均值不等式公式完全总结归纳(非常实用)

均值不等式公式完全总结归纳(非常实用)
均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结

1. (1)若R b a ∈,,则ab b a 22

2

≥+

(2)若R b a ∈,,则2

2

2b a ab +≤

(当且仅当

b a =时取“=”)

2. (1)若*,R b a ∈,则ab b a ≥

+2

(2)若*

,R b a ∈,则ab b a 2≥+ (当且仅当b

a =时取“=”)

(3)若*

,R b a ∈,则2

2??

? ??+≤b a ab (当且仅当b a =时取“=”)

3.若0x >,则1

2x x +≥ (当且仅当1x =时取“=”)

若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”)

若0x ≠,则1

1122-2x x x x x x

+≥+

≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a

b b

a (当且仅当

b a =时取“=”)

若0ab ≠,则22-2a b a b a b b

a

b

a

b

a

+≥+≥+≤即或 (当且仅当b a =时取“=”)

5.若R b a ∈,,则2

)2

(22

2b a

b a +≤+(当且仅当b a =时取“=”)

『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的

和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值

例1:求下列函数的值域

(1)y=3x 2+

1

2x 2

(2)y=x+

1

x

解:(1)y=3x 2+

1

2x 2

≥23x 2·

1

2x 2

= 6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x ≥2

x ·1

x

=2;

当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2

∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项

例 已知54

x <,求函数14245

y x x =-+

-的最大值。

解:因450x -<,所以首先要“调整”符号,又1

(42)45

x x --g 不是常数,所以对42x -要进行拆、凑项,

5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--?

?231≤-+= 当且仅当1

5454x x

-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数

例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设2

30<

解:∵230<-x ∴2922322)23(22)23(42

=??

? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即??

?

??∈=23,04

3x 时等号成立。

技巧三: 分离

例3. 求2710

(1)1

x x y x x ++=

>-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号)。 技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t=时,4

259y t t

≥?=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)()

A

y mg x B A B g x =++>>,g(x)恒正技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x

=+的单调性。 例:求函数22

4

y x =+的值域。

2

4(2)x t t +=≥,则2

24

y x +221

4(2)4x t t t x =+=+≥+

因10,1t t t >?=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。 因为1y t t

=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故

52

y ≥

。 所以,所求函数的值域为5,2

??+∞??

??

。 练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231

,(0)x x y x x ++=

> (2)12,33

y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y .;3.2

03

x <<,求函数y =的最大值. 条件求最值

1.若实数满足2=+b a ,则b a 33+的最小值是 .

分析:“和”到“积”是一个缩小的过程,而且b a 33?定值,因此考虑利用均值定理求最小值,

解: b a 33和都是正数,b a 33+≥632332==?+b a b a

当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6.

变式:若44log log 2x y +=,求11

x y

+的最小值.并求x,y 的值

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且1

91x y

+=,求x y +的最小值。

错解

..:Q 0,0x y >>,且19

1x y

+=,∴()1912

x y x y x y ??+=++≥ ???

()min 12x y += 。

错因:解法中两次连用均值不等式,在

x y +≥等号成立条件是x y =,在

19x y +≥1

9

x y

=

即9y x =,取等号的条件的不一致,产生错误。因

此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x

y

>>+=Q ,()1991061016y x

x y x y x y x y

??

∴+=++=

++≥+= ???

当且仅当9y x

x y

=

时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

变式: (1)若+

∈R y x ,且12=+y x ,求y

x

11+的最小值

(2)已知+∈R y x b a ,,,且1=+y

b x

a ,求y x +的最小值

技巧七

已知x ,y 为正实数,且x 2+

y 2

2

=1,求x 1+y 2 的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤

a 2+

b 2

2

同时还应化简1+y 2 中y 2

前面的系数为 12 , x 1+y 2 =x

2·1+y 2

2

= 2 x ·12 +y 2

2

下面将x ,

12 +y 2

2

分别看成两个因式: x ·

12 +y 2

2

≤x 2

+(

12 +y 22 )22 =x 2+y 2

2 +12 2 =3

4

即x 1+y 2 =

2 ·x 12 +y 22 ≤ 3

4

2

技巧八:

已知a ,b 为正实数,2b +ab +a =30,求函数y =

1

ab

的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化

为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16

t

2

t ·16

t

=8

∴ ab ≤18 ∴ y ≥ 1

18

当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab

令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2

∴ab ≤3 2 ,ab ≤18,∴y ≥1

18

点评:①本题考查不等式

ab b

a ≥+2

(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到

ab b a 与+之间的关系,由此想到不等式

ab b

a ≥+2

(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

解法一:若利用算术平均与平方平均之间的不等关系,a +b

2

a 2+

b 2

2

,本题

很简单

3x +2y ≤ 2 (3x )2+(2y )2 = 2 3x +2y =2 5 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20 ∴ W ≤20 =2 5 变式: 求函数15

()22

y x <<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=

0y >,所以0y <≤当且仅当21x -=52x -,即3

2

x =时取等号。 故max y =。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了

条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。 应用二:利用均值不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 1)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1

1

1

1118a b c ??????---≥ ???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个

“2”连乘,又111a b c a

a

a

-+-==≥

解:Q a 、b 、c R +∈,1a b c ++=。∴111a b c a

a

a

-+-==≥

同理1

1b -≥

,11c -≥。

上述三个不等式两边均为正,分别相乘,得

1111118a b c ??????---≥= ???????????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题

例:已知0,0x y >>且1

91x

y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,x y k x y +=>>1

91x

y

+=,99 1.x y x y kx ky ++∴

+=1091y x

k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用: 例:若)2

lg(),lg (lg 2

1

,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,则R Q P ,,的大小关系是 .

分析:∵1>>b a ∴0lg ,0lg >>b a

2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R>Q>P 。

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

初中物理公式大全

想要学好初中物理,熟记物理公式是前提。下面是初中物理公式大全,包括初中物理力学公式、热学公式、电学公式以及一些常用的物理量: 力学部分 一、速度公式 火车过桥(洞)时通过的路程s=L桥+L车 声音在空气中的传播速度为340m/s 光在空气中的传播速度为3×108m/s 二、密度公式 (ρ水=1.0×103 kg/ m3) 冰与水之间状态发生变化时m水=m冰ρ水>ρ冰v水<v冰 同一个容器装满不同的液体时,不同液体的体积相等,密度大的质量大 空心球空心部分体积V空=V总-V实 三、重力公式 G=mg (通常g取10N/kg,题目未交待时g取9.8N/kg) 同一物体G月=1/6G地m月=m地 四、杠杆平衡条件公式 F1l1=F2l2 F1 /F2=l2/l1

五、动滑轮公式 不计绳重和摩擦时F=1/2(G动+G物)s=2h 六、滑轮组公式 不计绳重和摩擦时F=1/n(G动+G物)s=nh 七、压强公式(普适) P=F/S固体平放时F=G=mg S的国际主单位是m2 1m2 =102dm2 =106mm2 八、液体压强公式P=ρgh 液体压力公式F=PS=ρghS 规则物体(正方体、长方体、圆柱体)公式通用 九、浮力公式 (1)F浮=F’-F (压力差法) (2)F浮=G-F (视重法) (3)F浮=G (漂浮、悬浮法) (4)阿基米德原理:F浮=G排=ρ液gV排(排水法)十、功的公式

W=FS把物体举高时W=GhW=Pt 十一、功率公式 P=W/tP=W/t=Fs/t=Fv(v=P/F) 十二、有用功公式 举高W有=Gh水平W有=FsW有=W总-W额 十三、总功公式 W总=FS(S=nh)W总=W有/ηW总=W有+W额W总=P总t 十四、机械效率公式 η=W有/W总η=P有/ P总 (在滑轮组中η=G/Fn) (1)η=G/ nF(竖直方向) (2)η=G/(G+G动) (竖直方向不计摩擦) (3)η=f / nF (水平方向) 热学部分 十五、热学公式 C水=4.2×103J/(Kg·℃) 1.吸热:Q吸=Cm(t-t0)=CmΔt

高中不等式的常用证明方法归纳总结

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a +++++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

初中物理所有公式总结

1. 电功(W):电流所做的功叫电功, 2. 电功的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时= 3.6×106焦耳。 3. 测量电功的工具:电能表(电度表) 4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安 (A);t→秒)。 5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6. 计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 7. 电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦 8. 计算电功率公式: (式中单位P→瓦(w);W→焦;t→秒;U→伏(V); I→安(A) 9. 利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。 10.计算电功率还可用右公式:P=I2R和P=U2/R 11.额定电压(U0):用电器正常工作的电压。 12.额定功率(P0):用电器在额定电压下的功率。 13.实际电压(U):实际加在用电器两端的电压。 14.实际功率(P):用电器在实际电压下的功率。 当U > U0时,则P > P0 ;灯很亮,易烧坏。当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有 ;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例220V100W是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。) 15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。 16.焦耳定律公式:Q=I2Rt ,(式中单位Q→焦; I→安(A);R→欧

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

初中物理公式总结大全(最新归纳)

初中物理公式汇总 速度公式: t s v = 公式变形:求路程——vt s = 求时间——t=s/v 重力与质量的关系: G = mg 密度公式: V m = ρ 浮力公式: F 浮= G 物 – F 示 F 浮= G 排=m 排g F 浮=ρ液gV 排 F 浮= G 物 压强公式:P=F/S (固体) 液体压强公式: p =ρgh 物理量 单位 p ——压强 Pa 或 N/m 2 ρ——液体密度 kg/m 3 h ——深度 m g=9.8N/kg ,粗略计算时取g=10N/kg 面积单位换算: 1 cm 2 =10--4m 2 1 mm 2 =10--6m 2 注意:S 是受力面积,指有受到压力作用的那部分面积 注意:深度是指液体内部某一点到自由液面的竖直距离; 单位换算:1kg=103 g 1g/cm 3=1×103kg/m 3 1m 3=106cm 3 1L=1dm 3=10-3m 3 物理量 单位 p ——压强 Pa 或 N/m 2 F ——压力 N S ——受力面积 m 2 物理量 单位 F 浮——浮力 N G 物——物体的重力 N 提示:[当物体处于漂浮或悬浮时] 物理量 单位 v ——速度 m/s km/h s ——路程 m km t ——时间 s h 单位换算: 1 m=10dm=102cm=103mm 1h=60min=3600 s ; 1min=60s 物理量 单位 G ——重力 N m ——质量 kg g ——重力与质量的比值 g=9.8N/kg ;粗略计算时取 物理量 单位 ρ——密度 kg/m 3 g/cm 3 m ——质量 kg g V ——体积 m 3 cm 3 物理量 单位 F 浮——浮力 N ρ ——密度 kg/m 3 V 排——物体排开的液体的体积 m 3 g=9.8N/kg ,粗略计算时取g=10N/kg G 排——物体排开的液体 受到的重力 N m 排——物体排开的液体 的质量 kg

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。 一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 (1) 当 时,求(82)y x x =-的最大值。 (2) 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y ==。 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =- ,即x =时,上式取“= ”。故max y =。

初中物理公式大全

初中物理公式大全速度:V(m/S)v=S:路程/t:时间? 重力G(N)G=m g(m:质量;g:k g或者10N/k g)密度:ρ(k g/m3)ρ=m/v(m:质量;V:体积)合力:F合(N)方向相同:F合=F1+F2;方向相反:F合=F1—F2方向相反时,F1>F2? 浮力:F浮(N)F浮=G物—F拉(G视:物体在液体的重力)浮力:F浮(N)F浮=G物(此公式只适用物体漂浮或悬浮)浮力:F浮(N)F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V排:排开液体的体积(即浸入液体中的体积))杠杆的平衡条件:F1L1=F2L2(F1:动力;L1:动力臂;F2:阻力;L2:阻力臂)定滑轮:F=G物S=h(F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离)动滑轮:F=(G物+G轮)/2S=2h(G物:物体的重力;G轮:动滑轮的重力)滑轮组:F=(G物+G轮)S=n h(n:通过动滑轮绳子的段数)机械功:W(J)W=F s(F:力;s:在力的方向上移动的距离)有用功:W有=G物h? 总功:W总W总=F s适用滑轮组竖直放置时?

机械效率:η=W有/W总×100%? 功率:P(w)P=w/t(W:功;t:时间) 压强p(P a)P=F/s(F:压力;S:受力面积)液体压强:p(Pa)P=ρgh(ρ:液体的密度;h:深度【从液面到所求点的竖直距离】)热量:Q(J)Q=c m△t(c:物质的比热容;m:质量;△t:温度的变化值)燃料燃烧放出的热量:Q(J)Q=m q(m:质量;q:热值)? 常用的物理公式与重要知识点? 串联电路电流I(A)I=I1=I2=……电流处处相等? 串联电路电压U(V)U=U1+U2+……串联电路起分压作用? 串联电路电阻R(Ω)R=R1+R2+……? 并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)? 并联电路电压U(V)U=U1=U2=……? 并联电路电阻R(Ω)1/R=1/R1+1/R2+……? 欧姆定律:I=U/I? 电路中的电流与电压成正比,与电阻成反比? 电流定义式I=Q/t(Q:电荷量(库仑);t:时间(S))

初三物理公式总结

物理公式汇总 一、密度(ρ): 1、定义:单位体积的某种物质的质量叫做这种物质的密度。 2、公式: 变形 m 为物体质量,主单位kg ,常用单位:t g mg ; v 为物体体积,主单位cm 3 m 3 3、单位:国际单位制单位: kg/m 3 常用单位g/cm 3 单位换算关系:1g/cm 3=103kg/m 3 1kg/m 3=10-3g/cm 3水的密度为1.0×103kg/m 3,读作1.0×103千克每立方米,它表示物理 意义是:1立方米的水的质量为1.0×103千克。 二、速度(v ): 1、定义:在匀速直线运动中,速度等于运动物体在单位时间内通过的路程。 物理意义:速度是表示物体运动快慢的物理量 2、计算公式: 变形 , S 为物体所走的路程,常用单位为km m ;t 为物体所用的时间,常用单位为s h 3、单位:国际单位制: m/s 常用单位 km/h 换算:1m/s=3.6km/h 。 三、重力(G ): 1、定义:地面附近的物体,由于地球的吸引而受的力叫重力 2、计算公式: G=mg m 为物理的质量;g 为重力系数, g=9.8N/kg ,粗略计算的时候g=10N/kg 3、单位:牛顿简称牛,用N 表示 四、杠杆原理 1、定义:杠杆的平衡条件为动力×动力臂=阻力×阻力臂 2、公式:F 1l 1=F 2l 2 也可写成:F 1 / F 2=l 2 / l 1 其中F 1为使杠杆转动的力,即动力;l 1为从支点到动力作用线的距离,即动力臂; F 2为阻碍杠杆转动的力,即阻力;l 2为从支点到阻力作用线的距离,即阻力臂 五、压强(P ): 1、定义:物体单位面积上受到的压力叫压强。 物理意义:压强是表示压力作用效果的物理量。 2、计算公式: P=F/S F 为压力,常用单位牛顿(N );S 为受力面积,常用单位米2(m 2 ) 3、单位是:帕斯卡(Pa ) 六、液体压强(P ): 1、计算公式:p =ρgh 其中ρ为液体密度,常用单位kg/m 3 g/cm 3 ;g 为重力系数,g=9.8N/kg ; h 为深度,常用单位m cm 2、单位是:帕斯卡(Pa ) ρ m V = V m ρ = V m ρ = v s t = t s v = v t s =

均值不等式公式完全总结归纳(非常实用)

. 均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的 和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

. 应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+ 1 2x 2 (2)y=x+ 1 x 解:(1)y=3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞)

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

初中物理公式大全(人教版)

初中物理公式 物理量符号国际单位符号单位换算 质量m千克kg1t=103kg1kg=103g=106mg 体积v立方米m31m3=103dm3=106cm3=109mm31L=1dm31ml=1cm3温度t摄氏度°C 速度v米/秒m/s1m/s=3.6km/h 路程s米m1km=103m1m=10dm=100cm=1000mm=106μm=109nm 密度ρ千克/米3kg/m31g/cm3=103kg/m3 力F牛顿(牛)N 重力G牛顿(牛)N 压强P帕斯卡(帕)Pa1Mpa=106pa1kpa=103pa 面积s平方米m21m2=100dm2=104cm2=106mm2 功W焦耳(焦)J1kw?h=3.6×106J 功率P瓦特(瓦)w1Mw=106w1kw=103w 电流I安培(安)A1A=103mA=106μA 电压U伏特(伏)V1Mv=106v1kv=103v 电阻R欧姆(欧)Ω1MΩ=106Ω1kΩ=103Ω 电功W焦耳(焦)J 电功率P瓦特(瓦)w1Mw=106w1kw=103w 热量Q焦耳(焦)J 比热容c焦/(千克?摄氏度)J/(kg?℃) 时间t秒s1h=60min=3600s 初中物理公式汇编 【力学部分】 1、速度:V=S/t S----路程-----m km t----时间-----s h v---速度-----m/s km/h 2、重力:G=mg m----质量----kg- g----重力与质量的比值-----9、8N/kg G-----重力-----N 3、密度:ρ=m/V m----质量----kg g v-----体积m3cm3 ρ---密度----kg/m3g/cm3 4、压强:p=F/S F----压力----N s----受力面积-----m2 p----压强----pa或N/m2 5、液体压强:p=ρgh ρ-----液体密度-----kg/m3g------9.8N/kg或10N/kg h-----深度-----m P----液体压强------pa

初中物理公式大全(详解)

这是我在补习班蹭到的~临近中考了,希望能帮上同学们的忙。 恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法: 电压表示数:U=UR+UA 电流表外接法: 电流表示数:I=IR+IV

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用 不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用. 1 利用构造法证明不等式 “所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”) 52](1[P 在证明不等式的问题中,构造思想 方法常有以下几种形式: 1.1 构造函数证明不等式 构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式. 1.1.1 利用判别式 在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法. 例1 设R z y x ∈,,,证明0)(32 2 ≥+++++z y x z y xy x 成立. 解 令2 2 2 33)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2 2 2 2 )(3)33(4)3(z y z yz y z y +-=++-+=?知0≤?,所以0)(≥x f . 故0)(322 ≥+++++z y x z y xy x 恒成立. 对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2 )(n n b x a -,由0)(≥x f 得出0≤?,从而即可得出所需证的不等式. 例2 设+ ∈R d c b a ,,,,且1=+++d c b a ,求证 614141414<+++++++d c b a )18](2[P . 证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2

相关文档
最新文档