环氧树脂增韧改性新方法

环氧树脂增韧改性新方法
环氧树脂增韧改性新方法

环氧树脂增韧改性新方法

石胜伟曹有名(西安交通大学化工学院 710049)

摘要介绍了环氧树脂增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,并对其中的增韧机理作了总结分析。

关键词环氧树脂,增韧,改性

New methods of toughening epoxy resins

Shi Shengwei,Cao Youming

(School of Chemical Engineering,Xi'an Jiaotong University,710049)

Abstract The new methods of toughening epoxy resins,including those of doing thermoplastic resin,thermotropoic liquid crystalline polymer,core-shell latex polymer,forming interpenetrating networks polymer,in-situ polymerization,are introduced,with their mechanisms discussed herein as well.

Key words epoxy resin,toughening,modification

环氧树脂(EP)是一种热固性树脂,因具有优异的粘接性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是中外研究的热门课题。

传统的增韧方法,如用端羧基丁腈橡胶等橡胶弹性体来改性环氧树脂,在基础研究和应用开发方面都取得了较大成果,但是,这种改性的结果常常是冲击强度得到显著提高,而相应固化物的耐热性和模量随之下降,因而往往不尽人意。近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧树脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。本文拟就近年来环氧树脂增韧改性的新方法及其机理作一介绍。

1热塑性树脂增韧环氧树脂

1.1热塑性树脂增韧方法

采用热塑性树脂改性环氧树脂,其研究始于80年代。使用较多的有聚砜醚(PES)、聚砜(PSF)、聚酰亚胺醚(PEI)、聚酮醚(PEK)、聚苯醚(PPO)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。这些热塑性树脂不仅具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性[1]。

起初用PES改性效果不明显,后来实验发现两端带有活性反应基团的PES对环氧树脂改性效果显著,如苯酚、羟基封端的PES可使韧性提高100%[2],另外双氨基封端、双羟基封端的PES也是有效的改性剂[3,4]。环氧基封端的PES由于环氧基体能促进相间

渗透,因而也提高了双酚A环氧树脂(DGEBA)的韧性[5]。PES改性的Ag-80/E-51,Ag-80/E-51的混合体系中两种固化反应有协同效应[6]以二氨基二苯砜(DDS)为固化剂,PES增韧环氧树脂,随固化反应的进行可形成半互穿网络结构,分相后的PES颗粒受到外场力作用产生自身变形(冷拉现象)而吸收了大量能量,使体系韧性提高[7]。

用PSF改性DGEBA,DDS为固化剂,结果显示PSF分子量愈大、所占比重愈大,树脂获得的韧性越大[8,9]。扫描电镜显示,PSF含量增大时,微相结构从典型的微粒分散态转为连续相,同时韧性增强[10]。

Shell公司开发了用热塑性树脂混合物改性的EP,改性剂用的是聚砜(Udel P1700)和聚酰亚胺醚(Ultem 1000)的混合物,改性后的EP用新型芳香二胺固化后,Tg很高,吸水率降低,耐湿热性能有很大改善[11]。

在研究PEI改性环氧树脂中,发现PEI对多官能团的环氧树脂的改性效果显著[12,13],其韧性提高随PEI含量增加呈良好的线性关系[14]。

聚酮醚(PEK)的改性效果也令人满意,几种氨基封端的聚芳基酮醚改性环氧树脂,其韧性提高许多,而几乎不损失模量[15]。

用芳香族聚酯改性环氧树脂也屡见报道,双酚A环氧树脂Epikote 828随改性用的聚酯树脂分子量的增大,基本上破坏韧性值在增大,但分子量大到一定程度反而会下降。聚1,4-丁二醇的分子量为1 000时,制得的PEE聚酯,添加量仅5%就可使Epikote 828体系的伸长率提高50%,拉伸强度提高25%[16]。

1.2热塑性树脂增韧机理

热塑性树脂增韧环氧树脂的机理和橡胶增韧环氧树脂的机理没有实质性差别,一般仍可用孔洞剪切屈服理论或颗粒撕裂吸收能量理论。但是从实验结果看,热塑性树脂增韧环氧树脂时,基体对增韧效果影响较小,而分散相热塑性树脂颗粒对增韧的贡献起着主导作用。孙以实等人提出下述桥联约束效应和裂纹钉锚效应[17]。

(1)桥联约束效应与弹性体不同,热塑性树脂常具有与环氧基体相当的弹性模量和远大于基体的断裂伸长率,这使得桥联在已开裂脆性环氧基体表面的延性热塑性颗粒对裂纹扩展起约束闭合作用。

(2)裂纹钉锚效应颗粒桥联不仅对裂纹前缘的整体推进起约束限制作用,分布的桥联力还对桥联点处的裂纹起钉锚作用,从而使裂纹前缘呈波浪形的弓出状。

2使环氧树脂形成互穿网络聚合物(IPN)

2.1IPN增韧改性方法

国内外对环氧树脂的互穿网络聚合物体系进行了大量的研究,其中包括:环氧树脂-丙烯酸酯体系、环氧树脂-聚氨酯体系、环氧树脂-酚醛树脂体系和环氧树脂-聚苯硫醚体系等[18],增韧效果满意。主要表现在环氧树脂增韧后,不但抗冲击强度提高,而且抗拉强度不降低或略有提高,这是一般增韧技术无法做到的。

于浩等[18]对同步法制造的环氧树脂/聚氨酯(EP/PUR)IPN进行了研究,发现EP/PUR 配比(质量比)在90/10时,IPN体系剪切强度、拉伸强度出现极大值,耐冲击强度在质量比EP/PUR=95/5时最高。并对不同聚合物组成对IPN性能的影响进行了考察,认为双酚A型环氧树脂形成的EP/PUR IPN性能最佳,其热稳定性比EP和PUR都高。台湾大学K.N.Hsieh 等人[19]研究了PUR与EP的接枝互穿网络聚合物,PUR可进入EP的α和β过渡区,当PUR进入α区时,接枝IPN拉伸强度最大,若过量PUR进入α区和β区时,IPNs 的拉伸强度反而下降。

A.Shah等人[20]合成了聚(环氧-氨基甲酸乙酯-丙烯酸)IPN涂层,涂层抗腐蚀性好,拉伸强度和粘结强度很高。而且发现只有环氧当量较低的环氧预聚物形成的IPN性能较好。

闻荻江等[21]用同步法合成聚丙烯酸正丁酯/环氧树脂(PnBA/EP)IPN,与纯环氧树脂

相比,使用不同固化剂,其冲击强度可提高20%~200%,当加入10% PnBA时,其弯曲强度和模量都有所提高,而且挠度增加,IPN试件耐热性能有所下降。固化剂的选择以及PnBA 量的控制是得到最佳IPN性能的影响因素。杨卫疆等人[22]采用优化工艺合成环氧树脂-丙烯酸酯树脂的混合物乳液,IPN有助于材料的玻璃化温度Tg和热分解温度Td的提高。

冯青等人[23]分别用丙烯酸酯封端的聚硫橡胶(Acry-LP)和环氧封端的聚硫橡胶(EP-LP)与双酚A环氧树脂(EP-51)合成互穿网络和共聚网络聚合物,这两种体系都具有低温柔顺性和良好的力学性能。

陈麒等[24]以双官能团环氧树脂和双酚A为聚合单体,制备高分子量苯氧树脂,10%的苯氧树脂加入E-44中,固化试样冲击强度提高63.2%,Tg提高32%。SEM分析,增韧的苯氧树脂连续贯穿于环氧树脂的交联网络中,由于这种串结的结果,导致其体系受到冲击时断裂形变提高,从而使其韧性增加。

2.2IPN增韧机理

IPN是由两种或两种以上交联网状聚合物相互贯穿,缠结形成的聚合物混合物,其特点是一种材料无规则地贯穿到另一种材料中去,起着“强迫包容”和“协同效应”的作用[6]。

影响IPN性能的主要因素有网络的互穿程度、组分比、交联程度,全互穿IPN明显高于半互穿IPN的性能[1]。IPN的橡胶相组分过大,抗拉强度、抗剪切强度、抗弯曲强度都急剧降低,增韧效果也差。适当的交联都可获得最佳力学性能,不但韧性大幅度提高,而且抗张强度也有所提高。但交联含量过高,对提高固化物韧性不利,因为网络链太短,不利于外力作用下的应变,吸收冲击能减小。

3热致性液晶聚合物增韧环氧树脂

3.1热致性液晶聚合物增韧改性方法

液晶聚合物(LCP)中都含有大量的刚性介晶单元和一定量的柔性间隔段,其结构特点决定了它的优异性能,它比一般聚合物具有更高的物理力学性能和耐热性[1]。它的拉伸强度可达200 MPa以上,比PET、PC高3倍,比PE高6倍,其模量达20 GPa以上,比PE 高20倍,比PC、PEK高8.5倍。LCP还有另一个重要特点,它在加工过程中受到剪切力作用具有形成纤维状结构的特性,因而能产生高度自增强作用。因此,当用热致性液晶聚合物(TLCP)和环氧树脂进行共混改性时,在提高韧性的同时,弯曲模量保持不变,Tg还略有升高,固化物为两相结构。LCP以原纤形式分散于环氧基体中,在应力作用下提高了材料的韧性。LCP和热塑性工程塑料相比,用量仅为其25%~30%,却可达到同样的增韧效果。

梁伟荣等[25]采用热致性液晶聚合物KU9221增韧E-51,E-51树脂中加入2%~4%的KU 9221时,其固化物冲击强度提高两倍左右,并可使弹性模量和耐热性提高。

Garfagna等人[26]用2%的TLCP来改性环氧树脂,其断裂韧性提高20%,并且在一定范围内随着TLCP的含量增加,材料韧性急剧增加。

姚康德等[11]发现,环氧树脂中含有少量LCP如聚(对羟基苯甲酸酯-共-对苯二甲酸乙二醇酯)作为分散相,可大幅度改善固化物Tg附近的伸长率。此时LCP在固化物中呈微相分散,类似于分子复合材料的增强效应。

利用液晶环氧树脂对普通环氧树脂进行改性也是实现环氧树脂高性能化的一个可行途径[27],具有重要的应用价值。李孝波等[28]先以苯酚和环氧氯丙烷为主要原料制得液晶单官能团环氧树脂(MEP),在120℃下使之与E-44环氧树脂、二苯砜二胺反应制得侧链液晶环氧树脂(SCEP),在150℃/4 h+200℃/8 h下即可制得其固化物。MEP、SCEP及其固化物均有较好的液晶特征,SCEP有较高的强度和韧性。

随着研究的进展,热致性液晶高聚物增韧环氧树脂作为一种新的技术,有着广阔的前

景和内在潜力。

3.2热致性液晶聚合物增韧机理

TLCP增韧环氧树脂的机理主要是裂纹钉锚作用机制[29]。TLCP作为第二相(刚性与基体接近),本身又有一定的韧性和较高的断裂伸长率,第二相体积分数适当,就可以发生裂纹钉锚增韧作用,即TLCP颗粒对裂纹扩展具有约束闭合作用,它横架在断裂面上,从而阻止裂纹进一步扩展,像一座桥将裂纹的两边联接起来,同时,桥联力还使两者连接处的裂纹起钉锚作用。少量TLCP原纤存在可以阻止裂缝,提高脆性基体的韧性,而不降低材料的耐热性和刚度。

4刚性高分子改性环氧树脂

采用原位聚合技术使初生态刚性高分子均匀分散于刚性树脂基体中,得到准分子水平上的复合增韧是探索改性脆性高聚物得到高强度和高韧性聚合物的一种新途径。张影等[30]研究了原位聚合聚对苯甲酰胺(PNM)对环氧树脂和粒子填充环氧树脂的改性作用,加入5%左右的PNM,环氧树脂拉伸强度比纯环氧树脂的50.91 MPa和粒子填充(30 phr)环氧树脂的69.21 MPa,分别提高到94.25 MPa和91.85 MPa;断裂韧性从纯环氧树脂的0.83 MPa*m12)和粒子填充环氧树脂的0.72 MPa*m1)/(2),分别提高到1.86 MPa*m1)/(2)和1.98 MPa*m1)/(2),而其它性能也有不同程度的改善。关于液晶聚合物原位聚合改性环氧树脂的研究也有报道。

原位增韧是通过两阶段反应,使在交联后形成分子量呈双峰分布的热固性树脂交联网络,这种方法制得树脂韧性可以是常规树脂韧性的2~10倍。其增韧机理可能是由于形成的固化物交联网的不均一性,从而形成了微观上的非均匀连续结构来实现的[29]。这种结构从力学上讲有利于材料产生塑性变形,所以具有较好的韧性。

5核壳结构聚合物增韧环氧树脂

核壳结构聚合物(Core-shell Latex Polymer,CSLP)是指由两种或两种以上单体通过乳液聚合而获得一类聚合物复合粒子。粒子的内部和外部分别富集不同成分,显示出特殊的双层或者多层结构,核与壳分别具有不同功能,通过控制粒子尺寸及改变CSLP组成,改性环氧树脂,可以获得显著增韧效果。

与传统橡胶增韧方法相比,不容性的CSLP与环氧树脂共混,在取得好的效果同时,Tg基本保持不变,而利用相容性的CSLP则可获得更好的结果[31]。

用核壳聚合物改性环氧树脂粘合剂能减少内应力,提高粘结强度和冲击性。张明耀等[32]研究PnBA/PMMA核壳结构增韧剂对环氧树脂的力学性能的影响,冲击实验结果表明,加入30份增韧剂后,环氧树脂的冲击强度有显著提高,断裂方式由脆性断裂转为韧性断裂。对于酸酐固化体系,冲击强度提高约32倍,超过ABS等工程塑料,对于Moca固化体系,冲击强度提高近7倍。中村吉仲等[33]对比了就地聚合PBA-P(BA-IG)0.2~1 μm的橡胶粒子分散体以及用晶种乳液聚合制成的PBA/PMMA,P(BA-IG)/P(MMA-IG)橡胶粒子分散体分别在环氧树脂体系中的内应力减低效果。发现前者固化产物Tg下降了,而后者Tg完全没有影响。SEM观察,前者形成了IPN结构,而后者仅仅是粒子界面附近形成IPN,同时后者制成的粘合剂的性能有了明显的提高。就地聚合获得的第一代丙烯酸橡胶粒子其核壳结构基本上是均一的,它们作为结构胶,其剥离强度、冲击性能还不很好。晶种核壳聚丙烯酸橡胶粒子是第二代产品,其薄壳部分具有絮凝性,核部分担负着增强韧性作用。研究中发现,后者环氧树脂固化后核部分的丙烯酸橡胶粒子呈微分散型,因此抗冲击性、剥离强度较高。

6结束语

随着电气、电子材料及其复合材料的飞速发展,对环氧树脂的特性要求也越来越高,环氧树脂的改性研究使环氧树脂在性能优化、应用方面产生了质的飞跃,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。这种发展趋势使得对其增韧机理的研究日益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。

参考文献

1封朴.聚合物合金.上海:同济大学出版社,1997

2Hedrick J H,Yilgor I.Polym Bull,1985,13:201

3Hedrick J L,Lewis D A.Polym Prep Am Chem Soc Div Polym Chem,1988,29:363

4Fu Z,Sun Y.Polym Prep Am Chem Soc Div Polym Chem,1985,26:263

5Yamanaka K,Inoue T.Polymer,1989,30:662

6吴金坤,黄郁琴.化工新型材料,1997(10):3

7梁伟荣等.热固性树脂,1997,4:12

8Cecere J A,McGrath J E.Polym Prepr,1986,27:299

9Hedrick J L,Jurek M J.Polym Prepr,1985,26:298

10Min B G,Hodgkin J H.J Appl Polym Sci,1993,50:1065

11姚康德等.热固性树脂,1992,3:52

12Bauer R S,Stenzenberger H D.34th Natl SAMPE Symp,1989,34:899

13Gibert A H,Buclnall C B.Madromal Chem Macromol Symp,1991,45:289

14Bucknall G B,Gibert A H.Polymer,1989,30:213

15Bennett G S,Farris R J.Polymer,1991,32:1663

16王德中.热固性树脂,1992,4:55

17孙以实等.热固性树脂,1990,3:1

18于浩等.热固性树脂,1996,1:13;2:8;3:9

19Hsieh K H,et al.J Polym Sci,Part B:Polymer Physics,1990,28(5):623

20Shah A,Ryntz R A,et al.Journal of Coatings Technology,1990,62(785):63

21闻荻江等.热固性树脂,1994,1:17

22杨卫疆等.高分子材料科学与工程,1998,14(1):24

23冯青等.功能高分子学报,1996,9(3):371

24陈麒等.功能高分子学报,1998,11(2):188

25梁伟荣等.玻璃钢复合材料,1997,4:1

26Garfagna C,et al.ANTEC,1004-1007,1991

27刘伟昌等.高分子通报,1998,3:59

28李孝波等.热固性树脂,1997,2:13

29陈平等.热固性树脂,1996,2:42

30张影等.高分子材料科学与工程,1998,14(5):136

31邱宏斌等.高分子通报,1997,3:179

32张明耀等.应用化学,1996,13(1):113

33王德中.热固性树脂,1998,3:43

环氧树脂增韧改性新技术

Vol 134No 18 ?14?化工新型材料 N EW CH EMICAL MA TERIAL S 第34卷第8期2006年8月 作者简介:宣兆龙,男,博士,从事兵器防护材料与技术的教学与科研工作,已发表论文40余篇。 环氧树脂增韧改性新技术 宣兆龙 易建政 (军械工程学院三系,石家庄050003) 摘 要 综述了环氧树脂的增韧改性研究,着重讨论了热塑性树脂、热致液晶聚合物和互穿网络结构等环氧树脂增韧改性新技术。 关键词 环氧树脂,增韧,改性 N e w technology of modif ication toughening epoxy resin Xuan Zhaolong Yi Jianzheng (Depart ment 3of Ordnance Engineering College ,Shijiazhuang 050003) Abstract Study of modification methods and mechanism for epoxy toughened is reviewed with 46references. More effective technologies ,such as toughening modification with thermoplastics ,thermotropic liquid crystalline poly 2mer (TL CP )and interpenetrating polymer network (IPN )are also discussed in briefly. K ey w ords epoxy resin ,toughening ,modification 环氧树脂(EP )具有高强度和优良的粘接性能。但因其固化物质脆,易产生裂纹等缺陷,在材料的耐 疲劳性能和抗横向开裂性能方面难以满足工程技术的要求,使其应用受到了一定的限制。为此国内外学者对EP 进行了大量的改性研究工作,以改善其韧性。 目前EP 的增韧途径主要有3种:①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于EP 网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。本文主要综述了热塑性树脂、液晶聚合物、互穿聚合物网络改性EP 的研究进展。 1 热塑性树脂增韧EP 在EP 基体中加入一定量的高性能热塑性树脂,不仅能改进EP 的韧性,而且不降低其刚度和耐热性。热塑性树脂增韧EP 一般采用剪切屈服理论或颗粒撕裂吸收能量及分散相颗粒引发裂纹钉铆机 理来解释[1,2]。用于增韧EP 的热塑性树脂主要有聚酰亚胺(PI )、聚醚酰亚胺(PEI )、聚醚砜(PES )、聚砜(PSF )等。 1.1 聚酰亚胺(PI)增韧EP EP 与PI 共混是通过PI 与环氧预聚体混合然 后反应而得到的。这类树脂最初制备时是均相的,在一定转化率时树脂发生液2液相分离,从而在最终固化的材料内部产生一系列形态结构,这些主要依赖于热塑性塑料的原始质量和临界组成的对比关系[3,4]。 Biolley 等[5]用具有相当高T g 的二苯酮四酸二 酐(B TDA )和4,4’2(9氢292亚芴基)二苯胺(FBPA )合成的可溶性PI 改性四缩水甘油基二苯甲烷2二氨基二苯砜EP 体系(T GDDM /DDS/PEI )。固化后的树脂用扫描电镜观察没有发现相分离,并且动态力学分析表明共混组分间能完全相容。Li 等[6]通过用4种不同的二氢化物和2种不同二元胺[1,32二(32氨基苯氧基)苯,即A PB ;2,2’2(42(42氨基苯氧基)苯基)丙烷,即BA PP ]合成一系列有机溶性的芳香族聚亚胺酯来增韧EP (Epon828),DSC 发现

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法 摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。 关键词:环氧树脂增韧改性 1环氧树脂的增韧改性 1.1橡胶弹性体改性 利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。 近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。 韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。 范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液

浅谈环氧树脂胶粘剂的发展前景

浅谈环氧树脂胶粘剂的发展前景 摘要:作为一种具有良好粘结力及耐腐蚀性能的高分子材料,环氧树脂以其优良的机械强度和绝缘性能领先于其他热固性高分子材料,成为现阶段漆类产品发展的趋势和代表,并在国民经济产业构成中起到了相当重要的作用,其技术水平及推广应用的范围已成为衡量国家工业化水平的一个重要指标。本文从对环氧树脂特性与用途的分析入手,综述了国内外环氧树脂胶粘剂消费市场及其应用的现状,并重点对环氧树脂胶粘剂的技术应用进展情况加以阐述和说明关键词:环氧树脂胶粘剂应用进展 一、引言 环氧树脂是指分子中含有环氧基团的高分子化合物的统称,在各类环氧树脂中,产量最大,应用最广的是由环氧氯丙烷与二酚基丙烷在碱的作用下缩聚而成的具有线型结构的热塑性的高聚物。作为胶黏剂使用时,一般为低分子量液体环氧树脂,其分子量一般在340-700之间。环氧树脂有极强的粘结力,它对大部分材料如:木材、金属、玻璃、塑料、皮革、陶瓷、纤维等都有良好的粘结性能,只对少数材料如聚苯乙烯、聚氯乙烯等粘结力较差。近年来,环氧树脂总的发展趋势是寻找高耐热性、高强度、高韧性,以及能在低温或其他特殊环境下固化的、操作简便的新颖树脂体系。通常情况下,工程上应用的环氧树脂胶粘剂主要是由基料、稀释剂、固化剂等原料配置而成的,由于其低廉的成本,良好的粘接性能和简便的粘结工艺已在汽车制造、电子电器及航天工业领域得到了广泛的推广和应用。现阶段,随着对环氧树脂特性的深入研究,新工艺、新配方得到了不断的使用,具有高性能的环氧树脂胶粘剂陆续出现。因而对于近年来环氧树脂胶粘剂发展状况及相关技术应用的研究具有非常重要的现实意义。 二、环氧树脂胶粘剂特性与应用分析 环氧树脂具有许多独特的优良性能,主要表现在以下几个方面: 1.良好的加工工艺性; 2.高度的粘结力; 3.收缩性小; 4.稳定性好; 5.具有优良的电绝缘性能; 6.由于结构中含有环氧基、醚键等,同时结构很紧密,所有有良好的机械性能; 7.因含有稳定的苯环及醚键,因而热稳定性也很好; 8.吸水率低,室温下的吸水率在0.5%以下。 由于环氧树脂具有优良的粘结性、绝缘性以及耐化学腐蚀性等优异的特点,所以在许多工业部门,包括造船、化工、电器直至国防、航天飞船等方面都得到极为广泛的应用,它可以作胶粘剂、作层压材料、作浇筑等磨具,并可以用作涂料等,特别是近年来,许多性能优异的新品种相继问世,使环氧树脂的用途越来越广。环氧树脂对金属与金属,金属与非金属等材料都有很强的粘结力,故而用途广泛的胶粘剂,熟称“万能胶”。用它粘合拖拉机及起重机上的吊件可以承受12吨的载荷。由于环氧树脂可以在室温固化,固化后又可经受高低温作用,这就对一些不能经受高温的精密部件的紧固极为适用,光学仪器,蜂巢结构材料等的的胶粘剂已广泛使用环氧树脂。

环氧树脂的改性技术概述

摘要:环氧树脂是一类重要的热固性树脂,具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能。文章介绍了用橡胶弹性体、热塑性树脂、刚性粒子、核壳型结构聚合物等增韧环氧树脂,以及环氧树脂绝缘性、耐湿热性和阻燃性等改进方法。 关键词:环氧树脂;改性技术;增韧技术 中图分类号:TM215文献标识码:A文章编号:1009-2374(2010)06-0022-02 环氧树脂是一类重要的热固性树脂,具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能。由于其收缩率低、易加工成型和成本低廉等优点,在胶粘剂、涂料、电子电气绝缘材料、增强材料及先进复合材料等领域得到广泛应用。环氧树脂固化后交联密度高,存在内应力大、质脆,耐冲击性、耐开裂性和耐湿热性较差等缺点,在很大程度上限制了它在某些高技术领域的应用。近年来,结构粘接材料、封装材料、纤维增强材料、层压板、集成电路等方面要求环氧树脂材料具有更好的综合性能,如韧性好、内部应力低、耐热性、耐水性、耐化学药品性优良等,所以对环氧树脂的改性已成为一个研究热点。 一、环氧树脂的增韧技术 (一)橡胶增韧 橡胶类弹性体增韧EP是较早开始的EP增韧方法,对其技术的研究也较成熟。增韧效果不仅取决于橡胶与EP连接的牢固强度,也与二者的兼容性和分散性以及EP的固化过程有关。目前用于环氧树脂增韧的反应性橡胶及弹性体品种主要有:端羧基丁橡胶(CTBN)、端羟基丁橡胶(HTBN)、端环氧基丁橡胶(ETBN)、聚硫橡胶、液体无端羧基丁橡胶、丁羟异氰酸酯预聚体、端羟基聚丁二烯(HTPB)、聚醚弹性体、聚氨酯弹性体等。 (二)热塑性树脂增韧 热塑性树脂以高分子量或低分子官能齐聚物形式被用来改性环氧体系。由于高性能热塑性聚合物具有韧性好、模量高和耐热性较高等特点,因此用耐热性热塑性聚合物来改性EP,不仅能改进EP的韧性,而且不降低EP的刚度和耐热性。其增韧机理与橡胶增韧相似,但其增韧效果略逊于橡胶增韧。常用的热塑性树脂有聚醚(PES)、亚胺(PEI)、聚醚酮(PEK)、聚苯醚(PPO)等。 (三)有机硅改性 有机硅树脂具有低温柔韧性(Tg为-120℃)、低的表面能、耐热、耐候、憎水、介电强度高等优点,用有机硅改性的环氧树脂可以降低内应力,从而提高它的韧性,并且耐热性也有所提高。在有机硅改性环氧树脂形成的立体空间网络结构中含有硅氧(Si-O)键,其键能(37216kJ/mol)比C-C键的键能(24218kJ/mol)高,因而其耐热性较好,且Si-O键的柔性比C-C键好,这有利于提高固化物的韧性和抗冲击强度;并且有机硅的表面能较环氧树脂低,从而使耐水性和耐油性得到改善。有机硅改性的增韧机理比较复杂,是多种机理共同作用的结果,它能够同时提高环氧树脂的耐热性和韧性,但工艺难度大,韧性提高有限。 (四)核壳聚合物增韧 核壳聚合物是指由两种或两种以上单体通过乳液聚合而获得的一类聚合物复合粒子,它与EP混合,可减少内应力,提高粘接强度和抗冲击性能,改性体系的热变形温度基本不降低。核壳结构橡胶粒子的增韧原理是:橡胶粒子作为应力集中体,既可诱发银纹和剪切带吸收能量,又可终止银纹。 (五)刚性粒子增韧 在刚性粒子与环氧树脂组成的体系中,由于刚性粒子在塑性变形时,拉伸应力能有效地抑制基体树脂裂纹的扩展,同时吸收部分能量,从而起到增韧作用。适当添加刚性二氧化硅、高岭土、玻璃珠和碳酸钙粒子可改善环氧树脂的韧性,提高程度取决于粒子的尺度和形状及体积分数。这里分散的刚性第二相和扩展的裂缝前端相互作用会使断裂能增大,同时也使断裂伸长率和抗冲击性能降低。 (六)纳米粒子增韧 纳米粒子的增韧机理也是“银纹钉锚”机理和“银纹剪切带”机理。和其它相同机理的增韧技术相比,其优势在于纳米粒子在界面上与环氧基团形成远大于范德华力的作用力,形成非常理想的界面,从而起到更好地引发微裂纹、吸收能量的作用。目前研究较多的EP/粘土纳米复合材料是将EP插入到粘土层间制备插层型、剥离型及兼具两种结构的纳米复合材料。EP基纳米复合材料与EP基复合材料相比,其强度、韧性、刚性等性能均有大幅度提高。 (七)膨胀型单体增韧 膨胀单体和膨胀聚合反应的特点是在聚合过程中能产生体积膨胀。这种体积膨胀能有效地消除共聚物内部的残余应力和缺陷,使得抗冲击韧性得到很大改善。因此,可用于EP的增韧改性。 (八)树枝型分子增韧 树枝形分子是近十多年才出现的一种新型高分子材料,它是一种以小分子为生长点,通过逐步控制重复反应得到的一系列分子质量不断增长的结构类似的化合物。通常将每一步反应所得的化合物用代数来表示,如0.5代、1.0代、1.5代、2.0代等。其化学结构随着代数的增长,可以向四周辐射增长,最终形成具 浅谈环氧树脂的改性技术 刘鸿雁 (河北建材职业技术学院,河北秦皇岛066004) 22 --

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.360docs.net/doc/839212302.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

脂环族环氧树脂的特性及用途

脂环族环氧树脂的特性及用途 因为脂环族环氧树脂分子结构中的环氧基不是来自环氧丙烷,环氧基直接连接在脂环上,所以,脂环族环氧树脂与双酚A型环氧树脂相比较,具有以下特点:1.热稳定性良好:由于脂环族环氧树脂的环氧基直接连接在脂环上,能形成紧密的刚性分子结构,固化后交联密度增大,因而热变形温度比较高,马丁耐热可以达到190℃以上,热分解温度大于360℃。固化收缩率小,拉伸强度高。但是由于环氧当量小,交联密度高,固化物较脆,韧性差。 2.耐侯性好:脂环族环氧树脂的分子结构中不含苯环,具有良好的耐侯性能和抗紫外辐射。 3.电绝缘性能优异:由于合成的过程中不含氯、钠等离子,因此脂环族环氧树脂都具有良好的介电性能,无论是从比电阻还是从介电损耗角正切值看,均较双酚A型环氧树脂为优。 4.工艺性能好:脂环族环氧树脂的粘度都比较小,因此,在浇注和压制制件时作业较方便,这一点,尤其是对大部件的制件加工时,更显得重要。另外,由于脂环族环氧树脂具有黏度小的特点.还可以将它作为良好的环氧树脂活性稀释刑。 5.安全性高:脂环族环氧树脂对有机酸和酸酐的反应活性比对胺类的反应活性大.因此,在酸性固化剂中便能充分固化。这样一来就避免了使用毒性大、挥发性大的胺类固化则,对操作人员比较安全。 脂环族环氧树脂主要用途: 1. 稀释剂 可用作活性稀释剂的脂环族环氧化合物有环氧-269、206、201及221。其中,环氧269、206都是高沸点、低粘度的液体,即使是在-60℃仍保持液体状态,是环氧树脂很好的稀释剂。且随着用量的增加,环氧体系粘度显著下降,但热变形温度几乎是恒定的,这是一般环氧稀释剂不能与之相比的。各种稀释剂对固化物性能的影响如表7所示。环氧269是一种双环氧基的活性稀释剂,固化后交联度高,并保持原有环状结构,所以耐热温度高、机械性能好。 2. 绝绕灌封材料 由脂环族环氧化合物制造的有机绝缘体代替了户外高压装置中的陶瓷制品。与陶瓷相比,它具有重量轻、体积小,抗冲击性好等优点,而且可以较经济地制成大小、形状各异的产品。由于它具有优良的电气特性和颜色稳定性,可用作发光二极管的封装材料。加入多元醇增塑剂后,在变压器、高压线圈以及各种小型电子元件的灌封方面应用广泛,这类产品可以同时满足热冲击电阻良好、热变形温度高、临界电气特性优良的要求。 3. 复合材料 脂环族环氧化合物的耐热性、力学性能及耐候性好,尤其是黏度小,适用期长,

环氧树脂E51改性增韧研究

龙源期刊网 https://www.360docs.net/doc/839212302.html, 环氧树脂E51改性增韧研究 作者:袁涛 来源:《山东工业技术》2017年第05期 摘要:以双酚改性环氧树脂E51(EP),达到改性增韧的目的。进行了一系列实验,对 比了用单一环氧树脂、混合树脂与自制混合胺,在相同和不同环氧当量下所得固化物的粘结强度、韧性和硬度。实验表明,混合树脂固化产物硬度96.6HSD,拉伸强度16.053MP,断裂拉力5114.97N,变形量5.63mm,韧性增加16%。 关键词:环氧树脂;增韧;韧性;硬度;粘结强度 DOI:10.16640/https://www.360docs.net/doc/839212302.html,ki.37-1222/t.2017.05.160 0 引言 E51型环氧树脂粘度低,环氧值高,固化效果,不足之处在于脆性大,韧性低;E20和 E12型环氧树脂粘结度高,韧性好的优点,不足之处在于硬度低。把三种环氧树脂按比例混合,新得到的混合树脂既有E51树脂活性高,固化效果好及高硬度的特点,又有E20和E12 中长分子链韧性好的优点,与自制混胺固化后,提高固化物性能,克服了使用单一环氧树脂固化后综合性能差的弊端。 1 实验部分 (1)主要试剂。环氧树脂E12、E20、E51,聚醚胺、聚醚二胺、固化剂促进剂,江苏三木化工;二甲苯,上海泰正化工有限公司;正丁醇,扬州市华香化工有限公司。 (2)主要仪器。环氧树脂高速分散机,上海机电设备有限公司;电子秤,上海信衡电子有限公司,深圳盛美仪器有限公司; UTM4000系列微机控制电子万能试验机;热重差热分析仪EXSTAR6300,精工盈司电子科技(上海)有限公司。 (3)实验测试。1)配制溶剂:在二甲苯中加入正丁醇,搅拌均匀。2)配制树脂:按比例在溶剂中加入环氧树脂E12、E20,高速搅拌二十分钟,待树脂溶解后加入环氧树脂E51,高速搅拌混合均匀,按三种环氧树脂的不同比例制作4种混合液,编号为树脂A、B、C、D。配制三种单一环氧树脂的溶液。3)样品测试:以环氧当量:胺当量=1:0.6、1:0.7、1: 0.8、1:0.9分别将树脂与固化剂混合,在室温下实干后,涂抹于马口铁片上进行弯折观察, 粘结20mm圆柱用拉力试验机进行测试,用邵氏硬度计进行硬度测量,用差热分析仪进行差热分析。 2 结果与讨论

缩水甘油封端聚氨酯的合成及其改性环氧树脂的粘合性能

第18卷第3期 青 岛 化 工 学 院 学 报 Journal of Q ingdao Institute of Chem ical T echno logy V o l.18 N o.3 1997缩水甘油封端聚氨酯的合成及其 改性环氧树脂的粘合性能 α姚 微 牟润强 邢 政 马宏利 于艳君 张志俊 (青岛化工学院橡胶新技术研究所,青岛266042) 摘 要:详细介绍了用缩水甘油将端异氰酸酯预聚物转变为环氧封端聚氨 酯的合成方法,考察了温度对反应速度的影响,并利用付利叶变换红外光谱仪 快速跟踪技术,证实了反应主要发生在预聚物的异氰酸酯基与缩水甘油的羟基 上;在80℃反应前期环氧峰略有降低,说明有少量环氧基发生反应。环氧封端聚 氨酯加热到100℃发现有凝胶出现,在贮存中粘度略有增加。另外还考察了缩 水甘油封端聚氨酯与E251环氧树脂及三乙烯四胺固化体系的粘合性能。当软段 含量<25%时,剪切强度和剥离强度均提高;当软段含量>30时,剥离强度提高 而剪切强度降低;当软段含量在25%~30%之间时,强度变化较复杂。 关键词:缩水甘油封端聚氨酯;改性环氧树脂;粘合性能 中图法分类号:TQ323.8 众所周知,环氧树脂对许多材料具有很好的粘合性,但它的玻璃化温度高,是一种硬而脆,冲击强度低的材料[1],为了克服这一缺点曾做了大量的研究工作,主要集中在将橡胶相引入到环氧树脂中,从而形成微相分离体系[2,3]。聚氨酯具有高抗冲强度和优异的低温性能,曾有人将聚氨酯引入环氧树脂中,以弥补环氧树脂材料韧性差的缺陷。 尽管聚氨酯具有优异的性能,但端异氰酸酯基(-N CO)活性过高,不便直接使用[4];另一种办法是将异氰酸酯用活泼氢化合物封端[5,6],它们在室温下是稳定的,其缺点是需要高温下解封,并难于除去封端试剂。 缩水甘油封端聚氨酯将克服上述缺点,储存稳定,因其端基为环氧基能与环氧树脂同步固化,形成链段分布为无规分布的环氧树脂改性结构,能有效地提高环氧树脂的冲击强度和低温下的粘合性能[7]。 本研究考察了对缩水甘油封端聚氨酯合成中的几个关键问题,以及缩水甘油封端聚氨酯-环氧树脂-三乙烯四胺固化体系粘合性能,扩大了聚氨酯加入量范围,综合考察了剪切强度和剥离强度的变化规律。 1 实验部分 1.1 原料 甲苯二异氰酸酯(TD I),2,4-和2,6-异构体比为80 20,意大利进口工业品。 聚醚为端羟基聚环氧丙烷,平均官能度为2,平均分子量为1000。 α收稿日期:1996205224

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PES对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的PES对环氧树脂改性效果显著。如苯酚、羟基封端的PES可使韧性提高100%;双氨基封端、双羟基封端的PES也是有效的改性剂;环氧基封端的PES由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,PES增韧的环氧

改性环氧树脂胶粘剂标准

备案号:173826S-2016 有效期至:2020年12月31日 Q/WHKS 武汉开思新材料有限公司企业标准 Q/WHKS015T-2016 改性环氧树脂胶粘剂标准 武汉开思新材料有限公司发布

前言 改性环氧树脂胶粘剂是近年来薄层铺装路面与透水路面等工程中采用的新型建筑材料,为严格控制胶粘剂产品质量,确保薄层铺装路面与透水路面等工程的工程安全,特制定本标准。 本标准确立的试验项目和试验方法主要参照我国胶粘剂、树脂等材料的国家标准和行业标准,同时考虑到改性环氧树脂胶粘剂与钢桥面、混凝土路面、沥青路面的粘接性能。根据相关标准,结合验证试验结果对胶粘剂的物理力学性能指标给与具体规定。 本标准负责起草单位:武汉开思新材料有限公司 本标准主要起草人:许奇王少波贾军 1

1、范围 本标准规定了改性环氧树脂胶粘剂的分类、技术要求、试验方法、检验规则及标志、保证、运输和贮存。 本标准适用于改性环氧树脂薄层铺装工程、透水胶粘石、环氧砂浆、改性环氧防水涂料用双组分改性环氧胶粘剂。 2、引用标准 JC 887-2001 干挂石材幕墙用环氧胶粘剂 GB/T 1630-1989 环氧树脂命名 GB/T 13657-2011 双酚A型环氧树脂 GB/T 4612-1984 环氧化合物环氧当量的测定 GB/T 2570-1995 树脂浇铸体弯曲性能试验方法 GB/T 2571-1995 树脂浇铸体冲击试验方法 GB 7124-2008 胶粘剂拉伸剪切强度的测(刚性材料对刚性材料) GB/T9966.1-2001 天然饰面石材试验方法第1部分:干燥、水饱和、冻融循环后压缩强度试验方法 GB/T 12954.1-2008 建筑胶粘剂试验方法第1部分陶瓷砖胶粘剂试验方法 JC/T 547-2005 陶瓷墙地砖胶粘剂 JC 830.2-2005 干挂饰面石材及其金属挂件第二部分 3、分类 3.1 品种 改性环氧树脂胶粘剂为双组分环氧型,按使用地点不同分为非机动车道薄层铺装型(KS-HY1)、机动车道薄层铺装型(KS-HY2)、透水铺装型(KS-HY3)、环氧砂浆型(KS-HY4)、防水涂料型(KS-HY5)。 3.2 产品标记 胶粘剂按下列顺序标记:名称、品种、分类号。 标记示例: 名称品种分类号 2

超低温胶粘剂及其应用研究进展

超低温胶粘剂及其应用研究进展 对超低温胶粘剂的研究进展进行了综述,重点概述了改性环氧树脂胶粘剂、聚氨酯胶粘剂的研究现状,并对其发展前景进行了展望。 關键词:超低温;改性环氧树脂;环氧封端聚氨酯;胶粘剂 超低温胶粘剂是指工作在深冷环境(低于-160 ℃)下并具有足够粘接强度的胶粘剂,作为一种深冷环境中的连接材料,广泛应用于航空航天、人造卫星[1]、超导磁体、绝热杜瓦[2,3]、LNG[4]、深冷液体的贮箱设备以及核能等领域。超低温胶粘剂由于工作环境苛刻,除了具有一般胶粘剂常温下的粘接强度、适用期、黏度等常规性能外,还必须在超低温环境中保持足够的粘接强度、韧性、耐腐蚀性、耐磨性以及抗疲劳性等,有些甚至要求良好的真空密封性。目前超低温胶粘剂按照基体材料,主要可分为:改性环氧胶粘剂、聚氨酯胶粘剂及其他类型胶粘剂。 1 环氧及改性胶粘剂的研究 环氧胶粘剂具有许多优点,如价格低、粘接强度高、化学稳定性好、耐腐蚀、收缩率低等,是目前综合性能较好的胶粘剂,因此广泛用于建筑、汽车、电子等工程领域[5]。但由于未改性的环氧树脂固化后交联密度高,呈三维网状结构,不易通过胶层结构变形来缓解应力集中,从而使固化物存在胶层脆,剥离强度低,耐冲击性差,容易开裂等缺点,故未改性环氧在超低温应用有很大的局限性[6,7]。因此通过对环氧树脂进行增韧改性,使其应用于超低温领域是目前研究的热点。 环氧增韧改性方式主要有:聚醚胺、改性芳香胺等柔性固化剂增韧环氧;多官能团环氧树脂、端环氧基聚氨酯等增韧环氧;添加橡胶弹性体、尼龙纤维、刚性粒子等增韧环氧。通过对环氧增韧改性改善环氧树脂在超低温下的脆性,从而提高超低温下的力学性能。 1.1 柔性固化剂增韧环氧树脂 韩孝族等[8]用自制的柔性固化剂并配以固化促进剂对双酚A型环氧树脂进行增韧,制备出一种在超低温下使用的胶粘剂,该胶粘剂在液氮(-196 ℃)下的剪切强度(特种合金)能达到5.88 MPa,并将粘接好的试样经过高低温循环(在70 ℃烘箱中放置2 h,取出后立即放入液氮中,0.5 h后取出再放入70 ℃烘箱中,循环6次)和温度冲击试验(在80 ℃烘箱中放置10 min,取出后立即放入液氮中3 min,再回到80 ℃,为一个循环,经过27个循环)后,元件仍粘接牢固,且具有很好的真空密封效果,可用于绝热杜瓦瓶。 胡小龙等[9~11]用间苯二甲胺和聚醚胺作为混合固化剂,含柔性聚醚链段固化剂使其在超低温下具有一定韧性;芳香胺固化剂可使其在高温仍具有较高的

相关文档
最新文档