四旋翼飞行器的姿态解算小知识点

四旋翼飞行器的姿态解算小知识点
四旋翼飞行器的姿态解算小知识点

1、惯性测量单元IMU(InertialMeasurement Unit)

姿态航向参考系统AHRS(Attitude and Heading Reference System)

地磁角速度重力MARG(Magnetic, Angular Rate, and Gravity)

微机电系统MEMS(Micro Electrical Mechanical Systems)

自由度维数DOF(Dimension Of Freedom)

无人驾驶飞行器UAV(Unmanned Aerial Vehicle)

扩展卡尔曼滤波EKF(Extended Kalman Filter)

无损卡尔曼滤波UKF(Unscented Kalman Filter)

惯性导航系统INS(Inertial Navigation System)

全球导航卫星系统GNSS(Global Navigation Satellite System)

天文导航系统CNS(Celestial Navigation System)

可垂直起降VTOL(Vertical Take-off and Landing)

2、常见的导航系统:惯性导航、天文导航、卫星导航、路标导航、无线电导航、推算导航、组合导航。

3、有两个基本坐标系:“地理”坐标系和“载体”坐标系。”地理”坐标系指的就是地球上的“东北天(ENU)”坐标系,而“载体”坐标系值的就是四轴自己的坐标系。

4、在“地理”坐标系中,重力的值始终是(0,0,1g),地磁的值始终是(0,1,x)。这些值就是由放置在四轴上的传感器测量出来的。

5、“地理”坐标系和“载体”坐标系是两个不同的坐标系,需要转化。转化的方法就是坐标系的转换,目前有三种方式:四元数(q0123)、欧拉角(yaw(Z轴)/ pitch(Y轴)/roll(X 轴)属于其中一种旋转顺序Z-Y-Xà航空次序欧拉角)、方向余弦矩阵(9个系数)。

6、所谓的姿态,就是公式+系数。比如:欧拉角公式和欧拉角的系数(翻滚、倾仰、偏航)

7、姿态的数据来源有5个:重力、地磁、陀螺仪、加速度计、电子罗盘。其中前两个来

自“地理”坐标系,后三个来自“载体”坐标系。

8、导航的基本原则就是保证两个基本坐标系的正确转化,没有误差。只有实现了这个原则,载体才可以在自己的坐标系中完成一系列动作而被转换到地理坐标系中看起来是正确的。为了达到这个目标,需要对两个坐标系进行实时的标定和修正。因为坐标系有三个轴,偏航yaw修正由电子罗盘(基于载体)、地磁(基于地理)对比修正误差补偿得到。倾仰pitch

和翻滚roll上的修正由加速度计(基于载体)、重力(基于地理)对比修正误差得到。在完成了基本原则的基础之后,即保证两个坐标系的正确转化后,利用基于载体上的陀螺仪进行积分运算,得到基于载体坐标系的姿态数据,经过一系列PID控制,给出控制量,完成基

于载体坐标系上的稳定控制后,反应到地理坐标系上的稳定控制,从而达到我们观察到的定高、偏航、翻滚、倾仰等动作。

对于上述论述可以看出,导航姿态从理论上讲只用陀螺仪是可以完成任务的。但是由于陀螺仪在积分过程中会产生误差累计,外加上白噪声、温度偏差等会造成导航姿态的解算随着时

间的流逝而逐渐增加。所以就需要用加速度计在水平面对重力进行比对和补偿,用来修正陀螺仪的垂直误差。但是对于竖直轴上的旋转,加速度计是无能为力的,此时用的是电子罗盘。他也可以测量出水平面内的地磁方向用来修正陀螺仪的水平误差。通过这两个器件的修正补偿,使得陀螺仪更加稳定、可靠的工作。

9、加速度计在地球上测量的是重力加速度,如果载体沿着z轴旋转,加速度计是无法感知他的运动的;类似的,电子罗盘测量的是地球上的磁场方向,如果载体沿着y轴旋转,电子罗盘同样也是无法感知他的运动的。综上所述,加速度计和电子罗盘只能得到2维的角度关系,通过某种方式的融合,可以得到正确的三维姿态信息。

10、在这里要弄清楚一个问题,前面第8条所说的关于地理坐标系和载体坐标系之间的互相转化。这样就有两种转换方向:一是把B系(载体)转换到N系(地理);二是把N 系转到B系。当我们在实际控制当中,我们关心的显然是载体坐标系相对于地理坐标系之间的变化,所以我们通常使用的旋转矩阵是把N系转到B系的矩阵(两者的关系是转置关系)。比如本次在利用加速度计计算姿态误差时,可以利用上一次的四元数姿态在N系中的三个轴的垂直分量转换到B系中垂直分量来算误差。

式中的右边为N系到B系的旋转矩阵的第三列元素(恰好是重力g在B系中的值)

11、在单位时间内的位移被定义为速度,速度有线速度和角速度之分,分别对应两种传感器测量这两种不同的速度:线速度传感器(加速度计)、角速度传感器(陀螺仪)。所以,陀螺仪是用来测量角速度的,用于坐标系的旋转,也就是导航姿态了。加速度计只能测量线速度,最典型的例子就是重力加速度,如果加上水平坐标系上的加速度,形成合力F产生a。考虑一个导弹,他的飞行速度由加速度计来测量而飞行过程中的转体姿态由陀螺仪来测量。

12、当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值,无法直观的观察到三个轴上的加速度分别是多少。为了实现这样一个目的(可以看到每个轴上的真实加速度),我们需要一个旋转矩阵,这个矩阵的作用就是把放置在载体坐标系上的加速度计值转换到参考坐标系中,在参考坐标系中,三个轴上的值始终都是(0,0,1)。所以当我们把加速度计以任意角度固定在空间中时,无论加速度计的三个轴的值是多少,当经过旋转矩阵变换后,在参考坐标戏中输出的值始终都是(0,0,1)-->这表明在参考坐标系中,物体在x和y轴上是没有加速度的,只有在z轴上存在重力加速度。但是这里又存在一个问题,既然z轴的输出是1,就是说存在加速度,物体应该运动起来才对。但是这里物体并没有运动。为什么输出是1呢?这涉及到加速度计的设计问题:加速度计测量加速度

是通过比力来测量,而不是通过加速度。通过想象一个盒子中的小球就就可以明白。加速度计只有在自由落体时,其输出为0。

13、便于记忆的一个例子就是如何从青山到黄家湖。对于一个人来讲,要从青山到黄家湖,必须满足两个要求:1、你必须有张武汉地图,并且知道黄家湖的位置和青山的位置。2、你必须带有方向导航系统,实时更新你目前的朝向。对应到飞行导航上面,黄家湖的位置对应“地理”坐标系,青山的位置对应“载体”坐标系。你的目的就是让这个两个坐标系被正确转化和标定。这部分工作交给加速度计和电子罗盘处理。至于你具体是走过去,骑自行车去,乘公交去还是做出租车过去,对应在飞行导航上面的话,利用的陀螺仪通过积分作用确定自己的动态姿态。

14、单轴融合的最简单的例子:

在这里,K= 控制周期/传感器采样周期。

15、在复数域里面,二维坐标通过对复数的加减乘除运算可以快速方便地表达出来,尤其是旋转。现在考虑三维空间的复数向量的拉伸和旋转,或者更高维度。那么就需要一个复数域坐标系,容易想到的形式就是h=a+bi+cj,事实证明在二维复数域里面简单添加一元j 是无法构成三维复数空间的,实际上需要四个参数才能够构建三维复数空间(两个变量决定轴的方向,一个变量决定旋转角度,一个变量决定伸缩比例),即h=a+bi+cj+dk。这就是四元数的基本表达形式(其中i2=j2=k2=-1)。即用四个变量来表达三维空间的位置坐标,这就是复数域和实数域的不同。但是,这样定义是有前提条件的,即牺牲了乘法的交换律。例如两个四元数hp≠ph。如此一来,就出现了Q8乘法矩阵表。

16、对四元数更进一步分析,发现四元数可以写成一个实数加上一个三维向量的和,即h=d+u(其中d为实数,u为三维向量)。令p=w+v,则

其中,实数乘法和内积具有乘法交换律,但是三维向量的外积不同,有u x v = -v x u。所以,hp-ph就是两个向量外积的两倍。如果两个向量部分外积为0,那么乘法运算就可交换了。

17、对于四元数的乘法pq,就是在四维空间F上一个线性变换,因此必有两个互相垂直的二维不变子空间,分别是(1,0,0,0)和u张成的二维平面(这个平面在四维空间中,我们无法看到全貌,只能看到与我们相交的一条直线,即u)和由u1和u2组成的二维平面(u1和u2是在u的三维空间中找到的三者两两垂直的符合右手定则的一组基,这个平面我们是可以看到的)。所以四元数的乘法的几何意义就是在这两个二维不变子空间中做伸缩旋

转的线性变换。角度。伸缩因子为||p||(从(1,0,0,0)到u旋转,从u1到u2旋转)。如果p乘在右边,第一次旋转与上述方向相同,但是第二次旋转方向则与上述相反。本条所述内容全部发生在四维空间中,记住,四元数无法表示四维空间中的所有拉伸旋转,因为他要求两个不变子空间上的旋转角相同。但是他完全可以表示三维空间中的所有拉伸旋转。如果要讨论三维空间,那么四元数是完全可以胜任的。18、在三维空间用应用四元数乘法做线性变换时,会存在两次旋转,一次从(1,0,0,0)到u的旋转,第二次从u1到u2的旋转。前者旋转发生在四维空间,我们看不到,只看到u这一条交线。但是第二次旋转发生在三维空间,我们是可以看到的。

19、我们来看一下在三维空间中是如何旋转的。给定一个三维向量p(0,x,y,z),这是用四元数来表示的。然后做四维空间中的线性变换RPQ(Q为R的共轭向量,并且R为单位四元数,即N(R)=1),得到的答案就是(0,x’,y’,z’)。其中

R=(cos(theta/2),alpha*sin(theta/2),beta*sin(theta/2),gama*sin(theta/2)),且alpha2+

beta2+gama2=1。这表示:在三维空间中将P向量绕着(alpha,beta, gama)轴逆时针旋转theta 角度,长度不变。之所以为什么是theta/2,是因为在四维空间中实际上只转了theta角度。

20、关于高维空间的知识。低维度事物无法感知在高维度发生的事情和动作。比如我们将一条纸袋旋转对折后首尾相连后在纸带的一面沿着直线一直画线,在二面平面上我们一直以为我们走的是直线,但是在三维上我们却是在走圆,只不过首尾相接,二维无法感知,这是在三维上干的事情。并且低维度的实物只能观察到高维度的实物在低纬度上的投影图像,比如扑克牌人看到的人体模型就是用一张纸纵切我们的人体,比如我们在现实生活中看到的人的外貌其实是四维空间在三维空间上的投影而已。二维空间上看到的直线有可能在三维空间上是一个圆,所以三维空间上看到的直线有可能在思维空间上是一个圆。所以我们在用四元数表达三维空间的时候,看到的实际上是四维空间中的一个切线,我们看到的直线有可能在四维空间是一个圆。

21、球极投影对于从低维到高维的理解是比较好的一种方式。比如地球的地图球极投影。

22、将一个数乘以-1,相当于找到对应与原点的镜像相反数,再乘以-1后又回到了原来的位置。这样的一个-1x-1的过程,相当于把数字转了360度。也就是说-1就意味着将数字

旋转180度。现在定义一个数,只需要旋转90度,即出现。在这里特别注意一下,我们在横坐标上操作的是只具有一维长度的实数,这样定义会出现一个不在横坐标上的数,这样需要扩展维度,如此一来,定义i为旋转90度,对应画出垂直于横坐标的纵坐标,就出现了复平面。既然是二维的平面,就需要两个数来表示坐标,正如我们的实数平面中的x和y 坐标。但是复数不同,复数只需要一个复数就可以表达一个平面位置的拉伸和旋转。

23、四元数p=[w,u](其中w为标量,u为矢量)。描述的是一个旋转轴和一个旋转角度。如果用一个向量乘以一个四元数p,表示的是该向量在这个旋转轴旋转一个特定角度。24、用于表示旋转的方法有很多:Axis/angle、欧拉角、方向余弦矩阵、四元数。相比于其他几种表示方法,四元数具有不存在欧拉角存在的gimbal lock 问题、只需要4个系数而非方向余弦矩阵的9个系数、两个四元数更容易插值、两个四元数相乘表示旋转等优点。方向余弦矩阵系数太多,难以插值。

欧拉角虽然表达简单,但是存在Gimbal lock问题(即可能失去一个自由度)

Axis/angle的问题如同欧拉角。

25、用四元数直接表示旋转是很困难的,所以我们可以采用欧拉角来表示,但是在进行空间旋转的计算和插值时,需要对欧拉角和四元数进行转化,因为直接计算欧拉角会遇到Gimballock问题,而用四维空间中的四元数进行计算没有此类问题,并且插值简单(因为在思维空间中进行插值,就是在三维球形空间中的最短路径问题,个人理解,可能有误)。这就是优缺点的互补:采用欧拉角来表示当前载体的姿态,而在具体计算时将其转化为四元数。

26、该融合方案是将加速度计和地磁计的值经过QUEST算法融合后计算出四元数abcd,然后和陀螺仪的输出(角度速率)经过卡尔曼滤波后给出物体的估计四元数q。其中QUREST算法可以换成高斯算法(需要大量矩阵运算,可能需要DSP)或者梯度下降算法(折衷算法)。

27、

28、这样图从理论上给出了融合的具体依据。图中的中间竖线表示高斯算法,左下角关

于四元数的微分方程很重要,该方程将四元数和角度变化率联系起来构成常系数齐次线性微分方程。两个相加融合后积分后再归一化,即可得到物体的姿态四元数表达式。再经过欧拉角的变换即可转换为我们熟知的Roll,Pitch,Yaw。

29、从一个坐标系到另一个坐标系的转换前面谈到有多种转换方法:欧拉角法、方向余

弦矩阵法、四元数法等。其中欧拉角法的核心思想是:一个坐标系可以用另一个参考坐标系的三次空间旋转来表达。旋转坐标系的方法又有两种:一种是依次旋转三个不同的坐标轴;另一种是相邻两次旋转不同的坐标轴。第一种旋转方法称之为Tait–Bryan angles(可选顺

序有x-y-z, y-z-x, z-x-y,x-z-y, z-y-x, y-x-z);第二种旋转方法称之为Euler angles(可选顺序有z-x-z, x-y-x, y-z-y,z-y-z, x-z-x, y-x-y)。另外还有两个概念,外在旋转(extrinsic rotations)和内在旋转(intrinsic rotations)。我们固定不动的参考坐标系为xyz,需要被旋转的坐标

系为abc。初始状态两个坐标值完全重合,现在的目标是旋转坐标abc到达指定位置。所谓的外在旋转指的是三次旋转中每次旋转的旋转轴都是固定参考系中的xyz轴中的一个轴。例如:Tait–Bryan angles的xyz顺序,那么在旋转abc的时候,每次旋转把abc坐标系围绕固定参考系xyz中的某个轴旋转;而内在旋转指的是在旋转abc的时候,每次旋转围绕的

的轴是上一次abc旋转后的某个轴。打个比方,就好比数学中的数列问题,题目一般给出

的是n项和n-1项的关系表达式,n项的值是根据前一项推导出来的,建立在前一次的值之上,而通项公式则是可以直接通过n的表达式计算任意第n项的值,比如计算第10项的值直接通过n的表达式就可以计算出来,而不需要通过计算第9项、第8项…直到第一项后

再反推。外在旋转好比通项公式,每次旋转都是通过固定的参考系xyz旋转而来,与旋转过

程中的abc状态无关。而内在旋转则需要根据上次旋转后转轴,在这个转轴的基础上再旋转,所以旋转轴是变动的,好比数列中的n项和n-1项的递推关系。关于内在旋转和外在旋转的关系,如果将其中一种旋转的第一次旋转和第三次旋转互换位置,那么他们就是等价的。

上图为内在旋转。(联想数列公式的n项和n-1项关系)

A rotation represented by Euler angles (α, β, γ) =(?60°, 30°, 45°), using z-x’-z″intrinsic rotations

上图为外在旋转。(联想数列公式的通项公式)

The same rotation represented by (γ, β, α) = (45°, 30°, ?60°), usingz-x-z extrinsic rotations 可以看到最终的坐标系姿态相同。

最后关于Tait–Bryan angles,由于是在三个参考坐标系xyz上的旋转,所以刚好可以利用这个性质用来导航,就形成了roll、pitch、yaw等概念。但是这是一种外在旋转,我们画图经常利用的是内在旋转(因为便于记忆,好画),所以就需要利用内在旋转和外在旋转的关系:互换第一次旋转和第三次旋转的位置。刚才已经说明。并且在一些参考文献(James, D.,Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors)中会涉

及到一些欧拉角转换的图解实例,如果出现Tait–Bryan angle,比如顺序为1-2-3,但是在图解时使用的是内在旋转,此时真正的旋转顺序是3-2-1,即替换1和3的位置。特别注意!!!

30、

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼直升机的动力学原理

冯如杯论文 《四旋翼飞行器的设计与控制》 院(系)名称机械工程及自动化学院 作者姓名薛骋豪 学号35071422 指导教师梁建宏 2008年3月22日

四旋翼飞行器的设计与控制 薛骋豪 摘要 四旋翼直升机,其主旋翼分成前后与左右两组,旋转时方向相反,因此与一般直升机最主要的不同点为四旋翼直升机不需要用尾旋翼来平衡机体。因为四旋翼直升机为不稳定系统,因此需利用旋转专用的感测器:陀螺仪来感知机身的平衡程度并将讯号传送至微控制器,再通过微控制器内部程序的运算产生控制信号来控制机体上四个旋翼的转速,以维持整个机身的平衡促使四旋翼直升机能顺利飞行。 关键词:四旋翼、VTOL(垂直起降)、矩阵控制、 Abstract Quadrotor, its main rotor divides into with two about groups from beginning to end, in opposite direction while rotating, so Quadrotor and does not need to fasten the wing and having the balance organism for four with the end with the main difference of general helicopter. Whether four fasten wing helicopter stable system, need to utilize and rotate the special-purpose detecting device. The gyroscope comes to perceive balancing the degree and conveying the signal to the little controller of the fuselage, and then produce the control signal to control four rotational speed of fastenning the wings on the organism through the operation of the procedure within the little controller, impel four to fly smoothly while Quadrotor for the balance of maintaining the whole fuselage. Key words: Quadrotor、VTOL(Vertical Take-Off and Landing)、matrix control

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

四旋翼飞机概要

功能介绍:利用小型四旋翼飞机对灾害现场进行勘测,其中四旋翼上添加摄像头对现场进行勘测,从而了解现场状况。 设计思路:小型四旋翼飞机座位各类传感器搭载平台,根据现场实际情况通过控制四旋翼飞机飞行姿态,从而达到对复杂环境的监测。 四旋翼飞行器结构和原理: 1:结构形式 旋翼对称分布在机体的前后,左右四个方向,四个旋翼处于同一高度平面,四个旋翼的结构和半径相同,四个电机对称的安装在飞行器的支架端,支架中间安放飞行控制计算机和外部设备。 四旋翼飞行器一般是由四个可以独立控制转速的外转子直流无刷电机驱动的螺旋桨提供全部动力的飞行运动装置,四个固定迎角的螺旋桨分别安装在两个十字相交的刚性碳素杆的两端。对于绝大多数四旋翼飞行器来讲,飞行器的结构是关于两根碳素杆的交点对称的,并且两个相邻的螺旋桨旋转方向相反;正是由于这种独特结构,使四旋翼飞行器抵消了飞机的陀螺效应。 结构如下 2.工作原理 通过调节四个电机转速来改变旋翼转速,实现升力的变化,进而控制飞行器的姿态和位置。四旋翼是一种欠驱动系统,是一种六自由度的垂直升降机,四个输入力,六个状态输出。 垂直飞行控制:控制飞机的爬升,下降和悬停。图中蓝色弧线箭头方向表示螺旋桨旋转的方向,以下同。当四旋翼处于水平位置时,在垂直方向上,惯性坐标系同机体坐标系重合。同时增加或减小四个旋翼的螺旋桨转速,四个旋翼产生的升力使得机体上升或下降,

从而实现爬升和下降。悬停时,保持四个旋翼的螺旋桨转速相等,并且保证产生的合推力与重力相平衡,使四旋翼在某一高度处于相对静止状态,各姿态角为零。垂直飞行控制的关键是要稳定四个旋翼的螺旋桨转速使其变化一致 横滚控制:如图所示,通过增加左边旋翼螺旋桨转速,使拉力增大,相应减小右边旋翼螺旋桨转速,使拉力减小,同时保持其它两个旋翼螺旋桨转速不变。这样由于存在拉力差,机身会产生侧向倾斜,从而使旋翼拉力产生水平分量,使机体向右运动,当2,4转速相等时,可控制四旋翼飞行器作侧向平飞运动。 俯仰控制:在保持左右两个旋翼螺旋桨转速不变的情况下,减少前面旋翼螺旋桨的转速,并相应增加前面旋翼螺旋桨的转速,使得前后两个旋翼存在拉力差,从而引起机身的前后倾斜,使旋翼拉力产生与横滚控制中水平方向正交的水平分量,使机体向前运动。类似的,当1,3转速相同时可控制四旋翼飞行器作纵向平飞运动。 偏航控制:四旋翼飞行器为了克服反扭矩影响,四个旋翼螺旋桨中的两个逆时针旋转,两个顺时针旋转,对角线上两个螺旋桨上的转动方向相同。反扭矩大小与旋翼螺旋桨转速有关,四个旋翼螺旋桨转速不完全相同时,不平衡的反扭矩会引起机体的转动。因此可以设计四旋翼飞行器的偏航控制,即同时提升一对同方向旋转的旋翼螺旋桨转速并且降低另一对相反方向旋转的旋翼螺旋桨转速,并保证转速增加的旋翼螺旋桨转动方向与四旋翼飞行器机身的转动方向相反。 建立系统动力学模型:

四旋翼飞行器智能控制(A题)

2016年吉林省大学生电子设计竞赛 参赛注意事项 (1)2016年8月31日8:00竞赛正式开始。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)2016年9月3日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 四旋翼飞行器智能控制(A) 一、任务 设计并制作一个四旋翼飞行器控制系统,能够按照相应设定要求,实现四旋翼飞行器的自主飞行(为安全起见,要在飞行器底部系上一安全绳)。 二、要求 1.基本要求 (1)自主定点悬停 在地面上设置一个标志点,飞行器在20cm高度上自主定点悬停时间不低于20秒;悬停期间,飞行器中心点横向偏离标志点位移不超过10cm(即要求飞行器上的垂直激光器光点落在以地面标志点为圆心,半径为10cm的圆内),示意图如图1所示。 图1 自主定点悬停示意图

(2)自主定点、定高悬停 如图2所示,第一步从地面标志点飞到离地高20cm 处,稳定悬停10s ;第二步从20cm 处自主提升到离地高60cm 处,稳定悬停10s ;第三步从离地60cm 处自主下降到离地高40cm 处,稳定悬停10s 。悬停期间,飞行器横向偏离地面标志点位移不超过10cm 。高度偏差在5cm 以内。 图2 自主定点、定高悬停示意图 (3)跟踪飞行 如图3所示,由地面A 点起飞,跟随地面标志(标志可移动)或者自主飞至距离A 点2m 处的任意地面B 点降落,降落点(飞行器中心点)距离B 点偏差小于15cm ,完成时间小于30s 。 15cm 图3 跟踪飞行示意图 2.发挥部分 (1)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(1)的内容; (2)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(2)的内容;

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四旋翼飞行器基本原理

四旋翼飞行器无刷直流电机调速系统的设计 孟磊,蒋宏,罗俊,钟疏桐 武汉理工大学自动化学院、武汉理工大学信息工程学院 摘要,关键字:略 近年来,无人机的研究和应用广泛受到各个方面的重视。四旋翼飞行器作为无人机的一种,能够垂直起落、空中悬停、可适用于各种飞行速度与飞行剖面,具有灵活度高、安全性好的特点,适用于警务监控、新闻摄影、火场指挥、交通管理、地质灾害调查、管线巡航等领域实现空中时时移动监控。 四旋翼飞行器的动力来源是无刷直流电机,因此针对该型无刷直流电机的调速系统对飞行器的性能起着决定性的作用。为了提高四旋翼飞行器的性能,本文设计制作了飞行试验平台,完成了直流无刷电机无感调速系统的硬件、软件设计。通过实验证明该系统的设计是可行的。 四旋翼飞行器平台结构 四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。结构图如下: 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。4个无刷直流电机调速系统通过I2C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态,系统采用12V电池供电。控制系统结构图如下:

无刷直流电机调速系统 无刷直流电动机既具有运行效率高、调速性能好,同时又具有交流电动机结构简单、运行可靠、维护方便的优点,是电机主要发展方向之一,现已成功运用与军事、航空、计算机数控机床、机器人、电动自行车等多个领域。在该四旋翼飞行器上使用了新西达2217外转子式无刷直流电机,其结构为12绕组7对磁极,典型KV值为1400. 通常无刷直流电机的控制方式分为有位置传感器控制方式和无位置传感器控制方式。有位置传感器控制方式通过再定子上安装电磁式、光电式或者磁敏式位置传感器来检测转子的位置,为驱动电路提供转向信息。无位置传感器的控制方式有很多,包括磁链计算法‘反电动势法、状态观测器法、电感法等。在各种无位置传感器控制方法中,反电动势法是目前技术最为成熟的、应用最为广泛的一种位置检测方法。本系统采用的饭店董事过零检测法是反电动势法中的一种,通过检测各相绕组反电动势的过零点来判断转子的位置。根据无刷直流电机的特性,电机的最佳转向时刻是想反电动势过零点延迟30电角度的时刻,而该延迟的电角度对应的时间可以有两次过零点时间间隔计算得到。 无刷直流电机调速系统硬件设计 该无刷直流电机调速系统有三相全桥驱动电路、反电势过零电路、电流电压检测电路组成电机驱动器。使用一片ATmega8单片机作为控制器,该单片机内部集成了8kB的flash,最多具有23个可编程的I/O口,输出时为推挽结构输出,驱动能力较强。片上集成了AD 转换器、模拟比较器、通用定时器、可编程计数器等资源。 三相全桥驱动电路利用功率型MOS管作为开关器件,选用P型MOS管FD6637与N型MOS管FD6635搭配使用,设计容量为允许通过的最大电流为30A。FD6637的开关利用三极管9013进行驱动、FD6635的开关直接用单片机的I/O口进行驱动。电路如图3所示。通过R17、R19、R25来减少下管FDD6635的栅极充电电流峰值,防止震荡并保护MOS管;R16、R23、R24作为下拉电阻,保证下关的正常导通与关断;R2、R5、R8作为上管栅极上拉电阻,阻值选择470Ω,既保证了MOS管的开关速率不降低,同时也防止三极管Ic电流过大。A+、B+、C+提供驱动桥的上桥臂的栅极导通信号,分别通过ATmega8的三个硬件PWM通道驱动,通过改变PWM信号的占空比来实现电机调速;A-、B-、C-提供下桥臂栅极驱动信号,由单片机的I/O口控制,只有导通和关闭两种状态。

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四旋翼飞行器简单原理描述.

四旋翼飞行器相对于常规航模来说,最复杂的就是电子部分。之所以能飞行得很稳定, 全拜电子控制部分的功劳。在常规固定翼飞机上, 陀螺仪并非常用器件,在相对操控难度大点的直机上, 如果不做自动稳定系统, 也只是锁尾才用到陀螺仪。四旋翼飞行器与其不同的地方是必须配备陀螺仪, 这是最基本要求, 不然无法飞行, 更谈不上飞稳了。不但要有, 还得是 3轴向 (X、 Y 、 Z 都得有,这是四旋翼飞行器的机械结构、动力组成特性决定的。在此基础上再辅以 3 轴加速度传感器,这 6个自由度,就组成了飞行姿态稳定的基本部分, 也是关键核心部分 ---惯性导航模块,简称 IMU 。 再说说电调, 四旋翼飞行器有四个桨, 两两相对呈十字交叉结构, 在桨的转向上分正转和反转,这样可抵消模型自身的旋转。每个桨的直径很小,通常是 10寸左右。四个桨转动时的离心力是分散的。不像直机的桨, 只有一个能产生集中的离心力形成陀螺性质的惯性离心力, 保持机身不容易很快的侧翻掉。所以通常用到的舵机控制信号更新频率很低。四旋翼为了能够快速反应,以应对姿态变化引起的飘移,需要高反应速度的电调,常规 PPM 电调的更新速度只有 50Hz 左右,满足不了这种控制所需要的速度,且 PPM 电调 MCU 内置 PID 稳速控制, 能对常规航模提供顺滑的转速变化特性, 用在四旋翼上就不合适了, 四旋翼需要的是快速反应的电机转速变化。用高速专用电调, I2C 总线接口传送控制信号, 可达到每秒几百上千次的电机转速变化, 在四旋翼飞行时, 姿态时刻能够保持稳定。即使受到外力突然冲击,依旧安然无恙。 电调篇 为什么需要电调? 电调的作用就是将飞控板的控制信号, 转变为电流的大小, 以控制电机的转速。因为电机的电流是很大的, 通常每个电机正常工作时, 平均有 3a 左右的电流, 如果没有电调的存在, 飞控板根本无法承受这样大的电流(另外也没驱动无刷电机的功能。

四旋翼飞行器设计

摘要 本设计采用瑞萨R5F100LEA单片机作为主控制器。超声波传感器实时发送飞行高度数据给主控系统,主控制器通过判断、分析、处理产生控制信号进而控制各个电机,使其在不同的飞行高度具有不同的速度,保证了飞行器在某一高度范围内飞行;主控制器读取MPU6050陀螺仪的数据,通过对采集数据的分析,使飞行器做出相应的姿态调整,来保持飞行器能够平稳飞行;激光传感器能够对白色场地上的黑线进行识别,达到循迹的目的。本设计通过对飞行控制系统的总体框架设计,实现了飞行控制系统的硬件设计和软件设计,并对设计中的关键技术问题进行了研究,最终实现了四旋翼飞行器的一键启动自主飞行控制。 关键词:R5F100LEA 传感器姿态控制四旋翼飞行器

1. 四旋翼自主飞行器简介 1.1 结构形式 四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图 1.1 所示。 图1.1 四旋翼飞行器结构形式 1.2 工作原理 传统直升机是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

相关文档
最新文档