核岛、常规岛、BOP部分,构成了核电站全新数字化仪表控制系统。 2核电站仪控系统数字化改造解析 2.1备件问题和设备老化 备件问题及设备老化问题为当前核电站仪控系统运行中主要存在的问题。两类问题的出现造成核电站在运行中组件运行的可靠性和稳定性降低,且造成了一定的安全隐患。实际工作中为有效优化该类问题,应用单位可通过应用分布式控制系统的方式,或采用现场总线控制系统的方式进行仪控系统的数字化改造。通过优化软件技术的方式达到降低设备应用局限性的问题,最终达到提升设备应用质量并发挥组建控制应用效果的目的。另外,分析两类技术方案在实际应用中,智能化控制为其核心运行技术。实际应用中通过核心智能化技术的运行,实现了全站控制设备运行现状的监测以及运行性能的监测,及时针对设备运行中存在的问题及故障现象进行预警提示,最终达到提升系统运行可靠稳定性的目的。具体分析通过核心智能技术的运行应用,有效地减少了独立监测装置的安装数量,并且实现了系统控制的无障碍化。另外,DCS系统及FCS控制系统在应用中,其备件之间都可进行互换应用,有效降低因设备组件应用选择局限,造成了设备老化及运行成本升高问题。并且在实际运行中设备组件的互换应用,对系统控制运行中的智能性、可靠性、安全性、稳定性提升,奠定了良好的基础。 2.2多样性 冗余设计不能应对共模故障。通常设计采用多样化的仪控系统,将共模故障引发的风险降低至可接受的水平。设置了数字化保护系统的核电厂几乎全部采用了两种或更多种具有显著多样性的软硬件平台。保护动作的触发信号尽量来自基于不同探测原理、方法的传感器,触发变量进行分组并在不同的处理器上进行处理等方法,是防止共模故障造成不可接受后果的有效方法。万一软件的共模故障导致数字化保护系统失效后,则由具有多样性的后备保护系统执行反应堆紧急停堆、停机和启动辅助给水等必要功能。设置操纵员手动紧急停堆以及触发专设动作的功能,旁路数字化保护系统的逻辑处理器,经过固态或机械继电器等进行命令扩展,直接触发执行机构则是另一种有效应对共模故障的手段。正常工况下,核电厂的信息显示、手动控制在数字化系统上实现。在这些计算机化的工作站发生共模故障的情况下,利用与计算机化的人机接口设备具有多样性的后备盘,可在规定长的时间内维持核电厂的正常运行,并在需要时将电厂带入安全停堆状态。由于数字化仪控系统软件的固有特性,通常采用数字化保护系统的核电厂常常设有专门的多样性驱动系统。在软件共模故障后,必要时,采用多样性方式进行反应性的控制,驱动选定的专设等。 2.3控制的优先与切换 特定的执行机构可能会接受不止一个控制命令。当发生设计基准事故时,它要接受来自保护系统的命令。此时,保护命令应优先于其它

安全监测监控系统安全技术措施

安全监测监控系统安全技术措施 一、矿井概况 1、矿井地质、生产布置、通风系统、瓦斯涌出、自然发火概况 2、矿井安全监控系统概况矿井安全监控系统通信干线路线: 井下路线:-120副井(552m)→-120副井车场(320m)→-120副井车场与-410行人井联络道(40m)→-410行人井(779m)→-410行人井车场(470m)→-410西翼大巷(685m)→-410西翼底弯道至-410西翼2#皮带道联络道(70m)→-410西翼2#、1#皮带道(780m)→-410中间皮带道(115m)→-410WE变电所交换机(两台)→-410西翼火药库回风道及火药库(117m)→-410WE16层材料道(80m)→-410东翼大巷(1880m)→-410ES材料道(380m)→-410ES变电所交换机(两台)→-410ES材料道(380m)→-410EW材料道(730m)→-410EW408运顺辅助道→-410EW皮带道(757m)→-410东翼4#、3#、2#、1#皮带道(2070m)→-410皮带变电所(50m)→-410材料副井井底车场(250m)→-410材料副井(878m)→-410排水上部管子道(117m)→-120主井车场(130m)→-120主井(698m)→地面。 地面路线: -120副井井口(50m)→地面电缆桥(110m)→监控设备修理室交换机(两台)→地面电缆桥(160m)→俱乐部外电线杆(架空线,80m)→独身楼(70m)→安全监控中心站。 安全监控中心站→独身楼(70m)→俱乐部外电线杆(架空线,80m)→地面电缆桥(300m)→-120主井井口(50m)。 中心站硬件有专用数据服务器、双机热备的主机、奔腾级品牌商用机终端、windows 2003兼容网卡、网线、插头、网中继器等。 井下监测监控设备有光电信号交换机、KJ2007G1型井下分站、各种传感器、断电控制器等。矿井在用甲烷传感器75台,在用一氧化碳传感器20台,在用温度传感器20台,在用风速传感器8台。矿长、总工程师、生产副矿长、安全副总、通风副总的办公室,保安区长与监测队长办公室及矿调度室、保安区调度室,均安设了矿井安全监控系统终端机。 矿井安全监控系统可能出现的故障有:传感器故障,通讯故障,监控设备电源故障,光电信号交换机、井下分站、中心站服务器等设备故障,系统软件故障等。 多年以来,我矿生产管理中,严禁无故中断矿井安全监控系统及设备的运行(包括停产检修、节日放假),矿井安全监控系统一旦出现故障必须在8小时内处理完毕,矿联网服务器运行异常造成联网通讯中断时立即通报矿信息中心予以处理。 二、矿井安全监控系统故障期间的应急机构 一旦矿井安全监控系统出现故障,随即自然产生应急指挥小组。组长:值班矿领导 成员:保安区、机电科、生产科、安监处四个单位的值班干部及矿调度室值班调度员 职责:负责组织、指挥矿井安全监控系统故障的处理工作,负责组织、指挥矿井安全监控系统故障期间的安全工作。 三、矿井安全监控系统更换维修期间的安全技术措施 1、发生瓦斯安全监控设备故障时,严禁解除安全监控系统的故障闭锁功能进行生产作业。 2、发生瓦斯安全监控设备故障时,保安区调度及时通知相关部位瓦检员等人员加大瓦斯检查力度。瓦检员加密故障影响区域内的瓦斯检查次数,并每隔1小时向保安区调度汇报1次。 3、发生一氧化碳监测设备故障时,保安区调度及时通知相关部位瓦检员等人员加大对一氧化碳检查的力度,加密检查次数;一旦一氧化碳超限,瓦检员等人员立即对超限区域及受威胁区域撤人与设置警戒,并尽快向矿调度与保安区调度汇报。 4、发生温度监测设备故障时,保安区调度及时通知相关部位瓦检员加大对气温检查的力度,加密检查次数;一旦气温超规定瓦检员等人员立即对超限区域及受威胁区域撤人与设置警

浅谈反应堆保护系统设计

浅谈反应堆保护系统设计 摘要为了科学利用核能,保障核电站的运行安全,确保其可靠性和安全性,在进行保护控制系统设计时,应充分考虑其发生故障的可能性。本文介绍了核电站数字化控制系统的保护系统的设计原则,并对其典型设计进行了分析研究。 关键词核能;数字化控制系统;保护系统;可靠性 前言 核能是一种稳定的清洁能源,使用核能发电至今已有近70年的历史。然而,自日本福岛核事故发生以来,世界范围内核电项目受到了严重打击,中国政府立即暂停了已开工的核电项目,并对新上核电项目进行严格审批,直到近年才陆续重新开工。如何确保核电站的运行安全,如何使用好核能这把双刃剑,已成为决定整个核电行业发展的重中之重。随着微处理技术的发展,数字化控制系统已取代了传统模拟控制和保护系统,本文主要介绍了数字化控制系统中反应堆保护相关系统的架构与设计原则。 1 系统组成 1.1 核电站的基本构成 核电站是用核能生产电能的电厂,从生产角度上讲,核电站分为两大部分,一部分是通过核能放热产生蒸汽,称之为核岛;另一部分与常规电厂相同,利用蒸汽生产电能,称之为常规岛。 核岛系统由反应堆、主泵、稳压器、蒸汽发生器和相应管道组成,反应堆外壳是一个耐高压容器,主要用于将全部核放射限制在其范围之内、防止飞机撞击等事件,是放射物质与环境之间的第三道屏障。 但是,当反应堆出现异常时,如果不能及时调整或停止其核反应,堆芯温度将不断上升,进而导致核岛内压力不断升高,当压力高到容器无法承受时,最终会发生放射性物质外泄。 1.2 反应堆保护系统 (1)概述 反应堆保护系统的作用就是保护三大核安全屏障(即燃料包壳、一回路压力边界和安全壳)的完整性[1]。当核电站的某些设备发生故障时,通过设置在核电站各个设备、管道的压力、温度、流量传感器参数也会发生变化,当这种参数变化达到危及三大屏障完整性的阈值时,紧急停闭反应堆,必要时启动专设安全设施,通过淋水等方式进一步降低温度,保障公众生命财产安全。

第三章 反应堆保护

第三章 反应堆保护 3.1 概述 3.1.1 反应堆保护系统的功用。 反应堆保护系统的功用主要是保护三大核安全屏障(燃料包壳、一回路压力边界和安全壳)的完整性。 当运行参数达到危及三大核安全屏障完整性的阈值时,保护系统动作触发反应堆紧急停堆和启动专设安全设施。 3.1.2 反应堆保护系统的组成。 广义地讲,反应堆保护系统应包括核岛KRG (过 程测量系统,通常称为SIP ),RPN (核仪表系统), RPR (反应堆保护系统)以及所有专设安全系统(如 RIS ,RCV ,ETY 等)。 KRG 和RPN 分别对测量数据进行处理,然后将 处理后的模拟信号转成开关量信号送至RPR 系统进行逻辑运算形成保护指令,最终送至执行机构执行保护动作,如图3.1。 3.1.3 保护系统的设计准则 1.单一故障准则 单一故障准则是指某设备组合或系统,在其任何部位发生可信的单一随机故障时仍能执行正常功能,即系统内的单一故障不会妨碍系统完成要求的保护功能,也不会给出虚假的保护动作信号(误动作)。由该单一故障引起的所有继发性故障均应视为单一故障不可分割的组成部分,该准则要求保护系统内单一故障或单次事件引起的故障不应有损于系统的保护功能。 2.冗余性和独立性 冗余性是为了满足单一故障准则,冗余有整体冗余和部件冗余,各冗余通道之间应有独立性(电气独立和实体独立)。为保证电气独立性,电源系统也应有冗余度,冗余性和独立性为在线周期试验和在线维修提供了手段。 3.多样性 多样性准则针对共模故障,可通过功能多样性和设备多样性来实现。共模故障是指某一事件或条件均能导致同一类(采用同一设计原理或材料的)设备产生相同的故障。 4.故障安全准则 故障安全准则是在某系统中发生任何故障时仍能使该系统保持在安全状态的设计原则。 KRG RPN RPR 执 行 机 构 RIS ,RCV ,ETY ,停堆开关…… 图3.1 反应堆保护系统组成框图

监测监控安全保障措施

编号:AQ-JS-03712 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 监测监控安全保障措施 Monitoring and monitoring security measures

监测监控安全保障措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 一、概述: 矿井安全监测监控系统为KJ90NA型,装备主机2台,一用一备,备用主机能在5分钟内启动,地面1个、井下4个分站,安全监测系统主电缆从矿调度室引来,自主井下井。地面主要采集矿井提升、通风、压风等重要设备的开停,风机风硐内负压、风速、瓦斯的实时参数。井下对采煤、掘进、运输、排水、通风等主要设备的开停,采煤及掘进面的瓦斯,水仓水位,主要风门的开关,采区及回风巷测风站的风速、瓦斯等参数进行实时采集处理、信息传输、超限报警断电、远方控制及避难硐室内外环境实时监测等。为确保矿井监控系统稳定,可靠、正常运行,充分发挥安全保障作用,特制定了监控系统安全保障措施。 二、安全保障措施: 1、在每一个采掘工作面作业规程中,必须设计监控系统设备的

种类、数量、位置。信号电缆和电源电缆的敷设,控制区域等做出明确规定,并绘制布置图。 2、安全监控设备之间必须使用专用阻燃电缆或光缆连接,严禁与调度电话电缆或动力电缆等共用。安全监控设备必须具有故障闭锁功能、甲烷断电仪和甲烷风电闭锁装置的全部功能;当电网停电后系统必须保证正常工作2个小时;具备防雷电保护;必须有断电状态和馈电状态监测、报警、显示、存储和打印报表功能。中心主机有两台,1台备用。 3、安装监控断电控制系统时,必须根据断电范围要求,提供断电条件,并接通井下电源及控制线。监控设备的供电电源必须取自被控开关的电源侧,严禁接在被控开关的负荷侧。 4、拆除或改变与安全监控设备关联的电气设备的电源线及控制线、检修与安全监控设备并联的电气设备、需要安全监控设备停止运行时,必须报告矿调度室,由调度室指挥监控室向上级监控中心汇报、并得到批准后方可由调度室下达命令进行。 5、安全监控设备必须定期由专人负责进行校验,监控主机每月

华龙一号与M310核电机组反应堆保护系统结构差异性分析

华龙一号与M310核电机组反应堆保护系统结构差异性分析 摘要:反应堆保护系统(RPS - Reactor Protection System)是核电站重要的安全 系统,福清5、6号机组核电站数字化反应堆保护系统基于AREVA公司的TXS 平 台实现,与以往不同,反应堆保护系统的逻辑功能也与以前有很大不同,本文将 通过对比这些差异,发现华龙一号反应堆保护系统提高了系统的可靠性,完善了 系统的调试和维护。 1 引言 反应堆保护系统(RPS - Reactor Protection System)是核电站重要的安全系统,它监测与反应堆安全有关的重要参数,当这些参数达到安全分析确定的整定值时 自动触发紧急停堆和/或启动专设安全设施,以限制事故的发展和减轻事故后果,保证反应堆及核电站设备和人员的安全,防止放射性物质向周围环境释放。 反应堆保护系统包括反应堆紧急停堆系统(RTS - Reactor Trip System)和专设 安全设施驱动系统(ESFAS - Engineered Safety Features Actuation System)两部分,每个系统都是由仪表系统和逻辑系统组成。它包括了用于保护参数测量的测量电路、信号调整、保护逻辑驱动控制接口单元以及辅助电源供给单元。 福清5、6号机组核电站数字化反应堆保护系统基于AREVA公司的TXS 平台 实现。整个系统由4 个保护组(IP、IIP、IIIP、IVP)和2个逻辑系列(A、B)组成。单个通道保护参数的采集处理和阈值比较在保护组完成,停堆和专设逻辑符 合在A,B 列完成。福清1-4号机组核电站数字化反应堆保护系统基于INVENSYS 公司的TRICON平台实现,整个系统也是由4 个保护组(IP、IIP、IIIP、IVP)和2 个逻辑系列(A、B)组成。单个通道保护参数的采集处理和阈值比较在保护组完成,但是停堆逻辑符合在四个保护组完成,专设逻辑符合在A,B 列完成。 2 反应堆保护系统结构差异性分析 2.1 M310机组反应堆保护系统设计 福清1-4核电站保护系统上游为4重冗余的保护组,4 个保护仪表组分布在4 个隔离的连接厂房内。不同的是,每个保护组包括两个多样化子组和一个服务器 子组。每个子组完成安全级过程仪表和核仪表信号的采集,阈值比较以及停堆逻 辑符合,触发单通道的停堆信号和到ESFAS列的驱动专设动作的“局部脱扣信号”;服务器子组采集保护组内的PAMS 信号以及其他需要在非安全级显示和处理的信息,与位于A,B列的服务器子组通讯,并通过列内的服务器子组将PAMS信号 上传到SVDU显示,将其他信息通过网关传输到非安全级系统,类似与福清5、6 号机组通信传输单元TUA/B。4 个保护组之间以及与ESFAS间通过远程IO的方式 进行数据传输。 福清1-4号核电站保护系统下游为两个冗余的ESFAS列,每个列包括两个多 样化子组和一个服务器子组。多样化子组接收来自保护组的“局部脱扣信号”并进 行逻辑符合产生系统级ESF 动作,并根据具体工艺要求进行部件级的ESF 逻辑控制。最终ESF 驱动信号通过硬接线传输到PLM。列服务器子组负责与保护组服务 器子组,SVDU 以及非安全级的通讯。优选模块(PLM)接收来自四个上游系统的 指令信号,按优先级次序依次为ECP 系统级手动控制指令、1E 级Tricon 的ESFAS 指令、ATWT/多样化保护系统指令、来自非安全级系统的指令。PLM模件采用FPGA技术,只完成优选逻辑和定期试验功能,执行器状态信息的显示,驱动命 令的保持和中断等功能由其他系统完成。PLM 模件只接受硬接线信号,对于来自 非安全级系统的信号需进行电气隔离。

核电站工作原理

核电站工作原理 它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。 核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。 主泵如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。 稳压器又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。 蒸汽发生器它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。 安全壳用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一般是内衬钢板的预应力混凝土厚壁容器。 汽轮机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。 危急冷却系统为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。 注: 核裂变是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂

核电站数字化仪控系统可靠性分析方法研究

核电站数字化仪控系统可靠性分析方法研究 郭晓明 【摘要】:在核电领域,采用数字化仪表与控制系统是先进型反应堆的一个重要特征。数字化系统通过增加硬件系统的可靠性和稳定性,减少人因失误,提高故障检测能力等方式大幅度提高电厂的安全性。当前的在运核电站中正逐步采用数字系统来取代模拟仪控系统,而在建、筹建的核电项目中已经全面将数字技术整合到其设计中。与此同时,数字化仪控系统的应用也带来了一些新问题。由于采用数字化仪控系统后,电厂需要采用大量的微处理器(CPU)及配套的软件和I/O卡件等,并经过逻辑设计将软件和硬件联系起来共同实现系统的预设功能,它可能会因设计中存在的不足或收到特殊的混合型输入的触发而导致失效。因此,虽然数字化仪控系统被普遍认为可以提高核电站的安全性和可靠性,但仍有待通过对数字化系统的可靠性进行系统的评估来加以验证。迄今为止,还没有一种得到一致认可的数字化系统可靠性评价方法。本文重点讨论了传统概率安全分析方法(PSA)和动态方法在数字化系统可靠性分析中的适用性,根据各个方法的特点,选取了合适的系统模型,分别应用传统故障树方法、动态流图法以及Markov/CCMT方法进行构模,并对结果进行了讨论。传统的故障树方法已被广泛的应用于核电厂PSA分析中,可通过组合系统组件的故障模式来模化数字化系统的失效,具有强大的灵活性。但传统的故障树方法对于数字化系统的特性分析显得过于保守和不足。动态流图法(DFM)具有动态的特性,可表征系统变量和时间的关系,并可用于诊断评估由软件失效、硬件失效以及环境条件等因素对系统的影响。Markov/CCMT模型能够将结合软件的失效和硬件结合起来,一个完整的Markov/CCMT模型包含了系统所有状态的转移链,而通过这些离散状态的转移也构建出了系统结构的完整画面。最后,在对现有的数字化系统可靠性分析方法进行了总结的基础上,对软件可靠性的评估进行了分析和归纳,并重点介绍了应用故障注入技术获取数字化系统数据的方法原理以及步骤。 【关键词】:数字化仪控系统动态方法概率安全分析软件可靠性 【学位授予单位】:清华大学 【学位级别】:硕士 【学位授予年份】:2011 【分类号】:TL364.1 【目录】: 摘要3-4 Abstract4-9 主要符号对照表9-10 第1章引言10-19 1.1 核电站仪控系统技术概述10-11 1.2 数字化仪控系统可靠性分析国外研究现状11-16 1.2.1 技术路线综述11-15 1.2.2 数字化系统中的软件失效率分析研究现状15-16 1.3 数字化仪控系统可靠性分析国内研究现状16

屏蔽泵的安全监测和保护装置参考文本

屏蔽泵的安全监测和保护装置参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

屏蔽泵的安全监测和保护装置参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 为提高使用寿命和运转的安全性,屏蔽泵通常都设有 下列保护装置。 1.轴承磨损监测器轴承磨损监测器根据其检测原理通常 分为机械式、机械电气式、电气式、电子式等型式。当屏 蔽泵运转时,可以通过轴承磨损监测器随时监视轴承的运 转情况,当轴承磨损较大时就要停车检修或更换轴承,在 运转时若发生轴承损坏则立即停车。 机械式监测轴承磨损最为直接,可靠性高,但不可 调、没有预警功能。其他形式的轴承监测,可实现现场显 示,且可输出4~20mA信号以及报警开关信号2.电流保 护器屏蔽泵在缺液情况下空运转时,会造成泵的损坏。当

流量大幅度下降时,电流也会大大降低,此时电流保护器可以发出控制信号,通过用户的保护装置将泵停止运行,防止事故发生。同样,在负载过大时,电流增加较多,电流保护器也会动作,自动切断电流,使电机停止运转,防止事故发生。 3.电机过热保护事先将温度传感器预埋在定子三相绕组内,实现超温报警,避免电机绕组的工作温度超出其绝缘等级的要求,同时是对满足防爆性能中温度组别项的一个补充。 传感器主要分三种:热敏电阻(PTC)、热敏开关和热电阻,前面两种价格低,使用比较广泛。 热敏开关和热敏电阻均为位式控制,报警温度不可调,而热电阻传感器通过配备相应的显示仪表,文章由上海泽德水泵整理可以实时监控电机绕组的温度变化,它通常使用在重要泵位以及特殊绕组形式上。

安全监测监控系统安全保障措施(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 安全监测监控系统安全保障措 施(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

安全监测监控系统安全保障措施(通用版) 一、为确保煤矿安全监控系统安全、可靠、正常的运行,充分发挥安全保障作用、制定本系统安全保障措施。 二、煤矿安全监测监控系统24小时值班制度,每班至少2人。工作人员应当具备计算机、煤矿安全及生产技术等专业知识。 三、建立健全煤矿安全监控系统规章制度,配备相应的工作人员,保证24小时不间断值班。工作人员按特殊工种管理,经培训合格后持证上岗。 四、矿井应当为煤矿安全监控系统架设供电专线,安装防雷电接地装置,配备消防器材等安全防护设施,确保设备完好和传输数据准确。 五、安全监控系统应当配备防病毒软件,实时监测网络病毒,及时更新病毒库和客户端防病毒软件,并定期备份检测数据库信息,确保数据安全。

六、任何单位和个人不得擅自变更煤矿安全监控系统网络平台的设置和参数。 七、故意破坏、损坏、改变煤矿按全监控系统设施,造成安全监控数据上传中断或者数据失真的,由矿安监科根据相关规定处理,追究责任。 云博创意设计 MzYunBo Creative Design Co., Ltd.

仪控综合改造之堆外核测系统

仪控综合改造之堆外核测系统 发表时间:2018-05-28T16:44:32.417Z 来源:《建筑学研究前沿》2017年第35期作者:王伟 [导读] 本文介绍了秦山一期R10实行的仪控综合改造项目之堆外核测系统改造。 中核核电运行管理有限公司浙江嘉兴 314300 摘要:本文介绍了秦山一期R10实行的仪控综合改造项目之堆外核测系统改造,重点介绍改造后的系统的功能以及过程中出现的问题和解决方法,总结了项目实施过程中的经验和不足。 关键词:仪控综合改造;堆外核测系统;安装及调试 一.概述 核电厂仪表和控制系统的自动化程度随着计算机技术的发展在不断提高。应用数字化技术得当,可以提高核电厂运行的安全性和可靠性,从而提高电厂运行的可利用率,能给电厂带来显著的经济效益。 经过对国内外基于模拟技术和数字化技术平台的应用现状和趋势的深入调研和分析,最终选择采用数字化技术来改造反应堆保护系统和堆外核测系统。从国外对数字化反应堆保护系统的广泛应用来看,其优越性、可靠性越来越多得到个电厂业主的认可。 此次堆外核测系统的改造的主要工作为:1.测量机柜的更换,包括旧机柜拆除、新机柜安装、组件的上柜等;2.探测器信号电缆的更换,由于测量机柜物理位置发生变化,信号电缆需要重新更换,源量程信号电缆全部更换,中间量程和功率量程信号电缆从02贯穿件侧到05机柜全部更换;3.硬件性能测试和整个系统功能测试;4.和相关系统接口的调试工作,由于模拟量输出方式发生改变,堆外核测系统以前模拟量输出为电压信号,此次输出全部改成4-20mA电流输出,这样就涉及到相关系统接口组件发生变化;5.R10期间和改造有关的堆外核测系统工作,源量程探测器B的更换,中间量程探测器A/B的更换。 二、堆外核测系统功能及结构介绍 反应堆核测量系统是用来了解反应堆运行工况的装置,即了解堆内裂变状况的装置。反应堆核测量系统,主要测量堆功率及堆周期,并将测量结果用仪器显示出来,供操纵人员监督和操纵反应堆的运行,或者将测量结果送到信号保护系统去,在反应堆偏离规定的工况时,通过反应堆保护系统,自动的采取相应的措施以保证反应堆的安全;或者将功率信号送到功率调节系统去,功率调节系统再根据汽轮机的功率和堆的实际功率的差值,自动调节堆的功率水平,或者将测量结果送到自动记录仪和计算机系统,将反应堆的运行工况记录下来,供了解和分析反应堆的运行状况时用。 改造前堆外核测系统组成情况介绍: 源量程: 1.脉冲处理组件和周期处理组件组为法国MG公司生产。 2.脉冲周期仪,由北京核仪器厂生产。 3.脉冲计数率音响装置,由北京核仪器厂生产。 4.探测器为硼沉积计数管(CPNB44),法国MG公司生产。 中间量程: 1.直流对数周期仪是中间量程唯一的测量组件,由北京核仪器厂生产。 2.探测器为γ补偿电离室,由北京核仪器厂生产。 功率量程: 1.功率量程的仪表主要有线性功率测量装置、象限功率倾斜装置、功率通道比较装置,由北京核仪器厂生产。 2.探测器为长中子电离室,由法国MG公司生产。 3.改造后堆外核测系统组成情况介绍: 源量程: 1.探测器为硼沉积计数管(CPNB44),法国MG公司生产,R10期间安排的预防性维修进行了B通道探测器更换,但是探测器类型和厂家都没有变化。 2.所有仪表都由AREVA NP公司提供,主要仪表有前放、主放和源量程音响装置等; 3.逻辑处理CPU,通讯CPU和输入输出等外围组件是整个堆外核测通道所公用。 中间量程: 1.探测器为γ补偿电离室,由北京核仪器厂生产,R10期间安排的预防性维修进行了A/B通道探测器更换,但是探测器类型和厂家都没有变化; 2.所有仪表都由AREVA NP公司提供,主要仪表有电流放大器。 3.逻辑处理CPU,通讯CPU和输入输出等外围组件是整个堆外核测通道所公用 功率量程: 1.探测器为长中子电离室,由法国MG公司生产,R10期间没有进行更换; 2.所有仪表都由AREVA NP公司提供,主要仪表有电流放大器SCV1; 3.逻辑处理CPU,通讯CPU和输入输出等外围组件是整个堆外核测通道所公用。 三.问题解决和技术创新 1.解决了安全级系统要求通道间隔离的问题 核电厂安全级的系统要求各冗余通道间满足实体分割和电气隔离的要求。新的系统分布在4个不同的房间,满足了实体分割的要求。 2.源量程和中间量程通道分配更加统一 改造前源量程和中间量程通道分配不够清楚,源量程A分配到了A1,源量程B分配到了B2;中间量程A分配到了A2,中间量程B分配到

反应堆保护系统试验系统的研究

反应堆保护系统试验系统的研究 张东升1,朱毅明2,左新2 1 信息产业部电子第六研究所,北京 (100083) 2北京广利核系统工程有限公司,北京 (100085) E-mail:tjudsoo@https://www.360docs.net/doc/836456847.html, 摘要:本课题对大亚湾核电站反应堆保护系统进行深入研究,确定了试验系统的开发需求,研究了试验系统的数学模型,应用CPLD和NI技术完成了新的试验系统的研制,通过了现场各种性能测试,满足了用户要求,对保护系统的正常运行起到了非常关键的作用。该课题的研究加快我国的反应堆保护系统及其试验系统的数字化进程,推动了CPLD和虚拟仪器技术在核领域的应用。 关键词:反应堆保护系统;试验系统;CPLD;虚拟仪器 1. 引言 反应堆保护系统(Reactor Protection System) 是狭义上反应堆保护系统的简称,而由SIP (过程仪表系统)和RPN(核仪表系统)、RPS(反应堆保护系统)以及所有专设安全系统(如RIS、EAS、ETY等)一起,构成广义的反应堆保护系统。其中SIP系统作为核岛KRG 系统的一部分,其作用是将由变送器测量得到的过程变量(压力、水位、流量、温度、转速等)信号进行必要的处理,最终经阈值处理形成逻辑保护信号,送至RPS进行逻辑运算(3取2或4取2)形成保护指令。 RPS系统主要完成反应堆异常工况下的紧急停堆,并触发专设安全设施,从而减轻事故后果,先进、可靠的反应堆保护系统对堆的安全运行具有重要作用。但是在反应堆正常运行的情况下,其故障是隐蔽的,也就是说在反应堆出现事故瞬态的情况下,保护系统才起作用,那么如何保证保护系统的正常运行则是定期试验系统需要解决的问题,也是非常关键的问题。数字化试验系统还提供必要的事故后检测手段,以监测反应堆停堆后因事故而导致的异常工况。[1] 2. 反应堆保护系统试验系统研究 2.1背景介绍 SIP定期试验就是采用系统辩识和模式识别等方法来对该系统进行验证,这对于核电站正常安全的工作有重要意义,也对于高安全级别高系统的安全验证有推广作用.然而由于SIP系统是一个保护系统,也就是说,在反应堆出现事故瞬态的情况下,SIP才起作用,在反应堆正常运行的情况下,其故障是隐蔽的。为了及时发现故障以保证SIP系统的可用性,必须对SIP系统进行定期试验。 整个保护系统的试验系统分为三段:T1试验、T2试验和T3试验,如下图1

核反应堆及发展

核反应堆的类型 核电站中的反应堆设计具有多样性,也就是说,核反应堆具 有不同类型,相应形成不同的核电站。可以利用下列三个特点表征不同类型的反应堆。第一,所用的核燃料可以是天然铀或浓缩铀、钚或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氦气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。 下面就是迄今国际上核电站常用的4种核反应堆型。 压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸 腾的核反应堆。目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。 沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容 器内直接产生饱和蒸汽的核反应堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。 重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。重水堆分压力容器式和压力管式两类。重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。

快堆是由快中子引起链式裂变反应的核反应堆。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。专家预计,快堆未来的发展将会加快起来。 前景看好的快堆 现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1%~2%。但在快堆中,铀-238原则上都能通过核反应转变成易裂变的钚-239而得以使用。即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。 具体点说,在堆芯燃料钚-239的外围再生区里放置铀-238,通过钚-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次β衰变后,铀-238很快被转变成钚-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钚-239。因为快堆再生速度高于消耗速度,即所生成的钚-239比消耗的铀-235来得多,如此核燃料越烧越多,快速迅速增殖起来,因此这种反应堆又称“快中子增殖堆”。除了现行的钠冷快堆外,还在发展气冷快堆、铅冷快堆等。 早在1951年,美国就建造了实验快中子堆。现阶段,基本掌握快中子堆技术的国家有美国、法国、日本、俄罗斯、印度和中国等。中国核工业集团公司2010年7月21宣布:由中核集团中国原子能

TSI在线监测保护系统的意义

TSI在线监测保护系统的意义 随着生产技术的发展,一种以状态监测为基础的故障诊断系统和预测技术在旋转机械设备运行安全保护领域得到了广泛的推广和运用。 这种技术的运用和发展,将使得设备的维修方式从传统的“事故维修”和“定期维修”过渡到现在的“预知性维修”,从而大大提高了设备的可利用率,减少停机维修时间,降低维修费用,同时也压缩了备件的库存量可以减少意外事故的发生和不必要的浪费、损耗,提高对机组设备的保护 它的重要意义在于当机组发生异常时,保护系统将提示报警信号,提醒操作者注意,当机组发生严重异常时,保护系统将自动使机组停止运转,以免造成设备破坏性或灾难性的严重毁坏 TSI的主要原理及功能 因为TSI系统主要由传感器及智能板件组成。首先应该知道传感器是将机械振动量、位移、转速转换为电量的机电转换装置。根据传感器的性能和测试对象的要求,利用电涡流传感器,对汽轮机组(纯电调)的转速、偏心、轴位移、轴振动、胀差进行测量。电涡流传感器 电涡流传感器 电涡流传感器是通过传感器端部线圈与被测物体(导电体)间的间隙变化来测物体的振动相对位移量和静位移的,它与被测物之间没有直接的机械接触,具有很宽的使用频率范围(从0~10Hz)。电涡流传感器的变换原理简要介绍如下:在传感器的端部有一线圈,线圈通以频率较高(一般为1MHz~2MHz)的交变电压(见图1-1),当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出一涡流ie,而ie所形成的磁通链又穿过原线圈,这样原线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感。而耦合系数的大小又与二者之间的距离及导体的材料有关,当材料给定时,耦合系数K1与距离d有关,K= K1(d),当距离d增加,耦合减弱,K值减小,使等效电感增加,因此,测定等效电感的变化,也就间接测定d的变化。 图1-1 涡流传感器原理简图 由于传感器反馈回的电感电压是有一定频率(载波频率)的调幅信号,需检波后,才能得到间隙随时间变化的电压波形。即根据以上原理所述,为实现电涡流位移测量,必须有一个专用的测量路线。这一测量路线(称之为前置器)应包括具有一定频率的稳定的震荡器和一个检波电路等。涡流传感器加上一测量线路(前置器),如框图1-2所示:从前置器输出的电压Vd是正比于间隙d的电压,它可分两部分:一为直流电压Vde,对应于平均间隙(或初始间隙),一为交流电压Vac,对应于振动间隙。

反应堆保护系统(RPR)

186 §1.6.4 反应堆保护系统(RPR ) 一、 系统功能 反应堆保护系统(RPR )是指由所有电器件、机械器件和线路(从传感器一直到执行机构的输入 端)组成的产生保护信号的系统,它必须满足以下要求: (1) 能自动触发有关的系统(需要时包括停堆系统)动作,以保证发生预计运行事件时,核 电厂的主要参数不超过规定的限值; (2) 能检测事故工况并触发为减轻这些事故工况后果所需的系统动作; (3) 能抑制控制系统的不安全动作。 图(1)示出反应堆保护系统(RPR )在整个反应堆安全系统的位置。 图(1) 反应堆安全系统组成图 RPR 系统与全体保护仪表组件的联系可分为 热工仪表 和核仪表两部分,这些仪表组件从模拟测量 中触发逻辑信号,因此, RPR 系统的上游端与以下主要系统相连: 保护系统 保护执行系统 反应堆安全系统(紧急停堆系统工程安全设施系统)

RPN系统的下游端与给出停堆或保护动作安全命令的传递系统相连,安全命令的种类有:停闭反应堆停闭 反应堆冷却剂泵跳闸 汽机脱扣 保护信号蒸汽管隔离 安全壳隔离状态A,B 安全注射 安全壳喷淋 给水隔离 辅助给水启动 柴油发电机组启动 保护系统的安全作用是: 在下面两种情况下: 1、当控制系统失效而导致产生错误指令时 187

2、在异常的事件情况下,包括故障(incidents)和事故(accidents)状态 保护三大核安全屏障(即燃料包壳、一回路压力边界和安全壳)的完整性,当运行参数达到危及三大屏障完整性的阈值时,紧急停闭反应堆和启动专设安全设施。 二、系统描述 1、系统设计准则 双重二取一 M=A(A+B)(C+D) 三取二 M=A C+AB+BC 四取二 M=AB+AC+AD+BC+BD+CD 图(2) 逻辑符合电路例(断电方式) 188

相关文档
最新文档