半导体陶瓷元件特性及应用

半导体陶瓷元件特性及应用
半导体陶瓷元件特性及应用

半导体陶瓷元件特性及应用

PTC材料

●PTC是一种具有正温度系数的半导体陶瓷元件。其主要代表材料有钛酸钡系列。它是有

机化合物。经模压、高温烧结而制作成各种形状与规格的发热元件。PTC元件在应用时,只要在两个片端加上交流或直流电源,就可以获得额定的发热温度。

PTC的特性

●以钛酸钡半导体陶瓷为例,其温度与电阻率关系曲线如图1所示。当温度在100℃以下

时。它呈现普通半导体特性。即当导体温度从起始升高一定值时,电阻下降,为负温度系数。而当温度再升高到100℃以上的一段范围内。其电阻随着温度升高而急剧上升几个数量级。呈现强烈的正温度系数特性。这正温度系数特性的起始温度称为居里温度,用tp表示,而称上述阻抗异常变化的现象为PTC特性。PTC元件在实际制作过程中,还可通过制作工艺和添加材料上的差别来改变其居里温度。例如:添加锶、锡,则居里温度朝低温移动;添加铅,则居里温度朝高温移动。目前。PTC的居里温度一般控制和选定在-20~300℃内。

PTC电热元件的应用实例

● 1.PTC恒温型电熨斗中的电热元件为PTC元件它是由10片PTC元件并联组成。由于采

用了PTC电热元件;该电熨斗突出优点是:利用PTC元件特性。使电热元件本身有自动调温控制功能:由于PTC元件的阻值仅与温度有关,故受电源电压波动的影响小;使用安全可靠,工作寿命长。

● 2.PTC自动恒温式电饭锅由于用PTC元件替代了自动恒温式电饭锅中的双金属恒温控

制开关。运用PTC元件的正温度系数特性来控制电饭锅保温过程中流过加热器的电流,较方便地实现了电饭锅的恒温控制。该电饭锅的突出特点就是恒温控制精度高。使用寿命较长。

PTC启动继电器

● 3.PTC启动继电器为确保制冷压缩机电动机正常启动和安全运行。电冰箱都设置了启

动和保护装置。PTC启动继电器就是控制电动机启动绕组和电源接通和断开的器件,如图2所示。启动继电器是一种无触点开关。当电冰箱开始启动时。PTC元件温度低于居里温度。电阻值较小。一般只有20Ω左右,这时PTC元件处于“开”状态,相当于继电器闭合。在启动过程中。因电流大于正常工作电流的4~6倍,由于电流的热效应,使PTC元件的温度急剧上升。当温度升高到居里温度以上时。进入高阻状态。

PTC启动器的好坏判定及处理。判断PTC启动器好坏的方法:将PTC启动器接好,把电源插头插入220v交流电源插座中,1~2s内照明灯亮,过10~15s照明灯变暗直至熄灭,可判断PTC启动器良好。如果通电后照明灯不亮或照明灯一直亮着不熄,说明该PTC启动器断路或失去了控制作用。为了确定上述判断的正确性。可将PTC启动器断开电源后,冷却3分钟后再插入电源,应重复上述现象。如用万用表检查,PTC启动器在常温(25℃左右)情况下,用R×1挡测量其电阻。阻值范围为10~50n,即为正常,如将其加热,随着温度的升高,PTC启动器的阻值应逐步升高的趋势。也为正常。

PTC启动器受潮后。其阻值迅速下降,可将其放人烘箱内干燥处理,烘箱的温度控制在140~150℃,时间在3h左右即可。若PTC启动器破损。那是由于工作电流超过了它的额定电流。从而引起PTC发热而破损。这就只能更换PTC启动器

新晨阳电容电感

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

中科大半导体器件原理考试重点

《半导体器件原理》课程复习提纲 2017.12 基础:半导体物理、半导体器件的基本概念、物理效应。 重点:PN结、金半结、双极型晶体管、JFET、MESFET、MOSFET。根据物理效应、物理方程、实验修正等,理解半导体器件的工作原理和特性曲线,掌握器件的工作方程和各种修正效应,了解器件的参数意义,能够进行器件设计、优化、应用、仿真与建模等。 第一章:半导体物理基础 主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。 半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输 运现象的连续性方程和泊松方程。(不作考试要求) 第二章:p-n结 主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。 耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导;

对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。高低结的特性。 第三章:双极型晶体管 主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。 晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P 模型。跨导和输入电导参数,低频小信号等效电路和高频等效电路,频率参数,包括共基极截止频率fα和共射极截止频率fβ的定义,特征频率f T的定义,频率功率的限制,其中少子渡越基区时间,提高频率特性的主要措施。开关特性的参数定义,开关时间的定义和开关过程的描述,利用电荷控制方程简单计算开关时间。 开关晶体管中最重要的参数是少子寿命。异质结双极型晶体管的结构及优点。

几种陶瓷产品的市场情况

关于在国内组建工业陶瓷产业园的前景 一、半导体行业陶瓷产品情况 半导体设备的全球市场2006年约为400亿美元,目前全球半导体设备主要由几家大公司所垄断,最大制造商有:美国应用材料公司(APPLIED MATERIALS);NOVELLUS SYSTEMS INCORPORATED; EATON; VARIAN 等。其中属美国应用材料公司最大。 在半导体设备中,精密陶瓷元件的价值约占3%左右,全球市场约为12亿美元,半导体设备陶瓷元件的生产,由于涉及OEM厂家认证问题,所以属于独占性高门槛行业。就美国应用材料公司而言,其代工厂主要集中在美国本土、日本、台湾、韩国等。 我国半导体生产行业最近几年的发展速度非常快,目前全国已经有上百家半导体的设计或生产工厂(FAB)(见图1),目前这些公司主要从设备厂家直接购买陶瓷元件耗材。但无论从成本考虑还是从长远资源配套考虑,半导体设备中陶瓷元件必将实现本土采购。

图1、中国大陆半导体加工厂家分布图详情参见附件《中国半导体加工厂商》,其中包括大陆地区半导体制造也发展趋势及各厂家明细。 由于以下几个原因,国产半导体设备用精密陶瓷将有良好的市场前景, 1,半导体设备制造是我国重点鼓励发展的产业,现在我国已能提供4至8英寸大部分的半导体生产设备, 急需国内精密陶瓷部件配套。 2,由于竞争的压力,半导体设备的价格一直在下降,而精密陶瓷部件一般为小批量,机械加工成本很高,

国外半导体设备陶瓷也在中国寻找半导体陶瓷生产的 代工厂家。 3,我国大部分半导体生产厂家都使用国外二手半导体,而这些二手设备的陶瓷配件很难得到原厂家的配 套服务,他们急需国产陶瓷配件配套。 国内外陶瓷企业情况: 目前全球能从事半导体设备陶瓷元件加工的厂家,除国际上最大的两家公司Kyocera、Coorstek之外,在大陆、台湾地区及韩国主要有还有如下厂家: 1.美商应陶股份有限公司(Applied Ceramic)及在台湾分公司。美商应陶股份有限公司(ACT)总部设于美国加州,为一专业半导体设备零件供应商,专精于陶瓷、石英、硅及蓝宝石等备品的制作与开发。 2.台湾棕茂科技及昆山智贸科技

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体陶瓷

半导体陶瓷专题报告 一.半导体陶瓷简介 半导体陶瓷概念: 具有半导体特性、电导率约在10-6~10-5S/m的陶瓷。半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。 半导体陶瓷生产工艺的共同特点是必须经过半导化过程。半导化过程可通过掺杂不等价离子取代部分主晶相离子(例如,BaTiO 3 中的Ba2+被La3+取代),使晶格产生缺陷,形成施主或受主能级,以得到n型或p型的半导体陶瓷。另一种方法是控制烧成气氛、烧结温度和冷却过程。例如氧化气氛可以造成氧过剩,还原气氛可以造成氧不足,这样可使化合物的组成偏离化学计量而达到半导化。半导体陶瓷敏感材料的生产工艺简单,成本低廉,体积小,用途广泛。 半导体陶瓷的分类: 按用途分类: 1.压敏陶瓷 压敏陶瓷系指对电压变化敏感的非线性电阻陶瓷。目前压敏陶瓷主要有SiC、TiO2、SrTiO3和ZnO四大类,但应用广、性能好的当属氧化锌压敏陶瓷,由于ZnO压敏陶瓷呈现较好的压敏特性,在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。它们的电阻率相对于电压是可变的,在某一临界电压下电阻值很高,超过这一临界电压则电阻急剧降低。 自七十年代日本首先使用ZnO无间隙避雷器取代传统的SiC串联间隙避雷器以来,国内外都相继开展了这方面的研究。但氧化锌压敏陶瓷在高压领域的应用还存在局限性。如生产高压避雷器,则需要大量的ZnO压敏电阻阀片叠加,不仅加大了产品的外形尺寸,而且高压避雷器要求较低的残压比也极难实现,为此必须研究开发新的高性能高压压敏陶瓷材料。 通过对试样结果的分析,用化学级原料成功地制备出性能优异的 SnO 2压敏陶瓷,新型SnO 2 压敏陶瓷显示出优异的非线性电流——电压 特性,与目前国内外市场上流行的ZnO压敏材料相比,其性能高于前者。 2.热敏陶瓷 电阻率明显随温度变化的一类功能陶瓷。按阻温特性分为正温度系数(简称PTC)热敏陶瓷和负温度系数(简称NTC)热敏陶瓷。①正温度系数热敏陶瓷的电阻率随温度升高按指数关系增加。这种特性由陶瓷组织中晶粒和晶界的电性能所决定,只有晶粒充分半导体化、晶界具有适当绝缘性的陶瓷才具有这种特性。常用的正温度系数热敏陶瓷是掺入施主杂质、在还原气氛中

陶瓷工艺学及答案

1. 陶瓷原料按工艺特性可分为哪四类原料? 一般按原料的工艺特性分为:可塑性原料、瘠性原料、熔剂性原料和功能性原料四大类。 2. 传统陶瓷的三大类原料是什么? 答:粘土、石英、长石 3. 指出粘土、粘土矿物、高岭土、高岭石的差异 答:黏土是一类岩石的总称,这有利于区分黏土、黏土矿物、高岭土、高岭石等这些名词的不同 黏土矿物:含水铝硅酸盐,组成黏土的主体,其种类和含量是决定黏土类别、工业性质的主要因素。高岭土主要由高岭石组成的黏土称为高岭土。 4. 说明原生粘土和次生粘土的特点 答:原生粘土:一次粘土,母岩风化后在原地留下来的粘土,产生的可溶性盐被水带走,因此质地较纯,耐火度高,颗粒较粗,可塑性差; 次生粘土:二次粘土、沉积粘土,由河水或风力将风化产生的粘土迁移至低洼地带沉淀所成。颗粒较细,可塑性好,夹杂其它杂质,耐火度差。 5. 粘土按耐火度可分为哪几类,各自特点是什么?P17 6. 粘土的化学组成主要是什么?主要化学成分为SiO2、A12O3和结晶水(H2O)。 分别说明氧化铝、二氧化硅、氧化铁/二氧化钛、碱金属/碱土金

属氧化物、有机质对粘土烧结的影响 (1)SiO2 :若以游离石英状态存在的SiO2多时,黏土可塑性降低,但是干燥后烧成收缩小。 (2)Al2O3 :含量多,耐火度增高,难烧结。 (3)Fe2O3<1%,TiO2 <0.5%:瓷制品呈白色,含量过高,颜色变深,还影响电绝缘性。 (4)CaO、MgO、K2O、Na2O:降低烧结温度,缩小烧结范围。(5)H2O、有机质:可提高可塑性,但收缩大。 7. 粘土中根据矿物的性质和数量可以分为哪两类?哪些是有益杂质矿物,哪些是有害杂质? 根据性质和数量分为两大类:黏土矿物和杂质矿物 有益杂质:石英、长石 有害杂质:碳酸盐、硫酸盐、金红石、铁质矿物 8. 指出碳酸盐、硫酸盐对陶瓷烧结的影响 碳酸盐主要是方解石、菱镁矿;硫酸盐主要是石膏、明矾石等。一般影响不大,但以较粗的颗粒存在时。往往使坯体烧成后吸收空气中的水分而局部爆裂。 9. 粘土矿物主要有哪三类?各自结构上有什么特点?试用材料分析手段说明如何鉴别高岭石、蒙脱石等 粘土矿物。a.高岭石类: b.蒙脱石类: c.伊利石类:杆状以及蠕虫状。二次高岭土中粒子形状不规则,

半导体敏感陶瓷材料在传感器领域的应用

半导体敏感陶瓷材料在传感器领域的应用 (西安建筑科技大学华清学院) 摘要:文中从功能陶瓷的敏感特性为出发点,讨论了半导体陶瓷材料在敏惑元件及整个传惑器领域的应用情况。概括了现代新型功能材料在信息、通信、家电、军事、航空、航天、能源、仪器、仪表、自动化等各类新兴产业和传统工业设施中广阔的应用与前景展望。 关键词:半导体陶瓷敏感元件传感器 1 引言 对于科学技术日新月异的当今社会,材料科学技术与信息科学技术的交叉渗透诞生了若干全新的领域,如:大规模集成电路(VLSI)与半导体器件,片式元件与新型电子器件,敏感元件与传感器等等。材料按照其导电性可分为导体、绝缘体和介于二者之间的半导体。其中制造各类电子元器件的介电、铁电、压电等陶瓷功能材料,以及IC封装的装置瓷等均为绝缘体。按照传统观点,其优越的绝缘性是实现其特定功能的基础。在制造过程中防止材料的半导化,往往成为提高陶瓷质量的重要技术措施。所以,使陶瓷材料半导化似乎难以理解。但是,正是由于陶瓷工艺与半导体特性的这种奇妙结合,促成了半导体陶瓷材料(简称半导瓷)的发展,尤其是在敏感元件和传感器领域的应用。 2 半导体陶瓷敏感材料 半导瓷的半导化机理,在于陶瓷材料成分中化学计量比的偏离或杂质缺陷对晶粒的影响.以及施主和受主在晶界形成的界面势垒,从而使陶瓷体的电导率由l0-12提高到1O-10~103Ω-1·cm-1之间。半导体的电导率受外界条件,如温度、电场、光照、气氛、湿度的影响可能发生显著变化。利用这种敏感特性可制造各种敏感元件和传感器.具有灵敏度高、结构简单、工艺简便、成本低廉等优点。其中以电导率特性直接应用于敏感电阻器最为成功。例如以半导瓷为主的热敏电阻产量约占整个敏感元件的4O%以上。下面分述若干类半导瓷敏感材料[1]。 2.1 热敏电阻材料 热敏电阻可分为正温度系数(PTC)和负温度系数(NTC)两大类。PTC材料是以高纯钛酸钡主晶相,通过引入施主掺杂和玻璃相形成半导化;同时以Pb、Ca、La、Sr等移动剂移动居里温度(使居里温度可在25~300℃之间调节),调整温度特性。在低于居里温度时,较高的ε使材料呈低阻态;当温度高于居里点,由于钛酸钡由铁电相转变为顺电相,ε按照居里一外斯定律迅速衰减,致使电阻率发生数量级的变化,被称为PTC效应。微量的Mn、Cu、Cr、La 等固溶限极低的受主掺杂可加剧该效应,使居里点附近的电阻率产生4~6个数量级的的巨大变化[1-4]。 NTC材料主要是由尖晶石型的过渡金属(Mn、Co、Ni、Fe等)氧化物半导瓷构成。NiO、CoO、MnO等单晶的室温电阻率都在107Ω·cm以下,随着温度增加电阻率的对数lgρ与温度的倒数1/T在一定的温区内接近线性关系,具有n型半导体的特性。常温NTC材料(-60~200℃)通常以MnO 为主与其它元素形成二元或三元系半导瓷,电导率可在1O3~1O-9Ω-1·cm-1调节。高温NTC材料刚引入Al2O3形成三元系或多元系,适用于300~1000℃的高温区。大多数NTC材料的受主电离能都很低,可保证在常温下全部电离,即载流子浓度可视为常数A,电导率σ=A(-ΔE/kT),△E为电导激活能;设B =△E/k,电阻率ρ=ρ exp(B/T),B值反映了材料电阻率对温度的依赖关系。对于NTC热敏电阻器来说则反映电阻的灵敏度,即:B =ln(R2/R1)/(1/T1-1/T2)[1-4]。

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体陶瓷的研究现状与发展前景

半导体陶瓷的研究现状与发展前景 摘要:半导体陶瓷是当今世界迅速发展的一项高新技术领域。随着电子工业的高速发展, 发展半导体陶瓷正面临着许多急待解决的重要问题。本文对热敏、 气敏、湿敏、压敏、光敏等五类半导体陶瓷的基本原理, 主要陶瓷材料以及优 越特性的应用进行了简要叙述, 对半导体陶瓷现状及发展趋势进行了分析探讨, 并针对共性问题提出了某些看法和建议。 关键词:半导体陶瓷; 现状; 发展前景 引言:半导体陶瓷是敏感元器件及传感器技术的关键材料, 是当今世界迅速发展的一项高新技术领域, 它与现代信息技术、通讯技术、计算机技术密切相关,它的研究开发乃至生产, 涉及到物理、化学、材料科学与工程等多种学科,因此,半导体陶瓷属技术密集和知识密集型产业。日本产品在世界市场上占绝对优势 地位。美国, 欧洲也占有相当数量。相比之下我国半导体陶瓷起步较晚,产品性能、生产水平和国际先进水平相比还有明显差距。改革开放以来, 随着电子工 业的高速发展, 对半导体陶瓷的要求愈来愈高,发展半导体陶瓷正面临着许多 急待解决的重要问题, 本文就半导体陶瓷国内外现状及发展趋势进行探讨, 提 出一些粗浅的看法进行商榷, 以期推动我国半导体陶瓷产业进一步发展。 1 现状及发展前景 半导体陶瓷品种繁多, 具有产业规模生产的主要有: 热敏、气敏、湿敏、 压敏及光敏电阻器等。 1. 1 热敏 热敏电阻器一般可分为正温度系数( PTC) , 负温度系数(NTC) 和临界温度 电阻器(CTR) 三类。PTC 热敏电阻器以BaTiO 3或BaT iO 3 固溶体为主晶相的半 导体陶瓷元件。在一定的温度范围内,其阻值随温度的增加而增加, 表现出所谓的PTC 效应。按材料居里点(T c) 可分为低温、高温, 按阻值可分为低阻、高

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

半导体陶瓷元件特性及应用

半导体陶瓷元件特性及应用 PTC材料 ●PTC是一种具有正温度系数的半导体陶瓷元件。其主要代表材料有钛酸钡系列。它是有 机化合物。经模压、高温烧结而制作成各种形状与规格的发热元件。PTC元件在应用时,只要在两个片端加上交流或直流电源,就可以获得额定的发热温度。 PTC的特性 ●以钛酸钡半导体陶瓷为例,其温度与电阻率关系曲线如图1所示。当温度在100℃以下 时。它呈现普通半导体特性。即当导体温度从起始升高一定值时,电阻下降,为负温度系数。而当温度再升高到100℃以上的一段范围内。其电阻随着温度升高而急剧上升几个数量级。呈现强烈的正温度系数特性。这正温度系数特性的起始温度称为居里温度,用tp表示,而称上述阻抗异常变化的现象为PTC特性。PTC元件在实际制作过程中,还可通过制作工艺和添加材料上的差别来改变其居里温度。例如:添加锶、锡,则居里温度朝低温移动;添加铅,则居里温度朝高温移动。目前。PTC的居里温度一般控制和选定在-20~300℃内。 PTC电热元件的应用实例 ● 1.PTC恒温型电熨斗中的电热元件为PTC元件它是由10片PTC元件并联组成。由于采 用了PTC电热元件;该电熨斗突出优点是:利用PTC元件特性。使电热元件本身有自动调温控制功能:由于PTC元件的阻值仅与温度有关,故受电源电压波动的影响小;使用安全可靠,工作寿命长。 ● 2.PTC自动恒温式电饭锅由于用PTC元件替代了自动恒温式电饭锅中的双金属恒温控 制开关。运用PTC元件的正温度系数特性来控制电饭锅保温过程中流过加热器的电流,较方便地实现了电饭锅的恒温控制。该电饭锅的突出特点就是恒温控制精度高。使用寿命较长。 ● PTC启动继电器 ● 3.PTC启动继电器为确保制冷压缩机电动机正常启动和安全运行。电冰箱都设置了启 动和保护装置。PTC启动继电器就是控制电动机启动绕组和电源接通和断开的器件,如图2所示。启动继电器是一种无触点开关。当电冰箱开始启动时。PTC元件温度低于居里温度。电阻值较小。一般只有20Ω左右,这时PTC元件处于“开”状态,相当于继电器闭合。在启动过程中。因电流大于正常工作电流的4~6倍,由于电流的热效应,使PTC元件的温度急剧上升。当温度升高到居里温度以上时。进入高阻状态。

现代工业上陶瓷材料的应用与发展

现代工业上陶瓷材料的应用与发展 摘要:阐述陶瓷材料的结构相、分类和陶瓷基复合材料的特性,以及陶瓷材料 在车辆上的应用。简要介绍手机电池中正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)和它们所起的不同作用。 关键词:传统陶瓷新型陶瓷传感器 PTC热敏电阻 NTC热敏电阻特性应用 引言:本文主要介绍陶瓷材料在汽车和手机这两个在当今社会中最具代表性的 工业中的应用与发展。陶瓷是古老而又新型的材料,它是用天然或人工合成的无机粉状物料,经过成型和高温烧结而制成的一种多相固体材料。利用天然硅酸盐矿物(如粘土、长石、石英等)为原料制成的陶瓷叫普通陶瓷,也叫传统陶瓷。这类陶瓷原料来源广,成本低,用量大。天然原料中的杂质对陶瓷的性能不利,人们用纯度高的人工合成原料(如氧化物、氮化物、碳化物、硅化物、硼化物、氟化物等),用传统陶瓷工艺方法制造的新型陶瓷,也叫现代陶瓷或特种陶瓷。新型陶瓷材料在现代工业的许多方面都已经发挥了巨大作用,现代工业应用多属精细陶瓷。比如在汽车上很早以前就有火花塞、窗玻璃、水泵的机械式密封使用了陶瓷。而且作为排放对策,触媒载体、氧传感器、爆震传感器等功能陶瓷相继出现。目前,已有许多发动机零件采用结构陶瓷制造,不久将来,陶瓷发动机将会出现。而在当今社会不可或缺的通讯工具——手机中,也可以看到精细陶瓷材料的身影。 1.陶瓷的结构相 陶瓷一般由晶相、玻璃相和气相组成。 (1)晶相晶相是体现陶瓷材料性质的主要组成相。大多数陶瓷材料是由离子键(如MgO、CaO、Al203等)和共价键(如金刚石、SiC等)为主要结合键。晶体中非金属元素的原子直径大,可排列成不同的晶系,形成晶体"骨架",金属原子的直径小,处于骨架的间隙中。 陶瓷晶体中主要的两类结构是硅酸盐结构和氧化物结构。陶瓷材料是多相多晶体材料,其物理化学性能主要由晶相决定。晶相中晶粒的大小对陶瓷的性能影响很大。晶粒越细,晶界越多,裂纹扩展越不容易,材料的强度越高。这一点和金属材料很相似。 (2)玻璃相玻璃是非晶态材料,由熔融的液体凝固得到。陶瓷中玻璃相的作用是将分散的晶相粘结在一起;降低烧成温度;抑制晶体长大以及填充气孔空隙。但玻璃相的机械强度比晶相低,热稳定性差,在较低的温度下就开始软化。而且往往因带有一些金属离子而降低陶瓷的绝缘性能。工业陶瓷要控制玻璃相的数量,一般约为20%~40%。

半导体(压电陶瓷)

压电陶瓷 材料在我们的生活中随处可见的物质,材料的发展深深的影响着人们的生活质量,同时也是我们人类社会进步和文明的重要标志。随着社会的进步和发展,电子陶瓷材料在信息技术中占有非常重要的作用,常常被用来制作一些重要的电子元器件如:传感器、电容器、超声换能器。因此,高性能的电子陶瓷材料是信息技术发展和研究的重要方向。 压电陶瓷是一种具有压电性能的多晶体,是信息功能陶瓷的重要组成部分。其具有机电耦合系数高(压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的效率)、价格便宜、易于批量生产等优点,已被广泛应用于社会生产的各个领域,尤其是在超声领域及电子科学技术领域中,压电陶瓷材料已逐渐处于绝对的支配地位,如医学及工业超声检测、水声探测、压电换能器、超声马达、显示器件、电控多色滤波器等。 1.压电陶瓷性能 1.1压电性 压电陶瓷最大的特性是具有正压电性和逆压电性。正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心不但发生相对位移而被极化,同时由于此位移而导致电介质发生形变,这种效应称之为逆压电性。 1.2介电性能 材料在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数(ε r )和介质损耗(tanδ)来表示。 当在两平板之间插入一种介质(材料)时,电容C将增加,此时电容 C与 真空介质时该电容器的电容量 C 0的比即为相对介电常数k:k=C/C = (εA/d)/ (ε 0A/d)=ε/ε (ε —真空介电常数:8.854×10-12F/m) 当一个正弦交变电场V=V expiωt施加于一介电体上时,电荷随时间而变化而产生了电流Ic, Ic在无损耗时比 V 超前90°。但实际是有损耗的。有损耗时,总电流超前电压不再是90°而是90°-δ。δ由损耗引起故称损耗角。 电介质中电压损耗与电流矢量

第六章半导体陶瓷(精)

第六章半导体陶瓷 一、教学基本要求 了解半导体瓷的种类,掌握BaTiO3陶瓷的半导化机理,PTC效应机理,了解半导体陶瓷电容器的分类及其性能,理解表面层、晶界层电容效应。掌握金属与半导体的接触形式及原因。 二、基本内容概述 6.1 半导体陶瓷的基本概念 1、装置瓷、电容器瓷、铁电压电瓷:ρV>1012Ω?cm ,防止半导化,保证高绝缘电阻率;半导体瓷:ρV<106Ω?cm 2、半导体瓷:传感器用,作为敏感材料,电阻型敏感材料为主: ρV或ρS对热、光、电压、气氛、湿度敏感,故可作各种热敏、光敏、压敏、气敏、湿敏材料。 3、非半导体瓷——体效应(晶粒本身) 半导体瓷——晶界效应及表面效应 6.2 BaTiO3瓷的半导化机理 1、原子价控制法(施主掺杂法) 在高纯(≥99.9%)BaTiO3中掺入微量(<0.3%mol)的离子半径与Ba2+相近,电价比Ba2+离子高的离子或离子半径与Ti4+相近而电价比Ti4+高的离子,它们将取代Ba2+或Ti4+位形成置换固溶体,在室温下,上述离子电离而成为施主,向BaTiO3提供导带电子(使部分Ti4++e→Ti3+),从而ρV下降(102Ω?cm),成为半导瓷。 2、强制还原法 在还原气氛中烧结或热处理,将生成氧空位而使部分Ti4+→Ti3+,从而实现半导化。 3、AST法

当材料中含有Fe、K等受主杂质时,不利于晶粒半导化。加入SiO2或AST玻璃(Al2O3·SiO2·TiO2)可以使上述有害半导的杂质从晶粒进入晶界,富集于晶界,从而有利于陶瓷的半导化。 6.3 PTC热敏电阻 1、PTC效应:半导体BaTiO3陶瓷,当温度超过居里温度时,在几十度的范围内,电阻率会增大4~10个数量级,即PTC效应。 2、电阻-温度特性、电压-电流特性,电流-时间特性。 3、PTC机理: ●海旺模型 ●丹尼尔斯模型 6.4 半导体陶瓷电容器 1、分类及性能 半导体陶瓷电容器按其结构、工艺可分为三类: ●表面阻挡层型 ●表面还原-再氧化型 ●晶界层型。 2、表面型半导体陶瓷电容器 3、晶界型半导体陶瓷电容器 三、重点、难点分析 1、BaTiO3陶瓷的半导化机理

各种陶瓷原料作用特性

各种陶瓷原料的作用和特性 1,氧化铝,ALUMINA,特性依赖其粒度分布和本身结晶大小,(越小,反应性越高),可增加亚光效果(降低光泽),微量减少膨胀系数,对流变性无影响。 2,球土,ARCILLA(932),根据本身白度的差异可造成釉面效果的差异,可增加可塑性,降低沉淀,比硼润土容易干燥,可提高黏度。 3,硼润土,BENTONITE,有非常高的可塑性。在BELL釉线生产中,其在釉中的比例为1.5-2.0%。同时可增加很高的黏度。 4,高岭土,KAOLIN。可防止沉淀,并增加少量可塑性,可稳定釉面效果。可增加釉面白度,(比球土效果好)。可少量的提高透明度和黏度。可减少因脱气不良造成的大针孔。5,碳酸钙,非常容易熔化,提高釉面的光滑度。促使釉的干燥但容易产生因脱气产生的缺点,可增加膨胀系数和黏度。不耐酸碱。 6,甲基CMC(GIUE),有较强的黏着力,将固体颗粒黏着在一起。是一种有机物,可在烧制过程去除。可增加黏度。 7,防腐剂(PRESERVAIVE),是一种杀菌剂,可防止CMC腐化变质。同时可防止釉浆BELL上干结,一般用量在0.10-0.12%。 8,刚玉/金刚砂(CORUNDUM),可少量的提高亚光效果,可明显增加硬度,可少量降低膨胀系数。 9,石英(QUARZ),可增加硬度,在其处于游离状态时,可增加膨胀系数,当其结晶后可降低膨胀系数,在底釉中可使用35-45%,脱气性好,可稳定釉面,(比锆好)。10,分散剂(DISPERONT),可防止碳酸钙在成釉中结晶,其本身可能引起针孔,使用比例在0.08-0.10%。 11,白云石(DOLOMITE),容易熔化,可增加膨胀系数。可增加釉面光滑效果。有脱气问题。不耐酸碱。 12,钾/钠长石,容易熔化,增加膨胀系数。 13,CE/SN,增加印粉白度。 14,氧化钛,增加亚光效果,遮盖度,发黄,会造成脱气不良。 15,盐,防止沉淀,调整表面张力。增加黏度。 16,滑石是一种熔剂,在烧成过程中因本身分解容易产生针孔和微细孔。 17,TPF,是一种解凝剂,降低黏度。 18,钨氧化物,印粉中增加金属效果。 19,硅灰石,是一种熔剂和黏着剂。降低膨胀系数。不可用于亚光釉中,因为会增加亮度。 20,锆,增加遮盖度和硬度。降低膨胀系数。硬度比适应略高。但会造成脱气不良,可通过增加筛余量来改善。

型半导体材料的设计与性能分析

景德镇陶瓷学院 半导体课程设计报告 设计题目 n型半导体材料的设计与性能分析专业班级 姓名 学号 指导教师 完成时间

一﹑杂质半导体的应用背景 半导体中的杂质对电离率的影响非常大,本征半导体经过掺杂就形成杂质半导体,半导体中掺杂微量杂质时,杂质原子的附近的周期势场的干扰并形成附加的束缚状态,在禁带只能够产生的杂质能级。能提供电子载流子的杂质称为施主杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。 一、N型半导体在本征半导提硅(或锗)中掺入微量的5价元素,例如磷,则磷原子就取代了硅晶体中少量的硅原子,占据晶格上的某些位置。 磷原子最外层有5个价电子,其中4个价电子分别与邻近4个硅原子形成共价键结构,多余的1个价电子在共价键之外,只受到磷原子对它微弱的束缚,因此在室温下,即可获得挣脱束缚所需要的能量而成为自由电子,游离于晶格之间。失去电子的磷原子则成为不能移动的正离子。磷原子由于可以释放1个电子而被称为施主原子,又称施主杂质。 在本征半导体中每掺入1个磷原子就可产生1个自由电子,而本征激发产生的空穴的数目不变。这样,在掺入磷的半导体中,自由电子的数目就远远超过了空穴数目,成为多数载流子(简称多子),空穴则为少数载流子(简称少子)。显然,参与导电的主要是电子,故这种半导体称为电子型半导体,简称N型半导体。二、P型半导体在本征半导体硅(或锗)中,若掺入微量的3价元素,如硼,这时硼原子就取代了晶体中的少量硅原子,占 据晶格上的某些位置。硼原子的3个价电子分别与其邻近的3个硅原子中的3 个价电子组成完整的共价键,而与其相邻的另1个硅原子的共价键中则缺少1 个电子,出现了1个空穴。这个空穴被附近硅原子中的价电子来填充后,使3 价的硼原子获得了1个电子而变成负离子。同时,邻近共价键上出现1个空穴。由于硼原子起着接受电子的作用,故称为受主原子,又称受主杂质。 在本征半导体中每掺入1个硼原子就可以提供1个空穴,当掺入一定数量的硼原子时,就可以使半导体中空穴的数目远大于本征激发电子的数目,成为多数载流子,而电子则成为少数载流子。显然,参与导电的主要是空穴,故这种半导体称为空穴型半导体,简称P型半导体。

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质 何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG? 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass) 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体 二氧化硅其K值为3.9表示何义 答:表示二氧化硅的介电质常数为真空的3.9倍 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体 简述Endpoint detector之作用原理. 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测到强度变强或变弱,当超过某一设定强度时,即定义制程结束而该点为endpoint.

1.1半导体的基本特性

项目一半导体器件的识别与检测 课题:1.1 半导体的基本特性 授课者:阚霞 【一】1、学习目标 (1)能从物质的导电能力来理解半导体的概念 (2)知道半导体的三个主要特性 (3)掌握N型、P型半导体的形成与特点 2、能力目标:能够根绝导体的导电性能区分生活中的导体、半导体和绝缘体 3、情感目标:学会倾听,学会表达,学会计划 【二】重点知识:半导体的主要特征 难点知识:N型半导体和P型半导体 【三】教学方法:讲授法、提问法、启发法 【四】教学过程 一、1、课程介绍:该门课程是一个多学期完成的衔接式课程,在上一学期学习了电工基础的基本知识。这学期的内容对于前一期的内容来说要难得多,主要涉及两个大的方面,模拟电子和数字电子。其中模拟电子部分又是难点,在学期的开始就将学习到该内容,要求学生对此的掌握要够扎实。 2、课堂要求:课前准备学习用具,课堂遵守纪律,不玩手机,上课不准睡觉,认真听讲,记好笔记,积极发言。 3、作业要求:按时完成作业,并字迹工整 二、新课引入 电工基础中我们学习过自然界的物质根据导电能力的不同,将它分为了三类,请同学们回忆一下有哪三类呢?(导体、半导体、绝缘体) 三、新课讲解 1.1.1半导体的主要特性 半导体的导电能力时介于导体和绝缘体之间,目前用来制造半导体器件的材料主要是锗和硅,他们都是四件的元素,具有晶体结构,所以半导体又称晶体。半导体之所以得到广泛的应用,主要是具有以下3个主要特征:

1.1.2 P型半导体和N型半导体 在硅和锗半导体中,掺入微量和其他元素后,所得的半导体为杂质半导体,其类型有P型半导体和N型半导体,这两种是制造各种半导体器件的基础材料。

陶瓷材料的结构与特性

陶瓷材料的結構與特性 【摘要】一般稱為陶瓷的材料是泛指「非金屬的無機固相物質」,它通常是一種化合物,由兩種或兩種以上的帶電離子鍵結所構成。由於離子種類不同,合成的物質具有與金屬材料截然不同的機械、電、磁、光等特性。 英文ceramic(陶瓷)一字源自希臘字"keramikos",意指「燒過的東西」。在中國的工藝辭彙裡,「陶」與「瓷」卻指不同的燒成品:前者是指燒結後的物品,例如瓦罐,它仍具有表面孔隙,在潮濕的環境中會吸收水分;「瓷」一字指的是表面燒結緻密,不會滲水的日用器皿,其表面常覆蓋著一層玻璃質的釉料,在高溫的燒成後,表層可以隔離水氣的入侵。 陶瓷材料與人類文明的發展息息相關 建築業採用大量的水泥材料,外牆及室內裝飾的壁磚、地磚,以及有利採光與美觀的多色玻璃門窗或幕帷,隨處可見。日常電器用品或資訊產品中,做為個人電腦386/486中央處理器多層電路隔板的氧化鋁基板、電阻材料、多層電容器,都是由高純度的陶瓷所製成。由於某些陶瓷具有優異的抗腐蝕性,這種材料又可用來製作強酸、強鹼的容器,或是製成人工關節,來取代人體內不堪使用的關節。陶瓷的高硬度,使得許多容易磨蝕的組件漸漸採用陶瓷,而且它的熔點比一般的金屬與高分子材料來得高,所以高溫的隔熱材料或是廢熱的熱交換器,都可使用陶瓷材料。其他在國防工業或航太工業,精密陶瓷都有其特定的用途。 如果了解陶瓷材料的原子結構與金屬及高分子材料的不同後,大家一定不會對陶瓷性質的多樣性感到懷疑。一次世界大戰以前,陶瓷產品只限於日常的器物如磚瓦、混凝土或是玻璃器皿。但1940年以後,陶瓷領域已擴展到微電子、電腦、資訊、國防、航太的範圍之中。由於對陶瓷的物、化性質的了解,改善純化與合成的技術,並發展出新的陶瓷製造工程,才使得簡單的建築與日常使用的陶瓷材料,擴展為特定用途的精密陶瓷組件。 最常見的陶瓷原料是天然風化的礦石,像是黏土或石英砂,主要的成分是氧化矽,其次是氧化鋁、氧化鈣、氧化鎂,或是鹼金屬的氧化物。由於大自然長年風化作用的結果,將火山岩漿形成的花崗岩分解,經雨水及二氧化碳作用將其中的長石(含鉀鋁矽的氧化物)部分溶解,殘留的鋁矽酸物轉成高嶺土(一種常見的陶瓷黏土)。這種黏土的基本成分是Al2O3.2SiO2.2H2O,因為含有氧化鐵的雜質,常呈棕褐色,又在自然環境的分離作用下,細小的晶粒(小至1mm的1/1000)沈積成黏土礦,其中混雜著有機質,成為傳統陶瓷原料的主要來源。由於含有有機質(像木質素或藻膠),細緻的黏土很容易與水混合,形成的泥漿也有適當的黏性,由泥漿注模成形的坯體也有相當的強度,可以移入窯爐裡,燒出精緻、美觀的瓷器。 細小的陶瓷顆粒,有些呈圓形,有些呈鬚晶或板片狀,但都有其固定的結晶構造。因為顆粒夠小的關係,燒陶瓷生坯時,不必達到它的熔點就能將陶瓷燒結緻密。緻密的陶瓷器不僅不易吸水,其他的強度、硬度、透明度等性質都能提高不少。 此外,利用燒瓷溫度與時間的調整,細小的陶瓷顆粒在燒結時會逐漸靠近,達到緻密化的目的;晶粒也會逐漸長大,或是長成「柱晶」狀,例如許多白色瓷器的坯體都有的「富鋁紅柱石」(mullite,又稱「莫來石」)。不同的熱處理方法,包括改變加熱的溫度、時間、氣氛,可造成晶粒與孔隙的變化。不同的晶粒大小、分布與晶界間的現象,我們統稱「微結構」,這種結構的尺度就比原子的結構或是晶體結構大上數百倍,乃至數千倍以上。陶瓷材料的性質即決定於陶瓷化合物的「原子結構」、「晶體結構」,以及不同製程產生的「微結構」。 以下按陶瓷的基本分子結構、結晶結構與微結構,由小而大,分階段舉例說明與陶瓷特性間的關係。 陶瓷的分子結構 前面提及最常見的陶瓷材料是以黏土為主的氧化物,包括氧化矽、氧化鋁或氧化鉀的分子,這些分子都含有一定量的陰及陽離子。兩個異性的離子由於游離或吸引電子的能力不同的關係,當它們接近時,除了可藉由共同擁有原子軌道上的電子達到穩定的效果外,這種對價電子親和能力(又稱「陰電性」)也會影響兩個相吸的異性離子的鍵結特性,我們常以「游離率」或「陰電性差值」來表示。 當陰陽離子的陰電性相差愈多,它們形成的化合物的「離子鍵性」愈高,反之則「共價鍵性」高。所以除了少數的例外,大部分的陶瓷材料的分子鍵結形態多屬兩種鍵性的混成。完全的共價鍵材料極少,結晶形的鑽石(碳)即是一例;而接近完全離子鍵的化合物,像食鹽(氯化鈉)則只有非常微弱的共價鍵性。稍後,我們將介紹共價與離子鍵性比例的高低,將直接影響陶瓷材料的熔點、基本分子結構、導電性及其他許多物理性質。

相关文档
最新文档