关于环糊精的研究状况

关于环糊精的研究状况
关于环糊精的研究状况

关于环糊精的研究状况

摘要:本文综述了环糊精的发现过程,环糊精的理化性质,提出了环糊精的改性,阐述了环糊精在现阶段医药、食品、环境保护、电化学、以及化妆品等方面的广泛应用,特别是食品的应用,展望了其广泛的利用空间,提出了环糊精可能的应用领域。

Abstract:This paper reviews the discovery process cyclodextrin, physical and chemical properties ,put forward the modified cyclodextrin and use of cyclodextrin in medicine food,environmental protection ,electrochemical at present stage and cosmetics and so on are wide.Especially the application of food.The paper do not omly prospecte its extensive ues of space,but also show us the possibility application fields about cyclodextrins .

关键词:环糊精应用进展

Key words: cyclodextrin application progress

一环糊精的发现与发展

自1891年Villiers发现环糊精至今已逾百年,它已经发展成为超分子化学最重要的主题,其间包含着许多科学家和科技工作者的智慧和劳动。Villiers最早从芽孢杆菌属(Bacillus)淀粉杆菌(Bacillus amylobacter)的1kg淀粉消化液中分离出3g可以从水中重结晶的物质,确定其组成为(C6H10O5)2*3H2O,称其为—木粉。1903年,Schardingei用分离的菌株消化淀粉得到两种晶体化合物,确认他们与Villiers分离出的—木粉是同一物质,并用碘—碘化钾反应区别了a-环糊精(a-cyclodextrin)和b-环糊精(b-cyclodextrin),这种用碘液反应判断a-,b-环糊精的方法至今沿用。Schardinger成功的分离出春芽孢杆菌,取名软化芽孢杆菌(Bacillus macerans),至今仍然是生产和研究中经常使用的菌种。为了纪念他对建立环糊精化学基础的贡献,环糊精也曾经叫沙丁格糊精。继Schardinger之后在环糊精化学研究中起领导作用的是Pringsheim,他发现这种结晶性糊精和它的乙酰化产物能结合各种有机物生成复合体(complexes),由于使用不合适的冰点降低法确定分子量,以及许多推测缺乏事实依据,这一时期的研究工作进展很慢[1]。

从发现到20世纪初Schardinger发表他的第一篇关于α-CD和β-CD后,由Norman Haworth领导的英国环糊精研究小组详细的解释了组成环糊精的个小物质的大小和形成过程。直到1932年,环糊精和各种有机物形成复合物的性质已经被发现[2]。从20世纪30年代中期到60年代末是环糊精化学发展的第二阶段。Freudenberg最先得到纯环糊精,并和他的合作者根据乙酰溴和多甲基化反应产物的水解结果汇同文献报道的数据,提出Schardinger糊精是葡萄糖单元以麦芽糖方式结合的环状分子,分子内只含a-1,4糖苷键。

随后与1936年提出了这些结晶性糊精的结构。在1948~1950年间Pitha又发现了Y-环糊精并确认其结构[3]。这一时期平行加盟此项研究的还有French和Cramer两个研究小组,他们分离、表征了环糊精的物理化学性质,指出还可能存在环更大的分子以及与其他有机分子生成的复合体。这一时期的研究结果使人们认识到环糊精极有可能应用于工业。虽已建立实验室规模制备工艺,但由于对毒性的判断上存在争议,妨碍了在应用领域中的开拓研究[1]。

拥有的附属机构,到1988—1991年发展为财政独立的公司,最后于1991年成为CYCLOLAB股份有限公司,Szejtli任总经理兼研究导师,推出了大量在食品、医药等领域的应用技术,被国际冠以环糊精之父的美誉。从20世纪70年代初到现在,环糊精化学的研究进入了鼎盛时期。

70年代末以来环糊精化学的快速发展并成为构筑分子的重要主体,得益于技术科学的进入。各种新分析技术的完善和新仪器的出台,吸引了各领域科学家的关注,推动了环糊精化学的发展,其中具有代表性并已积累一定经验的是2DNMR、X射线晶体衍射和环糊精结合客体过程热力学函数的变化。提供的数据可以判断溶液中或固态由环糊精或修饰环糊精于相应客体形式复合体的拓扑形态、各原子或基团的空间排布,从中了解结合过程诱导的构象变化,和形成复合体产生的新功能。在收集、分析大量热力学数据的基础上,提供了从更总括的观点讨论和认识各种有机,无机客体被环糊精或修饰环糊精包含的性质以及控制超分子互相作用的因素。目前,环糊精已发展为超分子化学中最重要的一类主题之一[1,2]。

二环糊精的结构和性质

1、环糊精的结构特点

环糊精(cyclodextrins 简称 CDs)是由环糊精糖基转移酶作用于淀粉或直链糊精,由若干D-吡喃葡萄糖单元环状排列而成的一组低聚糖的总称,常见的环糊精有a-环糊精、b-环糊精以及y-环糊精3种。分别由6个、7个或8个葡萄糖单元以1,4糖苷键结合而成。环糊精分子形状为内疏水,外亲水的略呈锥筒状的空腔结构[。正是这种特殊结构,使得环糊精能作为宿主包含不同客体化合物,形成特殊结构的包合物,由此而形成主客体化学,也是当前热门课题——超分子化学的一部分。环糊精的分子结构参数如表1.

表1 环糊精的分子结构参数[4,5]

参数a-CD b-CD y-CD 葡萄糖单元数 6 7 8

相对分子质量972 1135 1297

空腔直径/nm 0.47-0.53 0.60-0.65 0.75-0.83

空腔高/nm 0.78-0.80 0.78-0.80 0.78-0.80 外圆周直径/nm 1.42-1.50 1.50-1.58 1.71-1.79

空腔大致体积

/nm3

0.174 0.262 0.427

参数α-CDβ-CDγ-CD

水中溶解度

/(g/1000克水) 25℃145 18.5 232 40℃2421 37 460 60℃——80 ——80℃——183 ——100℃——256 ——

在甲醇中的溶解度

/(g.dl-1)100%甲醇不溶不溶大于0.1 50%水溶液0.3 0.3 208.0

乙醇中溶解度/(g.dl-1) 100%乙醇不溶不溶大于0.1 50%水溶液大于0.1 1.3 2.1

丙酮中溶解度/(g.dl-1) 不溶不溶大于0.1 水中结晶形状针状棱柱状棱柱状

毒性无无无

上图为表2 环糊精的一些物理性质[4]

三种环糊精为白色结晶粉末,β-环糊精的溶解度与其他两种环糊精的差别很大,只要是因为环糊精聚集体与周围水分子的相互作用力不同以及在固态下晶格能的差别造成的。从表2中也可以看出,环糊精在水中的溶解度随温度上升而增高,在有机溶剂中,如甲醇、乙醇、丙醇等,环糊精不溶解。能够溶解环糊精的有机溶剂很少,因此可以利用此性能来提纯环糊精。环糊精对热和机械作用都相当稳定,没有固定的熔点,200℃开始分解。不同的环糊精的热稳定顺序为:γ-环糊精>β-环糊精>α-环糊精。经过大量实验证明,环糊精本身无毒性,可以被人体吸收。

2 化学性质

环糊精可以像淀粉一样,贮存多年不变质。在碱性乃至强碱性条件下,环糊精是稳定的,但是在酸性条件下,可以被水解生成葡萄糖和系列非环麦芽糖。由于环糊精分子中不存在还原基因,对酸的稳定性要比线性糊精高2-5倍。此外环糊精可以被α-淀粉酶和大肠内细菌所降解,但不会被葡萄糖淀粉酶降解。由于环糊精分子中存在大量的伯羟基和仲羟基,因此环糊精分子具有一定的活性,可以通过很多途径来对环糊精进行化学改性,制备环糊精衍生物。环糊精没有尾端基,其化学和酶反应性质与开链糊精有根本性差别。没有还原尾端基,不具还原性。也没有非还原性尾端基,有的淀粉酶不能水解。环糊精不能被酵母和其他种微生物发酵。

三环糊精的改性

所谓改性就是指在保持环糊精大环基本骨架不变情况下引入修饰基团,得到具有不同性质或功能的产物,因此也叫修饰,而改性后的环糊精也叫环糊精衍生物[7]。

环糊精进行改性的途径有化学法和酶工程,其中化学法是为最主要的,改性后的环糊精又称为环糊精衍生物。化学改性是利用环糊精分子洞外表面的的醇羟基进行醚化、醛化、氧化,交联等化学反应,能使环糊精的分子洞外表面具有新的功能团。酶工程法是制备支链环糊精的方法,支链环糊精是单糖或低聚糖如葡萄糖、麦芽糖等通过转移酶的作用以α-1,6糖苷键结合于环糊精上形成的[5,6]。

随着烷基、酰基环糊精的不断合成,制备方法的得到了很大的发展,如今人们已能将氨基化合物、曡氮化合物等含氮类化合物通过形成C-N键连接到环糊精C-2,C-3或C-6位的若干C原子上。选择乙二胺作为修饰基团制备环糊精,合成的第一步是先将环糊精磺酰化,然后通过曡氮离子的亲核取代脱去磺酸基,环糊精的曡氮衍生物经还原便转变为环糊精的氨基衍生物,也可以由磺酰基-CD在DMF-Py混合物溶剂中与乙二胺作用,直接转变为

氨基环糊精[6]。

四环糊精应用

环糊精特殊的分子结构决定环糊精使得它不仅在理论研究有很大用处,而且在实际应用中很是广泛。这里主要就介绍环糊精在医药和食品工业中的应用。

1、环糊精在药物上的应用

环糊精无毒、无味,对人体无害,是最为合适的一种药物载体,因此在药物改性上的应用较为广泛,药物通过与环糊精形成包络物来提高药物的溶解度和稳定性,以增强生物利用度,缓解药物对肠胃的刺激,消除某些药物的异味。

有些用药物,如4-联苯醋酸,单独用药时,由于其不溶于水,生物利用度小,但当他和β-CD形成1:1包络物后,其溶解度提高了4.2倍,溶解速度提高了18倍,生物利用度也因提高,由于生物利用度的提高,用药量将大大减少,因此一些药物带来的毒副作用以及由此而引起的医疗危险也降低到最低限度[7]。又比如苯巴比妥与β-CD环糊精用饱和水溶液制的包合物也增加药物溶解度[8]。在水等溶剂中的溶解液是由加热的方法决定[10]。环糊精不仅应用于口服药,而且还应用于注射液,但是要指出的是含β-CD的注射液经皮下或肌肉注射后会引起局部组织坏死或溃疡,更有甚者会造成溶血,因此在注射液中应用β-CD需态度慎重,但是如果使用其衍生物代替则可以避免该缺陷。在国内,环糊精对药物的包络物的研究,不仅仅局限于西药,而且已经扩展到中草药并付诸于应用。在中草药的应用,主要也是用来增强药物的稳定性,例如莪术油具有抗肿癌的作用,其中的抗癌有效成分是其中的莪术醇,当它与β-CD包络后,稳定性大大提高,尤其是在氧化及光照条件下,稳定性由于混合物,这与未被包络的莪术油的注射剂,乳剂相比,增加了药物的利用率,还可以将包络物制成固体制剂,能进一步提高药物疗效,并延长药物有效期。发展环糊精在中草药中的应用,进一步改善和扩展中草药的药性,药效,显然是有重大意义的研究课题。

环糊精衍生物除了能提高药物的溶解度和稳定性外,还能用来控制药物的释放。有些药物的水溶性好,但其半衰期短,所以生物利用度小,如果与之相匹配的的β-CD衍生物形成包络物就可以控制药物在体内的释放。环糊精作为一种有前途的包络材料,广泛应用在制药领域,它能提高药物溶解度和稳定性,增强其生物利用度,减少用药量,消除或减轻其毒副作用,控制药物释放,延长药物作用期,提高疗效。有些药物包络物已被正式批准用于工业生产,如意大利已批准生产炎痛喜康/β-CD包络物等,这预示这环糊精包络物从实验阶段正式进入工业化生产阶段,今后随着工业生产环糊精的在增长,价格、质量等方面都会有较大改善,其应用会更加广泛,天然环糊精由于自身的缺点所限制应用,将由环糊精衍生物去拓

展,相比较而言,环糊精衍生物的应用前景更加广阔[9]。而且,CD还可以用于化妆品,它是护肤,护发等用品的添加剂[10]。而且,环糊精及其衍生物在基因传递上引起广泛关注,能和核算一起镶嵌,进而增加核算的稳定性和改善性能[1]。环糊精包合物还可以扩散通过毛囊和汗水管道但表面量很少[11]。

2、环糊精包合物在食品工业中的应用

环糊精在食品工业作为食品添加剂发展很快,应用面广[8]。

2.1 保护食品成分,防止发生光照、加热和氧化引起的变性

由于很多食品成分大多不稳定,易受氧、光或热作用分解或发生化学反应,导致食品的色、香、味发生变化。用CD包合,可使具挥发性、易损失的芳香成分被“密封”在CD孔腔内,可防止氧化或降解,或者可以通过添加CD将引起食品质量变化的成分移去。例如在果汁加工中,由于果蔬组织的破坏,果蔬中的多酚氧化酶的活性变化,引起多酚类物质发生反应,导致果汁的色泽加深。将环糊精应用在果汁加工中,可有效移去多酚氧化酶,防止褐变发生。不同的果汁加工中根据不同的需要添加不同种类的CD。芳香和辛辣调料如桂叶油、生姜油等大多不稳定,易受氧、光或热作用分解,用β-CD包合,可防止具挥发性,易损失的芳香成分氧化或降解,而且在加工过程中也非常稳定[12]。

2.2 消除食品中苦味和不愉快的气味

就果汁而言,其中过多的苦味物质消费者不希望的,如何减少其中苦味就是研究者的工作了,也是在果汁加工中的重要问题。有人采用流动床反应器,在其中添加β-CD和α-CD,用于处理脐橙和葡萄柚中的苦味物质,发现其都可以有效的去除苦味,但是前者会多减少20%的柚苷和精油。

2.3 降低螯合食品中的胆固醇

胆固醇过高是引起心血管疾病的主要原因,怎样降低食品中的胆固醇是食品工业中要考虑的重要问题,环糊精能够与胆固醇形成包合物,降低食品中的胆固醇。有人通过将β-CD 固定在玻璃珠上,然后添加在牛奶中,牛奶中的胆固醇移去率达41%,而固定的胆固醇珠可以重复循环使用。此外,该固定化的β-CD也可以用于奶油,奶酪,蛋黄等产品的胆固醇脱出,效果良好[13]。

2.4 发挥食品保存作用

CD被应用在食品包装材料中,其应用有两方面的有点,一是可减少包装材料中的氧气含量;二是可以改善包装材料的释放和转移速率特性[12]。

另外,环糊精在香精香料、食用色素、脱水果蔬中也有应用。而且CD具有防止糖果,糕点

发粘,降低糖果吸潮性等作用[13]。在食品中风味物质的提取,活性成分及微量元素的分析与检测都有很大作用,而且研究进展很大[13]。例如,芝麻油和β-CD包络成固体,用于煮熟食品,在50℃以上香味又可以重新释放出来,保持了其风味。用CD将液体的酒精、饮料、调味品等制成固体粉末,使添加,运输,贮存更为方便[14]。

3、环糊精在环境保护上的应用

环糊精在环境保护上的应用是基于CD能和污染物形成包络物,来减少环境污染,并且由于包络物的形成,使得污染物稳定,减少污染物尤其是有害污染物的发散[10]。CD可以使农药稳定化,例如,天然除虫菊酯是低毒高效的杀虫剂,但它易受光分解,经过CD包络,可以十分稳定,同时提高药效,减少用量,从而保护环境[14]。

4、作为除臭剂包络气体分子

含有CD和L-抗坏血酸的除臭剂,能出去氯气,并且能出去异味及异气。CD还可以用来制备多孔陶瓷除味剂,用于空调和空气除味网膜的制备等等,作为气味吸收剂来处理纤维、羊毛等。此外,CD还可以用来包络带香味的气体分子,目前,如果将空气清新剂的气体分子用CD包合,则香味会更加长久[10]。含有CD或者麦芽糖的溶液注入一种喷嘴,用来自磁控阀的压缩空气使之雾化,形成亲水雾帘后,臭味被除掉,其操作费用只有常规方法的十分之一。该方法特别适合用于除去工业废气,粪便臭气,屠宰场臭气,以及各种腐烂物的臭气[18]。

5、在电化学上的应用

环糊精在电化学方面的应用有两个方面:一是用电化学方法研究环糊精包络物的电化学性质。1953年,Cramer将环糊精分别加如pH为7.0和8.0的甲基蓝水溶液,导致其氧化还原电位增加0.043—0.048V。后来大量的研究工作都是有关于环糊精及其包络物的电化学行为[15]。二是用环糊精包络物做活性物质制成传感器来做电化学分析[10]。相对于它在色谱上的应用,环糊精在电化学分析中的应用报道较少,主要是制成传感器用来扥系电活性物质[15]。近来,有人已经尝试用CD包合配合物引起的高选择性来作为电活性客体的极谱及伏安分析[16]。结合β-CD和碳材料的协同作用,发展了一系列电化学检测POPs的新材料和新方法,如采用湿化学法制备了β-CD--铂纳米粒子/石墨烯纳米复合材料,采用原子力显微镜、透射电子显微镜,傅里叶变换红外光谱和电化学方法对其表征,实现了对萘酚的超灵敏化学检测[17]。

此外,环糊精可以用作光纤传感器,环糊精光纤传感器的灵敏度较一般光纤传感器的灵敏度大14倍。环糊精还用在毛细管电泳来分离手性物质,以及生化技术等领域[10]。

6、环糊精在化妆品中的应用

环糊精包接香精用于化妆品已有不少例子,其目的都是为延长留香时间,减少香精对皮肤的刺激,或者是其能用于以水为基质的产品中。另外,也用于洗衣粉中,因为环糊精有消泡作用,可以减少织物的漂洗次数。环糊精增溶香精和亲脂性物质也比较突出,如薰衣草油不溶于水,但是与一定量的β-环糊精混合后,溶解性增加。环糊精还是一种有效的抗粉刺剂,因为它能包合皮肤中渗透出来的多不饱和脂肪酸,防止其被氧化,抑制自由基的形成,减少皮肤感染和炎症的发生也用于染发剂中[19]。环糊精形成的包合物能提高化妆品的稳定性。包合物质的稳定性耐热及耐光照性能会更强[20]。利用β-CD环糊精的特殊结构及性质对防晒物质VA进行包结、改性,提高其防晒性能,结果令人满意[21]。

五环糊精的应用前景

在化妆品领域中开发应用环糊精很有余地,前景看好[19]。环糊精在国外的应用已经相当普遍特别是在心脑血管药物,抗结核药物,高血压药物,胃肠病药物等方面的应用。环糊精的应用技术还掌握在少数比较前沿的科研人员手里,形成的生产力也即将开始。不过,化妆品工业使用环糊精在我国也是刚刚起步,都可以使用环糊精的复合物来充当中间介质,以改善活性成分的性能[20]。

环糊精的发展到现在已有一百多年,但早期由于环糊精生成酶稳定性差,产量低,分离提纯时加入的有机沉淀剂产生毒性等原因,使环糊精的研究与应用受到限制。直到七十年代中期,在解决了产量和毒性两大问题以后,才实现了一定规模的工业生产。今后环糊精的工业应用将更加集中于敏感性较强的芳香性物质的微包裹研究,主要应用于食品、医药、香料、化妆品、除草剂、杀虫剂等工业领域,随着环糊精价格的下降,环糊精化学的研究在新疆独特的资源优势中必将有更加广阔的应用前景[22]。有文献报道称,经研究的化学修饰的环糊精已有300多种[23]。

六总结

环糊精以其独特的结构特性,在食品、医药、环保、电化学等领域的广泛应用解决了许多前人无法解决的问题,为人们社会生活做出了巨大贡献。但是在许多问题上,特别是医药,食品。化妆品上的研究我觉得还要多多考虑其有无毒性。特别是多数改性环糊精水溶性好,毒性低,且价格适中,在应用领域有广阔的前景。环糊精既然有如此庞大的空腔,那么是不是可以将抗癌物质加入其中,作用于癌细胞?或者是加入一种能识别癌细胞里的DNA的物质,然后通过控制其复制,从而解决癌症问题?另外。环糊精外有很多基团,如果利用其外的羟基形成高聚物,然后应用在高分子材料中。

参考文献

[1] Jianxiang Zhang,Peter X,Ma. Cyclodextrin-based supramolecular systems for drug delivery:Recent progress and future perspective. Advanced Drug Delivery

Reviews.2013,1215-1233

[2] Thorsteinn Loftsson,Dominique Duchene. Cyclodextrins and their pharmaceutical applications:ScienceDirect. International Journal of Pharmaceutics 329 (2007)1—11 [3] Lajos Szete,Jozsef Szejtli. Hlghly soluble Cyclodextrin derivatives:chemistry,properties and trends in development. Advanced Drug Delivery Reviews 36(1997) 17—28 [4] 肖宏亮,高孔荣,谭盈科. 分子包覆材料环糊精在化妆品工业中的应用.华南理工大学化学工程研究所.1999,17-28

[5] 陈龙然1,袁唐培1,王雅芬2,冯明光1. 环糊精的性能、生产及其在食品工业中的应用.1.浙江大学生命科学学院 .2.杭州商学院食品与生物工程学院2003,24-8

[6] 张元超1,黄立新1,徐正康2. 环糊精的改性和应用研究进展. 现代食品科学与技术. 1.华南理工大学轻工与食品学院. 2.广州双桥股份有限公司2008,24-9

[7] Thorsteinn Loftsson*,Mar Masson. Cyclodextrins in topical drug formulation:theory and practice.Internationnal Journal of Phamaceceutice 225(2001)15—30. Faculty of Pharmacy,University of Iceland 225(2001) 15-30

[8] 张雪飞. 环糊精的研究进展及其应用.内蒙古名族大学学报.辽通职业学院医学

院.2010,5-16

[9] Thorsteinn Loftsson*,Dagn′y Hreinsd′ottir,,M′ar M′asson. Evaluation of cyclodextrin solubilization of drugs .Faculty of Pharmacy,University of Iceland,Hofsvallagata 53,IS-107 Reykjavik,Iceland. International Journal of Pharmace utics 302 (2005)18—28

[10] 古俊,常雁,潘景华*. 环糊精的实际应用进展.山西大学化学系. 1996,4-13

[11] Thorsteinn Loftsson* ,M′ar M′asson. Cyclodextrins in topical drug formulattions:theory and practice. Faculty of Pharmacy,University of Iceland. International Journal of Pharmaceutics 225(2001) 15—30.

[12] 纵伟*,苗榕宸,袁文亮. 环糊精包合物在食品工业中的应用. 食品工程. 郑州轻工业学院食品与生物工程学院. 2009,第3期

[13] 谭静,姜子涛*. 环糊精及其衍生物在食品领域中的应用. 食品研究与开发. 天津商业大学生物技术与食品科学学院天津市食品生物技术重点实验室. 2008,11-29

[14] 金征宇. 环糊精的性能、生产及其在食品工业中的应用.

[15] 项生昌. 环糊精在电化学中的应用. 大学化学. 福建师范大学化学系.2000,15-6

[16] 刘淑琴,刘志敏,潘景浩*.环糊精及其包合物的电化学研究及应用. 电化学. 山西大学化学系. 1996,2-4

[17] 朱刚兵. 基于β—环糊精和纳米碳材料的POPs电化学传感研究.湖南大学博士学位论文.

[18] 陈天朗,刘百斌. 环糊精在无机化学化工中的应用.化学研究与应用. 四川大学化学系

[19] 俪伟章. 环糊精性能及在化妆品中的用途. 日用化学品科学.1997,1

[20] 吴丽红. 用环糊精及其衍生物提高化妆品稳定性的研究. 华南理工大学工程硕士学位论文.

[21] 阮琼1,李永明1,阮瞾2,孙乘礼1,王智. β—环糊精维生素A包结及其在化妆品中的应用. 云南化工. 1、云南师范大学化学化工学院,云南大学外语学院. 2009,36-6 [22] 武俊杰,宋铁珊,陈志慧,刘力. 环糊精包合技术研究进展. 新疆师范大学学报. 中国科学院新疆理化技术研究所.2005,24-2

[23] 杨栋梁. 超分子结构环糊精及其在染整加工中的应用.

环糊精在医药中的应用

糊精定义: 淀粉在受到加热、酸或淀粉酶作用下发生分解和水解时,将大分子的淀粉首先转化成为小分子的中间物质,这时的中间小分子物质,人们就把它叫做糊精。 β-环糊精(简称β-CD)是一种新型的药物包合材料,具环状中空筒型、环外亲水、环疏水的特殊结构和性质。由于其特殊的空间结构和性质,能与许多物质、特别是脂溶性物质形成包合物,目前被广泛应用于医药业和食品业, 环糊精的成分与作用: 环糊精是环糊精转葡萄糖基酶(CGTase)作用于淀粉的产物,是由六个以上葡萄糖以α—1,4—糖苷键连结的环状寡聚糖,其中最常见、研究最多的是α-环糊精(α-cyclodextrin)、β-环糊精(β-cyclodextrin)、γ-环糊精(γ-cyclodextrin),分别由六个、七个和八个葡萄糖分子构成,是相对大和相对柔性的分子。经X射线衍射和核磁共振研究,证明环糊精分子成锥柱状或圆锥状花环,有许多可旋转的键和羟基,有一个空腔,表观外型类似于接导管的橡胶塞。空腔部排列着配糖氧桥原子,氧原子的非键电子对指向中心,使空腔部具有很高的电子密度,表现出部分路易斯碱的性质。分子构型为葡萄糖的C-1椅式构型,在它的圆筒部有-CH-葡萄糖苷结合的O原子,故呈疏水性。葡萄糖的2位和3位的-OH基在圆筒的一端开口处,6位的-OH基在圆筒的另一端开口处,所以圆筒的二端开口处都呈亲水性,这样,环糊精的筒形体的部上层、中层、下层由不同的基团组成. 环糊精的性质有点类似淀粉,可以贮存多年不变质。在强碱性溶液中也可稳定存在,在酸性溶液中则部分水解成葡萄糖和非环麦芽糖。由于环糊精没有还原性末端,总的来说,其反应活性是比较低的,只有少数的酶能是它明显水解。环糊精在室温下的的溶解

环糊精类手性固定相

8.1引言 近年来手性色谱领域的发展,使对映体的分离逐渐趋向于正规化,环糊在这方面起着重要作用。环糊精由villiers于1891年发现,由于它没有还原性和能被酸分解,在外形上又与纤维素十分相似,所以称为木粉(cellulosine)[1]。12年后,schardinger首次鉴定出环糊精是一种低聚糖,同时详细地叙述了它的制备和分离方法[2,3]。Schardinger还成功的分离出纯芽孢杆菌,取名纯化芽孢杆菌(bacillus macerans)至今仍是环糊精生产和研究中经常用的菌种。环糊精可以由水解液选择性的分离,也可用吸附色谱和纤维素柱色谱分离和鉴定环糊精[4]。 Freudenberg等人认识到了环糊精配合物的稳定性[5].此后对环糊精及其配合物特性的研究进行了大量的研究工作。目前高效液相色谱环糊精键合固定相,衍生化环糊精键合固定相,在对映体分离领域中已成为很有用的工具。 环糊精(cyclodextrin,CD)是由一定数量的葡萄糖单元通过α-1,4葡苷连接的环状分子结构。由所含葡萄糖单元的个数不同,可分为α-CD,β-CD ,γ-CD . α-CD含有6个葡萄糖单元,β-CD含有7个葡萄糖单元,γ-CD含有8个葡萄糖单元。 目前还未发现少于6个葡萄糖单元的环糊精,已鉴定出多于8个葡萄糖单元的环糊精,某些支化结构的环糊精已有报告[4]。环糊精的分子示意图类似于厚壁截顶圆锥筒(见图8.1)。 图8.1环糊精结构 n=1,α-CD;n=2,β-CD;n=3,γ-CD

每个葡萄糖单元的2,3位仲羟基在环的大口一方,6位伯羟基在环的小口一方。环的内侧是由氢原子和成桥氧原子形成的,所以环的内侧具有相对疏水性。环糊精分子中每个葡萄糖单元含有5个手性碳原子。因此α-CD,β-CD,和γ-CD 就分别含有30,35,40个手性碳原子。环糊精最突出的特点是能与许多有机分子形成包容配合物(inclusion complex),即客体分子部分或全部进入CD的空腔[5].环糊精的物理性质列在表8.1中 表8.1环糊精的物理性质 环糊精葡萄糖 单元 分子量 腔尺寸水溶性,M 外径内径深度 α-CD 697313.7 5.77.80.114 β-CD 7113515.37.87.80.016 γ-CD 8129716.99.57.80.179环糊精液相色谱固定相的发展大致可分为环糊精聚合物固定相,环糊精键合固定相,衍生化环糊精固定相或多模式环糊精固定相几个阶段。 1965年,Solms和Enli[6]合成出了保留环糊精包合作用性能的CD聚合物,他们把环糊精与3-氯-1,2还氧丙烷反应,得到适用于液相色谱标准粒径的不溶性聚合物的固定相。这种固定相对溶质的保留是CD-溶质包合常的函数,且对大量的天然产物,香料,芳香酸,核酸等有分离能力。其缺点是机械强度差,不能在高压下操作。以后的研究多集中在如何将环糊精连接在硅胶上,得到能在高压下使用的环糊精键合固定相。 1983年,Fujimura [7]和Kawguchi [8]合成出了硅基氨和酰胺键合固定相,但该固定相稳定性差,易水解。 1985年,Armstrong 研究组[9]合成除了不含硫,氮的环糊精手性固定相,这类固定相稳定性好,不易水解,目前这些稳定的固定相已作为Cyclobond 商品出售,Cyclobond 分别为β-CD,α-CD和γ-CD,对位置异构体和光学异构体都有很好的拆分能力。但是这类环糊精固定相只有在反相条件下才能使用才能有分离能力。在正相条件下,由于流动相中的非极性分子占据了环糊精内腔,使得溶质分子很难进入内腔,因而不能对溶质包合。对于手性化合物常常没有拆分能力,限制了它的应用范围。

环糊精的作用主要有哪些

环糊精在许多的大型行业中被适量使用。其中在食品、香料、医药、化合物拆分等方面有着很关键的作用,同时也可以模拟酶研究。由于在各个行业中起的作用不同,需要结合实际的应用行业来分析。 环糊精耐热,熔点高,加热到约200℃开始分解,有较好的热稳定性;无吸湿性,但容易形成各种稳定的水合物,所以对于一些食品或者药品起到了的固定和乳化的作用。因此我们的各个行业中也是离不开环糊精,同时也在不断研究环糊精的应用前景。 它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。 1、在食品饮料中,还可以起到乳化剂的作用,使香料油形成包结复合物,直接引入水溶液中使用,使食品内不相容的成份均匀混合,对着色剂可起到保护作用,免受日光、紫外光、气体、氧化、热冲击等彩响,大大延长褪色时间。此外对改进在食品系统中的加工工艺复合成分的传递性能以及改变固体食品的

质地及密度、改善食品口感等方面均有显著功效。 2、在医药行业:环糊精能有效地增加一些水溶性不良的药物在水中的溶解度和溶解速度,提高药物的稳定性和生物利用度;减少药物的不良气味或苦味;降低药物的刺激和毒副作用;以及使药物缓释和改善剂型。 3、在分析化学上: 环糊精是手性化合物,它对有机分子有进行识别和选择的能力,已成功地应用于各种色谱与电泳方法中,以分离各种异构体和对映体;在环保上:环糊精在环保上的应用是基于其能与污染物形成稳定的包络物,从而减少环境污染。 水溶性环糊精衍生物具有更强的增溶能力,对于不溶性香料、亲脂性农药有非常好的增溶效果;不溶性环糊精衍生物可应用于环境监测和废水处理等环保方面,如将农药包结于不溶性环糊精聚合物中,在施用后就不会随雨水流失;环糊精交联聚合物能吸附水样中的微污染物。农业上用改性环糊精浸种可能会改变作物生长特性和产量。

wms仓储物流管理系统应用的意义

wms仓储物流管理系统应用的意义 WMS仓储物流管理系统应用的意义 物流是企业、社会、生活得生命线。物流的效率化,就是企业对高效率,低浪费的追求。物流是企业重要的业务内容之一,没有物流的话,原材料不能正常采购、对消费者的商品供给也将停止。物流作为企业竞争力的源泉,从 WMS 实时获得的物流信息,作为经营改善的数据具有巨大的意义。 WMS 是为实现物流中心内库存和业务最优化的管理系统。 WMS 对于物流成本的消减和从生产到消费的供应时间的缩短,供应链管理,以及企业高层在有关物流方面做出快速决策时都有着重要的意义。 在全球化供应链的规划与运作之下,依各地的差异,将配销、仓储等作业,规划在不同地点,或是以不同的规模营运以符合企业的经营策略。区分据点作业可以让个别储运中心更为专注在所负责的范畴,然而,对营运总部,则需要掌握每个地点的储运现况,以实时信息辅助供应决策的形成。 中渊科技WMS2.6移动仓储管理系统是中渊科技基于条码技术、RFID(无线射频自动识别)技术和现代化仓储精益管理思想开发出来的仓库管理系统,仓储实现自动化管理,能有效地对仓储流程和空间进行管理,实现批次、单品管理、快速出入库、货物调拨和动态盘点。可以自动地记录下物流的流动,RFID、条码技术与信息处理技术的结合帮助我们合理地利用仓库空间,以最快速、最正确、最低成本的方式为客户供最好的服务。 通过运用自动识别技术与移动计算技术,通过无线网络进行数据采集记录并跟踪物料在企业内部物流中的各个环节,对库存物品的入库、出库、移动、盘点、配料、拣料、出货、运输等操作进行全面的控制和管理,有效的利用仓库存储空间,提高仓库的仓储能力,最终提高企业仓库存储空间的利用率及企业物料管理的质量和效率,降低企业库存成本,提升企业市场竞争力。本系统还涵盖了对原材料上线和成品生产下线的全过程物流管理,建立原料批次与成品的对应关系,实现成品到原料的质量追溯。 名句赏析~~~~~ 不限 主题 不限抒情四季山水天气人物人生生活节日动物植物食物 山有木兮木有枝,心悦君兮君不知。____佚名《越人歌》 人生若只如初见,何事秋风悲画扇。____纳兰性德《木兰词?拟古决绝词柬友》 十年生死两茫茫,不思量,自难忘。____苏轼《江城子?乙卯正月二十日夜记梦》只愿君心似我心,定不负相思意。____李之仪《卜算子?我住长江头》玲珑骰子安红豆,入骨相思知不知。____温庭筠《南歌子词二首 / 新添声杨柳枝词》曾经沧海难为水,除却巫山不是云。____元稹《离思五首?其四》愿得一心人,白头不相离。____卓文君《白头吟》去年今日此门中,人面桃花相映红。____崔护《题都城南庄》 平生不会相思,才会相思,便害相思。____徐再思《折桂令?春情》入我相思门,知我相思苦。____李白《三五七言 / 秋风词》 山无陵,江水为竭。冬雷震震,夏雨雪。天地合,乃敢与君绝。____佚名《上邪》人生自是有情痴,此恨不关风与月。____欧阳修《玉楼春?尊前拟把归期说》一往情深深几许,深山夕照深秋雨。____纳兰性德《蝶恋花?出塞》两情若是久长时,又岂在朝朝暮暮。____秦观《鹊桥仙?纤云弄巧》执子之手,与子偕老。____佚名《击鼓》

手性固定相

手性固定相 手性HPLC中,手性固定相是实现对映体拆分的基础,并有多种类型。 手性固定相可以根据其化学类型分类为:①“刷型”手性固定相;②手性聚合物固定相;③环糊精类手性固定相;④大环抗生素手性固定相;⑤蛋白质手性固定相;⑥配体交换手性固定相;⑦冠醚手性固定相等。 手性固定相也可以根据它们与被拆分的对映异构体间的作用机制进行分类:第一类是通过氢键、π—π或偶极吸引等相互作用与对映异构体形成配合物进行拆分的手性固定相,N—硝基苯甲酰基氨基酸或N—萘基氨基酸酯手性固定相属于该类;第二类是通过吸引和包合作,用进行拆分的手性固定相,纤维素衍生物手性固定相大都属于该类;第三类是具有手性空穴的手性固定相,对映异构体进入手性空穴后形成包合配合物被拆分,这类手性固定相主要为环糊精,冠醚手性固定相和螺旋型聚合物(如三苯甲基丁烯酸酯)也属于该类;第四类是通过对映异构金属配合物进行拆分的手性固定相,也称为手性配体交换色谱(chiral ligand exchange chromatography,CLEC);第五类是通过疏水和极性相互作用进行手性拆分的蛋白质手性固定相。 手性固定相的分类 手性固定相按其分离机理分为以下几类: 含有手性空腔的手性固定相:其中包括衍生化纤维素手性固定相、环糊精手性固定相、冠醚手性固定相、合成手性聚合物、手性印迹凝胶相。

纤维素是纯天然高聚物,具有高度有序螺旋状结构。这种结构可对对映体有一定的识别作用。将其羟基衍生化后,降低了它的极性,增加了手性固定相与被拆分分子的作用点处的空间位阻,从而改善了它的色谱行为和选择性。将纤维素衍生化后涂覆或键合于硅胶微球上,增加其机械稳定性。 目前大赛路公司(Daicel)的手性固定相制备技术很成熟。它现有的商品柱及其性质见下表:

环糊精作为超分子结构的构筑单元

环糊精作为超分子结构的构筑单元 刘 雪1 , 曹克玺2 , 骆定法1 , 孙德志 1 (1.聊城师范学院化学系,山东聊城252059;2.临沂兰山职工中专,山东临沂276000) 摘 要:对环糊精的来源和分子结构特点作了简单介绍,论述了环糊精及其衍生物在超分子化学领域中的地位。理论研究上,环糊精是研究弱相互作用的模型分子化合物,化学工业中环糊精及其衍生物具有广泛用途,显示出环糊精化学研究和应用的无限潜力。关键词:环糊精;超分子结构;包合物 中图分类号:TQ 463+ .3 文献标识码:A 文章编号:0367-6358(2001)06-0321-04 修稿日期:2000-11-20 作者简介:刘 雪(1966~),女,学士.主要从事无机及结构化学研究. Cyclodextrins as Building Blocks of Supramolecular Structure LIU Xue 1, CAO Ke-xi 2, LUO Ding-fa 1, SU N De-zhi 1 (De p artment of Chemis try ,Liaoch eng N ormal University ,Shandong Liaocheng 252059,China ; 2.Liny i Lanshan P olytechnic School ,Shangd ong Liny i ,276000,China ) Abstr act :Synthesis and molecular structure of cyclodextrin (CD)were briefly introduced.T he status of CDs and derivatives of CD in supramolecular stucture were described .In research areas ,CD is a type of model compound being used for the study of weak interaction .In industry ,CD can be utilized for various purposes.T his review indicates that the chemistry of cyclodextrins has potentiality is research and applica-tion Key wor ds :cyclodextrin ;supramolecular structure ;inclusion 环糊精是直链淀粉的生物降解产物,于1891年由Villiers 首次分离出来,1904年Scharidinerge 表征它们为环状低聚糖,1938年Fr eudenberg 等人把它们描述成由吡喃葡萄糖单元通过1,4-糖苷键连接构成的大环化合物 [1-3] 。自从此类化合物发现以 来,人们对它们的兴趣日益浓厚[3] 。合成化学家们对它们感兴趣,是由于它们具有良好的稳定性和可以 区域选择性修饰,从而获得许许多多很有实用价值的新型化合物;理论化学家们对它们感兴趣,是由于它们的分子具有特殊的孔结构、光学活性和拓朴结构可诱导变形性;化学、化工工作者们对此类化合物普遍感兴趣,还由于它们来源于可再生廉价原料——淀粉,并几乎无毒。近年来,人们又发现环糊精对超分子化学十分重要,它们及相应的衍生物构成一大类水溶性不同的手性主体(host )分子,这些主 体分子可用来与客体(guest)分子结合成超分子体系,从而作为研究弱相互作用的模型化合物,自1979年Saeger W 发表题为“在研究和工业中的环糊精包 合物”以来[4],又有1万多项研究工作见诸报导。1 环糊精的合成、结构和物理性质 1.1 合成 用环糊精糖基转化酶可以由直链淀粉获得相对分 子质量大小不同的环糊精和直链寡聚麦芽糖的混合 物,然后用不同的沉淀剂将特定相对分子质量的环糊精分离出来,常见的A 、B 和C 环糊精分别用1-癸醇、甲苯和十六环-8-烯-1-酮捕集、收率为50%左右。1.2 结构 首先,来源于生物物质的环糊精是旋光性的,且直链淀粉只能降解出右旋对映体的环糊精。这类大环化合物的分子(图1)为中空圆台或截头圆锥形, ? 321?第6期化 学 世 界

关于环糊精的研究状况剖析

关于环糊精的研究状况 摘要:本文综述了环糊精的发现过程,环糊精的理化性质,提出了环糊精的改性,阐述了环糊精在现阶段医药、食品、环境保护、电化学、以及化妆品等方面的广泛应用,特别是食品的应用,展望了其广泛的利用空间,提出了环糊精可能的应用领域。 Abstract:This paper reviews the discovery process cyclodextrin, physical and chemical properties ,put forward the modified cyclodextrin and use of cyclodextrin in medicine food,environmental protection ,electrochemical at present stage and cosmetics and so on are wide.Especially the application of food.The paper do not omly prospecte its extensive ues of space,but also show us the possibility application fields about cyclodextrins . 关键词:环糊精应用进展 Key words: cyclodextrin application progress 一环糊精的发现与发展 自1891年Villiers发现环糊精至今已逾百年,它已经发展成为超分子化学最重要的主题,其间包含着许多科学家和科技工作者的智慧和劳动。Villiers最早从芽孢杆菌属(Bacillus)淀粉杆菌(Bacillus amylobacter)的1kg淀粉消化液中分离出3g可以从水中重结晶的物质,确定其组成为(C6H10O5)2*3H2O,称其为—木粉。1903年,Schardingei用分离的菌株消化淀粉得到两种晶体化合物,确认他们与Villiers分离出的—木粉是同一物质,并用碘—碘化钾反应区别了a-环糊精(a-cyclodextrin)和b-环糊精(b-cyclodextrin),这种用碘液反应判断a-,b-环糊精的方法至今沿用。Schardinger成功的分离出春芽孢杆菌,取名软化芽孢杆菌(Bacillus macerans),至今仍然是生产和研究中经常使用的菌种。为了纪念他对建立环糊精化学基础的贡献,环糊精也曾经叫沙丁格糊精。继Schardinger之后在环糊精化学研究中起领导作用的是Pringsheim,他发现这种结晶性糊精和它的乙酰化产物能结合各种有机物生成复合体(complexes),由于使用不合适的冰点降低法确定分子量,以及许多推测缺乏事实依据,这一时期的研究工作进展很慢[1]。 从发现到20世纪初Schardinger发表他的第一篇关于α-CD和β-CD后,由Norman Haworth领导的英国环糊精研究小组详细的解释了组成环糊精的个小物质的大小和形成过程。直到1932年,环糊精和各种有机物形成复合物的性质已经被发现[2]。从20世纪30年代中期到60年代末是环糊精化学发展的第二阶段。Freudenberg最先得到纯环糊精,并和他的合作者根据乙酰溴和多甲基化反应产物的水解结果汇同文献报道的数据,提出Schardinger糊精是葡萄糖单元以麦芽糖方式结合的环状分子,分子内只含a-1,4糖苷键。

AGV在制药业的应用

Pharmaceutical 制药业 The Pharmaceutical Industry has high demand in quality and validity. We have long experience of working in this field and have done many installations for almost all

multinational companies in the Pharmaceutical Industry. AGVs are uses in various environments in the production of pharmaceuticals, from black and white areas. The modular structure of our vehicles makes it possible customize our solutions and material handling equipment onboard just to fit your specific needs. The trend as automating and centralizing the production in Pharmaceutical Industry has made AGV systems a vital part in the integration of the transport flow and overall manufacturing system. With strict control of temperature, exposure times, tight deadlines, security quality assurance and other demands we have nearly 100 installations and references in this specific field. 制药业对于质量和效度要求很高。我们在该行业经验由来已久,为很多制药业跨国公司安装了AGV系统。 AGV可用于不同的制药环境,黑区白区都可使用。我们车辆的模块式结构使我们可以根据客户的具体需求定制方案和配套的物料承载设备。制药业自动化和集约化的生产趋势使得AGV系统在整个制造环境和物流方面变得极为重要 制药业对温控,曝光时间,有效期,质量安全等有严格的要求。我们在这个特殊领域安装了将近100个AGV系统。 Solutions 解决方案 In the Pharmaceutical Industry Atab have a number of different applications we have installed AGV-system for various processes like:根据制药业的工序,我们有不同的AGV系统可供选择。 Transport from production to the packaging生产与包装之间的运输 Transport to different dispatch areas like work-stations, feeders, receivers, tumblers and washing machines etc.运送物料到不同的调度区如工作站,送料器,接收区,滚筒机,清洗机等。 Unsuitable environment for a human operator 不适合人工操作的环境 Just-in-time handling of work in process 生产过程中的按需运输 To avoid human affect with sensitive material不能人工接触的敏感物质的运输 Integration into an existing production line or process 集成为现有生产线的一部分 Flexibility layout and easy to change with new production lines and products 当生产环境发生变化时,可灵活容易地调整布局 Production buffer for pharmaceutical products 可作为药物的生产缓冲区

环糊精在医药中的应用

环糊精在医药中的应用 Modified by JACK on the afternoon of December 26, 2020

糊精定义: 淀粉在受到加热、酸或淀粉酶作用下发生分解和水解时,将大分子的淀粉首先转化成为小分子的中间物质,这时的中间小分子物质,人们就把它叫做糊精。 β-环糊精(简称β-CD)是一种新型的药物包合材料,具环状中空筒型、环外亲水、环内疏水的特殊结构和性质。由于其特殊的空间结构和性质,能与许多物质、特别是脂溶性物质形成包合物,目前被广泛应用于业和食品业, 环糊精的成分与作用: 环糊精是环糊精转葡萄糖基酶(CGTase)作用于淀粉的产物,是由六个以上葡萄糖以α—1,4—糖苷键连结的环状寡聚糖,其中最常见、研究最多的是α-环糊精(α-cyclodextrin)、β-环糊精(β-cyclodextrin)、γ-环糊精(γ-cyclodextrin),分别由六个、七个和八个葡萄糖分子构成,是相对大和相对柔性的分子。经X射线衍射和核磁共振研究,证明环糊精分子成锥柱状或圆锥状花环,有许多可旋转的键和羟基,内有一个空腔,表观外型类似于接导管的橡胶塞。空腔内部排列着配糖氧桥原子,氧原子的非键电子对指向中心,使空腔内部具有很高的电子密度,表现出部分路易斯碱的性质。分子构型为葡萄糖的C-1椅式构型,在它的圆筒内部有-CH-葡萄糖苷结合的O原子,故呈疏水性。葡萄糖的2位和3位的-OH基在圆筒的一端开口处,6位的-OH基在圆筒的另一端开口处,所以圆筒的二端开口处都呈亲水性,这样,环糊精的筒形体的内部上层、中层、下层由不同的基团组成. 环糊精的性质有点类似淀粉,可以贮存多年不变质。在强碱性溶液中也可稳定存在,在酸性溶液中则部分水解成葡萄糖和非环麦芽糖。由于环糊精没有还原性末端,总的来说,其反应活性是比较低的,只有少数的酶能是它明显水解。环糊精在室温下的的溶解度从-25.6克不等,水溶液具有旋光性。环糊精的稳定性一般,200摄氏度左右时分解。 医药行业中糊精可作为药用糖的增稠剂和稳定剂也可作为片剂或冲剂的赋形剂和填充剂。 β—环状糊精及其应用 一、性能与特点: 倍他环糊精(β—环状糊精)是葡萄糖基转移酶作用于淀粉的产物,是白色结晶性粉末,是由7个葡萄糖单位经α糖键连接成环形结构的糊精。分子中间形成一个穴洞,穴洞具有独特的包接功能,能与许多种物质形

能分离手性化合物的固定相_环糊精

能分离手性化合物的固定相—环糊精 王东新 (南京师范大学化学与环境科学学院,江苏南京210097) [摘要] 介绍了环糊精类化合物在色谱手性分离中的应用及其结构与特性.简单讲述了目前对环糊精能进行手性分离的原因的几种解释.分析了环糊精衍生物的种类及其在手性分离中的应用,特别是近年来,一些新的环糊精固定相和一些新方法的使用,使得环糊精的手性分离范围进一步拓宽. [关键词] 环糊精,手性分离,对映体 [中图分类号]O658 [文献标识码]A [文章编号]100124616(2008)022******* Cyclodextr i n :The St a ti onary Pha se for Ch i ra l Separa ti on W ang Dongxin (School of Che m istry and Envir onmental Science,Nanjing Nor mal University,Nanjing 210097,China ) Abstract:The constructi on and p r operties of cycl odextrins are revie wed .The possible mechanis m of chiral separati on of cycl odextrins is exp lained briefly .The derivatives of cycl odextrins and their app licati ons in chiral separati on are intr o 2duced .I n recent years ne w derivatives of cycl odextrins and app licati on of ne w methods expanded the area of chiral sepa 2rati on of cycl odextrins . Key words:cycl odextrins,chiral separati on,enanti omers  收稿日期:2007209207. 基金项目:教育部“211工程”资助项目. 通讯联系人:王东新,副教授,研究方向:气相色谱的制备新方法与色谱分离.E 2mail:dongxinw@s ohu .com 手性化合物是化学中的一种奇特的现象.一种手性化合物的两个互为对映体的分子中原子的种类与个数完全一样,原子连接的顺序也完全一样,但它们却是两种不能重合的分子.它们互为镜像,就像左、右手互为镜像一样.它们在药理学性质上有重大差异,有些手性分子药物的一个对映体有很好的药效,而另一对映体却没有药效甚至有毒性,因而分析药品中两种异构体的含量意义重大.但是两者物理化学性质极其相似,分离比较困难.色谱手性分离技术就是解决这一问题的有效手段.除了对药物对映体的测定分析,环境分析、地质分析、食品工业、化工生产中的不对称合成都和手性分离技术关系密切.手性分离可以是气相色谱、液相色谱,也可以是毛细管电泳等.气相色谱手性分离具有快速、灵敏、准确的优点,但是对热稳定性差、难以挥发的化合物不适用.在手性分离中选择合适的手性分离剂至关重要,而环糊精(cycl odextrin,CD )类的化合物就是其中的首选. 1 环糊精的结构与特性 环糊精是D 2吡喃葡萄糖单元通过1,42糖苷键联结成的环状低聚糖.可用作色谱固定相的分别含6、7、 8个葡糖,称为α、β、γ2环糊精.环糊精的结构是一个中空的圆台,如图1所示. CD 分子空腔的内表面不含羟基,具有疏水性;而在外表面的大口端有22位和32位的仲羟基,小口端有62位的伯羟基.外表面有亲水性.母体环糊精熔点高(290℃),成膜性差,广泛使用的β2环糊精水溶性不好,因而CD 的母体通常不适宜作为气相色谱的固定相使用.为了作为固定相使用,可将羟基醚化或酯化,可以降低熔点,改善水溶性,提高其可涂渍性与成膜性,以使其适合作气相色谱的固定相. 第31卷第2期2008年6月 南京师大学报(自然科学版)JOURNAL OF NANJ I N G NOR MAL UN I V ERSI TY (Natural Science Editi on ) Vol .31No .2Jun,2008

环糊精与双酚A的分子识别研究

环糊精与双酚A的分子识别研究 分别利用β-环糊精、2-羟丙基-β-环糊精、γ-环糊精和2,6-二甲基-β-环糊精对环境内分泌干扰素分子双酚A进行包合,采用Hildebrand-Benesi方程和紫外可见分光光度计测定了环糊精包合双酚A过程的结合常数;同时利用范特霍夫方程获得4种环糊精与双酚A结合的熵变和焓变数据,根据不同环糊精分子与双酚A分子结合的热力学信息,明确了环糊精与双酚A的分子识别机制。结果表明:当常温(20 ℃)时,包结常数大小顺序为β-环糊精>γ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精,在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素,尺寸匹配为次要影响因素;在不同环糊精与双酚A的包合过程中,其熵变ΔS>0,其焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。这可能是因为β-环糊精和γ-环糊精均无分支存在,空间位阻相对最小,而2-羟丙基-β-环糊精只含有1个羟丙基,空间位阻相对于含有2个甲基的2,6-二甲基-β-环糊精要小;在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素;此外虽然β-环糊精和γ-环糊精均无分支,但是β-环糊精和γ-环糊精的内腔尺寸具有一定的差别,尺寸匹配也是影响包合的因素之一,综合两方面的因素,Ka(β-环糊精)>Ka(γ-环糊精)。 2.2 环糊精与双酚A结合过程中焓变和熵变的测定及讨论 上述对于环糊精Ka的测定均是在室温下进行的,而Ka与温度有一定的关系。本节通过变温控制来测定不同温度下的Ka,再通过范特霍夫方程拟合得出其热力学常数(熵变和焓变)。 表2和图2分别是在20、30、40、50、60 ℃时BPA和β-环糊精形成包结物其紫外可见吸收光谱吸光度及拟合曲线(λex=194 nm,BPA=4.4×10-5 mol/L)。根据H-B方程可确定BPA和β-CD形成1:1包结物,且Ka分别为1.99×105 L/mol、1.22×105 L/mol、9.05×104 L/mol、6.26×104 L/mol和4.80×104 L/mol。 依据测定的β-环糊精与双酚A的包合物于不同温度下在相对最大吸收波长处的吸光度A,利用-RTlnKa=ΔH-TΔS拟合可得到其ΔH=-28 560 J,ΔS=3.596 J/K。如表3和图3所示。 同理,γ-环糊精形成包结物后,拟合得其ΔH=-193 30 J,ΔS=34.153 J/K;2,6-二甲基-β-环糊精形成包结物后,拟合得其ΔH=-3 368.7 J,ΔS=76.105 J/K;2-羟丙基-β-环糊精形成包结物后,拟合得其ΔH=-259 62 J,ΔS=7.783 8 J/K。 由试验结果可知:不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。在双酚A与环糊精的包合过程中,空间位阻效应是其主要影响因素,尺寸匹配也有一定影响。 (2)不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且β-环糊精2-羟丙基-β-环糊精>γ-环糊精>2,6-二甲基-β-环糊精。升高温度,平衡向逆反应方向

WMS一般具有以下几个功能模块

WMS一般具有以下几个功能模块:管理单独订单处理及库存控制、基本信息管理、货物流管理、信息报表、收货管理、拣选管理、盘点管理、移库管理、打印管理和后台服务系统。 WMS系统可通过后台服务程序实现同一客户不同订单的合并和订单分配,并对基于PTL(pick to light 亮灯拣选)、RF、纸箱标签方式的上架、拣选、补货、盘点、移库等操作进行统一调度和下达指令,并实时接收来自PTL、RF和终端PC的反馈数据。整个软件业务与企业仓库物流管理各环节吻合,实现了对库存商品管理实时有效的控制。下面针对博科WMS(仓管之星)介绍几个基本功能:基本信息管理:系统不仅支持对包括品名、规格、生产厂家、产品批号、生产日期、有效期和箱包装等商品基本信息进行设置,而且货位管理功能对所有货位进行编码并存储在系统的数据库中,使系统能有效的追踪商品所处位置,也便于操作人员根据货位号迅速定位到目标货位在仓库中的物理位置。 上架管理:系统在自动计算最佳上架货位的基础上,支持人工干预,提供已存放同品种的货位、剩余空间,并根据避免存储空间浪费的原则给出建议的上架货位并按优先度排序,操作人员可以直接确认或人工调整。 拣选管理:拣选指令中包含位置信息和最优路径,根据货位布局和确定拣选指导顺序,系统自动在RF终端的界面等相关设备中根据任务所涉及的货位给出指导性路径,避免无效穿梭和商品找寻,提高了单位时间内的拣选量。 库存管理:系统支持自动补货,通过自动补货算法,不仅确保了拣选面存货量,也能提高仓储空间利用率,降低货位蜂窝化现象出现的概率。系统能够对货位通过深度信息进行逻辑细分和动态设置,在不影响自动补货算法的同时,有效的提高了空间利用率和对控制精度。 WMS系统集成了信息技术、无线射频技术、条码技术、电子标签技术、WEB 技术及计算机应用技术等将仓库管理、无线扫描、电子显示、WEB应用有机的组成一个完整的仓储管理系统,从而提高作业效益,实现信息资源充分利用,加快网络化进程。其中的关键技术主要有无线射频技术(RadioFrequency,简称RF),电子标签,数据接口技术。 WMS如果缺少了RF系统的有力支持,仓储水平未必能有大幅度的提高,完善的WMS是离不开RF系统支持的。因为WMS的高效率运作,是以快速、准确、动态地获取货物处理数据作为其系统运行的基础。而RF通讯系统使得WMS实时数据处理成为可能,从而大大简化了传统的工作流程。如把原来的移动码就有50余种简化为一两个操作。实践证明,以RF技术为基础的WMS,无论是在确保企业实时采集动态的数据方面,还是在提高企业效率与投资回报率方面都具有很大的优势。RF无线射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据。识别工作无须人工干预,可以工作于各种恶劣环境。 电子标签即射频卡,又称为感应卡,是一种通过无线电波读取卡内信息的新型科技IC卡,它成功地解决了无源和免接触这一难题。在实际应用中,电子标签附着在待识别物体的表面。阅读器可以无接触地读取并识别电子标签中保存地电子数据,从而达到自动识别地目的。通常阅读器和电脑相连,所读取地标签信息被传送到电脑上进行下一步处理。 WMS能否与企业的资源管理系统ERP等系统实现无缝连接,这成为评价其功能的重要因素,也是企业尤其是制造企业在实施供应链管理或物流一体化管理的

β- 环糊精在分子组装中的应用

β- 环糊精在分子组装中的应用 摘要:本文综述了β-环糊精及其衍生物在分子组装中的应用。 关键词:β-环糊精;分子组装 自20纪初环糊精(CDS)被分离得到以来,人们对其研究不断取得新的进展。不仅提高了CDs的产量,而且对天然CDs进行了结构改造,合成了一系列具有独特性能的CDs衍生物。目前,CDS除了在医药工业方面有广泛的用途外,还在食品、化装品、环境保护、色谱分析等方面也得到了应用。继续深人研究CDs及其包合物,对今后更好的利用CDs有极其重要的意义。 环糊精(cyclodextrins,简称CDs)是由 环糊精葡萄糖转移酶(cGT)作用于淀粉或麦 芽糖溶液制得的一系列聚合程度不等的环 状低聚糖。常见的环糊精有3种,被命名为 分别含有6个、7个和8个葡 萄糖单元。环糊精分子呈空心圆台结构 (见图1)。分布于圆台边缘的羟基(葡萄糖单元2位、3位仲羟基位于广口端,6位伯羟基处于窄口端)使CD易溶于水,而其内空腔由于C—H键和醚键的覆盖而呈疏水性,这正是疏水性客体分子能自发进入环糊精内部疏水性空腔,从而形成主.客体包合物的基础。作为主体的CD 与客体分子形成包合物的基本条件除尺寸的匹配外,一般还与主客体分子间的相互作用有关,如疏水作用、范德华力、氢键、偶极.偶极相互作用、电荷转移作用等。 王杰等[5]综合论述了环糊精包合作用为驱动力组装大分子网络的两种主要方法。将带有环糊精支化基团的高分子长链与带有客体基团的高分子长链的在溶液中混合,由于环糊精与客体基团间的包合作用,可以组装成具有交联结构的超分子网络[6-7]。由于环糊精具有疏水的空腔,某些高分子长链可以穿过其空腔,通过非共价键连接在一起,形成多聚准轮烷(polypseudorotaxane)[8],长链两端用大基团封闭后可形成多聚轮烷(polyrotaxane),形状类似于一串“项链”。环糊精多聚轮烷分子管道表面具有大量的醇羟基,多个分子管道之

单-6-OTS-β-环糊精的合成与表征实验报告

单-6-OTS-β-环糊精的合成与表征 摘要 环糊精是由环糊精葡萄糖基转移酶(CGT) 作用于淀粉所产生的6~12 个葡萄糖单元以1 4-糖苷键结合而成的环状低聚糖,具有“内腔疏水,外侧亲水”的特性,使其能作为“宿主”包络多种有机、无机分子“客体”形成特殊结的包络物。因此环糊精及经化学修饰得到的一些衍生物可以较好地模拟天然酶的一些特性,并被广泛地应用于制药、食品、环保、化妆品、生物医学、电化学、有机物的选择性合成等领域。6-OTs-β-cD是合成6位取代环糊精衍生物的一种必须经过的中间产物,由β-环糊精与对甲苯璜酰氯经过磺酰化反应得到,研究6-OTs-β-cD的合成方法在环糊精化学合成中占有极其重要的地位。 关键词:环糊精 6-OTs-β-cD 对甲苯璜酰氯 Abstract: Cyclodextrin by cyclodextrin glycosyltransferase ( CGT ) effect on starch produced by the 6~12 glucose unit with 1 4- glycosidic bond combination of cyclic oligosaccharides, with " inner lateral hydrophobic, hydrophilic " characteristics, which can be used as " host " envelope a variety of organic, inorganic molecules to form a special " object " junction complexes. Therefore the cyclodextrin and chemically modified by some derivatives can be used to simulate the natural enzymes in some properties, and is widely used in pharmaceutical, food, environmental protection, biomedicine, cosmetics, electrochemistry, organic matter selective synthesis etc.. 6-OTs- β-cD is a synthesis of 6 substituted cyclodextrin derivatives with a must pass through the intermediate product, byβ - cyclodextrin and toluene sulfonyl chloride through reaction of Huang, of 6-OTs- β-cD synthesis method in cyclodextrin chemistry occupies an extremely important position. Key words:cyclodextrin 6-0Ts-β-cyclodextrin P—toluenesuifonyl chloride 引言 β一环糊精由7个葡萄糖单元通过1,4一a甙键连结而成,这些单体以环状束

相关文档
最新文档