基于MATLAB的串并联谐振电路仿真..

基于MATLAB的串并联谐振电路仿真..
基于MATLAB的串并联谐振电路仿真..

基于MATLAB的串并联谐振电路仿真

信息工程学院电信1206班杨茜

摘要

MATLAB(矩阵实验室)是Matrix Laboratory的缩写,是一款由美国The Mathworks公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。

MATLAB拥有丰富的功能,其功能涉及到了数学、信号处理、通信电子等多个领域,是一款极其强大的软件。串并联谐振电路是高频电子线路课程中十分基础同时也是十分重要的一部分,其中并联回路在实际电路中用途广泛,且二者之间具有一定的对偶关系,本次设计即是利用MATLAB的强大的计算绘图、图像处理功能,分析并联回路及串联回路的各自的特性及基本电路参数, 建立较为完善的信号模型,采用函数化编程方式完成功能性模拟,实现信号的有效输入输出与定性分析

关键词:MATLAB 谐振电路高频电子线路

Abstract

MATLAB is a multi-paradigm numerical computing environment and fourth-generation programming language. Developed by MathWorks ,M- -ATLAB allows matrix manipulations,plotting of functionsand data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C,C++, java ,and Fortran.

MATLAB has a lot of function, its function involves mathematics, signal processing, communications electronics and other fields, is a very powerful software.Series-parallel resonant circuit is very basic in high frequency electronic circuit course is also a very important part of the parallel circuit widely used in the actual circuit, and, the duality relation between them has certain of this design is the use of MATLAB powerful computational graphics, image processing and analysis of the parallel circuit and the respective characteristic and basic circuit of series connection circuit parameters, to establish a relatively perfect signal model, the functional programming approach to complete the functional simulation, realize the effective input and output signal and qualitative analysis

Keywords:MATLAB Resonant circuit High-Frenquency Ele ctronic Circuit

引言

本文主要将MATLAB仿真与高频电子线路中的串并联谐振结合起来,利用MATLAB的建模与仿真功能,利用该手段描绘出串并联谐振的相频、幅频特新曲线及其他电路参数曲线,结合MATLAB中的程序代码及图形曲线,详细的讲述仿真原理,并进行结果分析,建立较为完善的信号链路模型,能够较好的描述电路或系统的工作过程;正确分析输入输出信号的特征,关键步骤有相关图形输出。加深我们高频电子线路的设计的认识,增强动手能力,同时提高我们对于所学知识理论层面的应用与理解。

1.串联回路阻抗频率特性

1.1原理说明

图1

串联谐振电路如上图,当LC 谐振回路的总电抗X 为0时,所呈现的状态称为LC 谐振回路对外加信号源频率w 谐振,即谐振条件为

0)1(=-

=wC

wL X 则串联回路的谐振频率为: ,1

0LC w = 或 LC f π21

0=

回路的品质因数Q 为回路谐振是的感抗值与回路的损耗电阻R 之比,且

C

L R R L w Q ?==

10 且串联回路的总阻抗 )1(wC wL j R R Z S S +

++= 由此便可绘出S Z 与w 的特性曲线图。

1.2程序代码

R=5,C=500e-12,L=0.75e-3,RS=5;

f0=1/(2*pi*sqrt(L*C)); %谐振频率

w0=2*pi*f0; %计算谐振角频率w0

Q0=sqrt(L/C)/R,RP=R; %品质因数

RE=RS+RP; %计算回路总阻抗

w=2*pi*f; %定义w

s=log10(f0);f=logspace(s-.1/5,s+.1/5,501); %设定计算频率范围

ZS=j*w*L+1./(j*w*C)+RS; %回路端口串联联阻抗

subplot(2,1,1),semilogy(w,abs(ZS)),grid;%将图表分为上下部分,在上部分输

出w与ZE绝对值的图形,将图像分格

axis([min(w),max(w),0.9*min(abs(ZS)),1.1*max(abs(ZS))]); %设定

坐标轴范围

xlabel('w'),ylabel('abs(ZS)'); %命名坐标轴

subplot(2,1,2),plot(w,angle(ZE)*180/pi);grid%在图标下部分输出w与ZE相

位角的图形,将图像分格

xlabel('w'),ylabel('angle(ZS)') %命名坐标轴

1.3输出特性曲线

图2

1.4实验分析

在上面程序中,根据MA TLAB程序编写规则,在设置了相关的元件的参数后,便需要输入相关计算公式,建立不同变量之间的联系,同时也计算出一些常量,比如谐振频率、品质因

数,然后需要列写出目的函数,即S Z 与w 之间的关系式,同时将为自变量选取合适的度量值,这样才能是曲线尽量美观且具有典型性,最后便可输出特性曲线,为横纵坐标标上单位,并且选取合适的取值范围。由图像可以看出,阻抗与谐振频率的关系式成抛物线形状的,存在一个谐振频率使得阻抗最大,在其两边阻抗随着远离谐振频率阻抗越来越小。

2.并联回路阻抗频率特性

2.1原理说明

图3 并联回路的谐振条件与串联相似,设其总电纳为B ,则谐振时有:

0)1(=-=wL

wC B 且并联电路的谐振频率及品质因数的计算与串联一样,均为

,1

0LC w =或LC f π21

0= C

L R R L w Q ?==10 同时并联电路的总阻抗为

)1(11

wL wC j R Z p p -+=

同样由此便可绘出p Z 与w 的并联阻抗频率特性曲线。

2.2程序代码

L=0.75e-3,C=500e-12,R=2;RS=90000;

Q0=sqrt(L/C)/R,RP=L/R/C; %品质因数

f0=1/(2*pi*sqrt(L*C)); %谐振频率

w=2*pi*f; %定义w

s=log10(f0);f=logspace(s-.3/5,s+.3/5,501);%设定计算频率范围

Z1S=R+j*w*L,Z2S=1./(j*w*C);

ZS=1./(1./Z1S+1./Z2S+1./RS); %回路端口并联阻抗

subplot(2,1,1),plot(w,abs(ZS)),grid;%将图表分为上下部分,在上部分输出w与

ZE绝对值的图形,将图像分格

axis([min(w),max(w),0.9*min(abs(ZS)),1.1*max(abs(ZS))]); %设定

坐标轴范围

xlabel('w'),ylabel('abs(ZE)'); %命名坐标轴

subplot(2,1,2),plot(w,angle(ZS)*180/pi); %在图标下部分输出w与ZE相

位角的图形

axis([min(w),max(w),-100,100]),grid; %设定坐标轴范围,将图形分格xlabel('w'),ylabel('angle(ZE)'); %命名坐标轴

2.3输出特性曲线

图4

2.4实验分析

并联谐振回路的程序代码与串联十分相似,不同点是,由于电路组成不同,因此目的函数的计算公式有所不同,即串并联阻抗计算规则不一样,其他方面基本一致。

3.串、并联幅频及相频特性

3.1原理说明

定义:并联谐振回路的端电压振幅与工作频率之间的关系曲线称为并联谐振回路的幅频特性曲线;串联谐振回路的回路电流振幅与工作频率之间的关系曲线称为串联谐振回路的幅频特性曲线。

同样定义:并联谐振回路的端电压相位与工作频率之间的关系曲线称为并联谐振回路的相频特性曲线;串联谐振回路的回路电流相位与工作频率之间的关系曲线称为串联谐振回路的相频特性曲线。

此外串并联回路的幅频特性表达式均为:

211ξαα+=

=S P 其中ξ称为广义失谐,且)(2000w w w w Q w w

Q -?=??=ξ,由于串并联回路的品质因数均为C

L R R L w Q ?==10,谐振频率也是一样,故串并联谐振回路的幅频特性曲线实际上是完全吻合的。

同时,并联(串联)谐振回路端电压(电流)的相位与回路阻抗相位的关系为

ξ?arctan -==ψp p ,ξ?arctan -=-=ψs s

显然,串并联回路的相频特性也是相同,并由上式便可得到相应曲线。

3.2程序代码

R0=15;R1=25,C=250e-12, L=0.75e-3,RS=33000;

Q0=sqrt(L/C)/R0,RP0=L/C/R0; %计算电阻R0是的品质因数及谐振阻抗 Q1=sqrt(L/C)/R1,RP1=L/C/R1; %计算电阻R1是的品质因数及谐振阻抗 f0=1/(2*pi*sqrt(L*C)); %谐振频率

s=log10(f0);f=logspace(s-.3/5,s+.3/5,501); %设定计算频率范围 E=Q0*(w./w0-w0./w),E1=Q1/Q0*E; %定义并计算ξ和ξ1

w0=2*pi*f0,w=2*pi*f; %计算谐振角频率w0并定义w

A0=1./sqrt(1+E.^2); %定义并计算A0

A1=1./sqrt(1+(Q1*E/Q0).^2); %定义并计算A1

F0=-atan(E),F1=-atan(Q1/Q0*E); %定义并计算FAI0和FAI1

subplot(2,1,2),plot(E,F0); %将图表分为上下部分,在下部分输出E与FAI的图形hold on

subplot(2,1,2),plot(E,F1,'m');%继续在下部分图像上输出E与FAI1的图像,用品

红线表示

legend('Q0','Q1'); %为表中不同的曲线做图例

xlabel('E'),ylabel('F'); %命名坐标轴

text(10,0,'Q0>Q1'); %再(10,0)坐标区域放置字符‘Q0>Q1’

title('并联回路相频特性曲线') %为该图表命个标题

grid %将图像分格

subplot(2,1,1),plot(E,A0);

hold on

plot(E,A1,'m');

legend('Q0','Q1');

xlabel('E'),ylabel('A');

text(20,0.5,'Q0>Q1');

title('并联回路幅频特性曲线')

grid

3.3输出特性曲线

图5

3.4实验分析

由于该幅频及相频特性表示中,需要比较不同的Q 值对幅频及相频特性曲线的影响,故该设计中需要改变Q 值以进行比较,有品质因数Q 与R 、C 、L 三者有关,所以,本次通过选取不同的损耗电阻值来得到不同的Q 值,于是便会得到不同的广义失谐ξ(说明:由于在MATLAB 软件里面ξ符号是无效的,故在程序中用E 表示,同样后面的α和ψ分别用A 和FAI 表示)为将两个曲线集中在一个图中进行比较,两个不同的表达式的不同的函数表示,相频同样如此,于是便会得到以上两条曲线,最后可利用MA TLAB 的图形处理功能做好图例,分别曲线的颜色使得进行更好的比较,并附上标题。

4.LC 回路通频带特性

4.1原理说明

根据通频带的定义,当P α或S α由1下降到21时,两边界频率w1与w2之间的频率带宽度,即为通频带,由上式有:

2111

2=+ξ

? ξ=1

所以通频带为: B=Q

f 0 4.2程序代码

R=20,C=1500e-12,L=0.5e-3,RS=30000;

f0=1/(2*pi*sqrt(L*C)); %谐振频率

Q0=sqrt(L/C)/R,RP=L/R/C; %品质因数

B=f0/Q0; %通频带带宽

s=log10(f0);f=logspace(s-.3/5,s+.3/5,501);%设定计算频率范围 w=2*pi*f,w0=2*pi*f0; %定义w 并计算谐振角频率w0

E=Q0*(w./w0-w0./w); %定义广义失谐系数ξ

A=1./sqrt(1+E.^2);

B1=2*pi*B; %定义并计算通频带长度

w1=w0-B1/2,w2=w0+B1/2; %设定w1、w2的大小

h=1./sqrt(2);

plot(w,A) %输出w与A的图形

xlabel('w'),ylabel('A'); %命名坐标轴

hold on

line([w1, w2],[h,h],'linestyle','--')

line([w1, w1],[0,h],'linestyle','--')

line([w2, w2],[0,h],'linestyle','--')%画出通频带区域

grid %将图形分格

title('通频带曲线')

4.3输出特性曲线

图6

4.4实验分析

α与w的曲线关通频带曲线其实是在串并联回路的幅频特性曲线的基础上得到

P

α纵坐标所对应的横坐标的范围即是通频带的表示区域,即曲线中虚系,同时在0.7

P

线与实曲线所包含的部分。

总结

谐振是正弦电路在特定条件下所产生的一种特殊物理现象,谐振现象在无线电和电工技术中得到广泛应用,对电路中谐振现象的研究具有重要的意义。对于串并联谐振电路,具体有以下几种特性:串联谐振电路:1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波器。2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈。3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容。

并联谐振电路:1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频电路。2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容。3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈。

利用MATLAB进行通信电路方面的仿真具有很深远的意义,建模与仿真是人们认识世界和改造世界的重要手段,在各类应用需求的牵引下,已经发展成为了较为完善的专业技术体系,正在向网络化、虚拟化、智能化、普世化的方向发展,与高性能计算机一起正成为继理论研究和实验研究之后的第三种认识世界和改造世界的手段,仿真技术获得了极其强大的生命力。

串并联谐振电路域MATLAB的仿真的结合,充分发挥谐振电路的主要应用和MATLAB仿真的强大的功能,对两者的研究都具有一定的价值。

参考文献

【1】唐向宏.岳恒立.郑雪峰.MATLAB及在电子信息类课程中的应用.北京.电子工业出版社.2009

【2】王华.李有军.刘建存.MATLAB电子仿真与应用教程.北京.国防工业出版社.2010

【3】王亚芳.MATLAB仿真及电子信息应用.北京.人民邮电出版社.2011

【4】王红卫.建模与仿真[M].北京.科学出版社.2003

RLC并联谐振电路

R L C并联谐振电路公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

电路课程设计举例:?以 R L C 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足L C ωω001= ,则RLC 并联谐振角频率ω0和谐振频率 f 0分别是 RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小G B G Y =+=2 2. (2)若外施电流I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等,I I S R =. (4)谐振时0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振:

(1)利用电流表测量总电流I s 和流经R 的电流I R ,两者相等时即为并 联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为0.02H,电容C 为50uf,电阻R 为200Ω。 由LC f π210=计算得,Hz f 1.1570= 按上图进行EWB 的仿真,得到下图。 流经电阻R 的电流和总电流I 相等为10mA,流进电感L 和电容C 的总电流为5.550uF ,几乎为零,所以电路达到谐振状态。 总电源与流经R 的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB 仿真RLC 并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R 的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

RLC并联谐振电路

电路课程设计举例: 以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 )1(111L C j R L j C j R Y ωωωω-+=++= 发生谐振时满足L C ω ω0 1 = ,则RLC 并联谐振角频率 ω 和谐振频率 f 分别是 LC LC f πω21, 10 0= = RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小 G B G Y =+= 2 2 . (2)若外施电流 I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等, I I S R = .

(4)谐振时 0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流 I s 和流经R 的电流 I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为,电容C 为50uf,电阻R 为200Ω。 由LC f π210 = 计算得, Hz f 1.1570 = 按上图进行EWB 的仿真,得到下图。

流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为,几乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

基于MATLAB的Boost电路仿真

知识就堤力量— 基于Matlab 的Boost 电路仿真 姓名: 学号: 班级:

知识就堤力量 1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: iT. n Boost电路的结构 ⑻开关状态1 (S闭合)(b)开关状态2 (S关断)

3、Matlab 仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。 4- Vo |t\a ?E MeJsnuramQ Stfi?RLC Ewnch HR ltd g e Sours I ll c —— ScQpe (c)开关状态3 (电感电流为零) Scoptl V Current Measurement Diode KDT Cm rue nt Measuremehti C T

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

基于MATLAB的串并联谐振电路仿真

基于MATLAB的串并联谐振电路仿真 信息工程学院电信1206班杨茜 摘要 MATLAB(矩阵实验室)是Matrix Laboratory的缩写,是一款由美国The Mathworks公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。 MATLAB拥有丰富的功能,其功能涉及到了数学、信号处理、通信电子等多个领域,是一款极其强大的软件。串并联谐振电路是高频电子线路课程中十分基础同时也是十分重要的一部分,其中并联回路在实际电路中用途广泛,且二者之间具有一定的对偶关系,本次设计即是利用MATLAB的强大的计算绘图、图像处理功能,分析并联回路及串联回路的各自的特性及基本电路参数, 建立较为完善的信号模型,采用函数化编程方式完成功能性模拟,实现信号的有效输入输出与定性分析 关键词:MATLAB 谐振电路高频电子线路

Abstract MATLAB is a multi-paradigm numerical computing environment and fourth-generation programming language. Developed by MathWorks ,M- -ATLAB allows matrix manipulations,plotting of functionsand data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C,C++, java ,and Fortran. MATLAB has a lot of function, its function involves mathematics, signal processing, communications electronics and other fields, is a very powerful software.Series-parallel resonant circuit is very basic in high frequency electronic circuit course is also a very important part of the parallel circuit widely used in the actual circuit, and, the duality relation between them has certain of this design is the use of MATLAB powerful computational graphics, image processing and analysis of the parallel circuit and the respective characteristic and basic circuit of series connection circuit parameters, to establish a relatively perfect signal model, the functional programming approach to complete the functional simulation, realize the effective input and output signal and qualitative analysis Keywords:MATLAB Resonant circuit High-Frenquency Ele ctronic Circuit

北京理工大学电路仿真实验报告

实验1叠加定理的验证 实验原理: 实验步骤: 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表,并按上图连接; 2.设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)点击运行按钮记录电压表电流表的值U1和I1;

2)点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2;

3)点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 原理分析: 以电流表示数i为例: 设响应i对激励Us、Is的网络函数为H1、H2,则i=H1*Us+H2*Is 由上式可知,由两个激励产生的响应为每一个激励单独作用时产生的响应之和。 则有,I1=I2+I3(1);同理,U1=U2+U3(2). 经检验,6.800=2.000+4.800,-1.600=-4.000+2.400,符合式(1)、(2),即叠加原理成立。

实验2并联谐振电路仿真 实验原理: 实验步骤: 1.原理图编辑: 分别调出电阻R1、R2,电容C1,电感L1,信号源V1; 2.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 3.分析参数设置: (1)AC分析: 要求:频率范围1HZ—100MEGHZ,输出节点为Vout。 步骤:依次选择选择菜单栏里的“simulate->Analyses->AC Analysis”,调出交流分析参数设置对话窗口,起始频率设为1Hz,停止频率设为100MHz,扫描类型为十倍频程,每十倍频程点数设

RLC并联谐振电路

RLC 并联谐振电路

电路课程设计举例:?以R L C并联谐振电路 1.电路课程设计目的 (1)验证屉C并联电路谐振条件及谐振电路的待点; (2)学习使用EWB仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的屉C串联电路图如下图所示。 图1屉C并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足0()C =」一,则RLC并联谐振角频率0°和谐振频率/[分别是RLC并联谐振电路的待点如下。 (1)谐振时Y二G,电路呈电阻性,导纳的模最小|丫卜J G'+ J B'G? (2)若外施电流人一定,谐振时,电压为最大,[J丄,且与外施电流同相。 G (3)电阻中的电流也达到最大,且与外施电流相等,W (4)谐振时// +/c = 0,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有儿种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流人和流经R的电流人,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R的电流波形,两者同相即为并联谐振。

例题:已知电感L为0. 02H,电容C为50uf,电阻R为2000。 由f =一计算得,f = 157.1Hz J 02兀亦」° 按上图进行EWB的仿真,得到下图。 流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为5. 550uF,儿乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

基于MATLAB的整流电路仿真分析

密级:公开 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2008—2012年) 题目基于MATLAB的整流电路仿真分析 学科部: 专业: 班级: 学号: 学生姓名: 指导教师: 起讫日期:

目录 摘要 ............................................................................................................... Ⅰ矚慫润厲钐瘗睞枥庑赖。Abstract . (Ⅱ) 第一章三相桥式全控整流电路的仿真....................................................... 0聞創沟燴鐺險爱氇谴净。 1.1 电路的构成及工作特点.................................................................. 0残骛楼諍锩瀨濟溆塹籟。 1.2 建模及仿真...................................................................................... 1酽锕极額閉镇桧猪訣锥。 1.3参数设置及仿真............................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.4 故障分析.......................................................................................... 3謀荞抟箧飆鐸怼类蒋薔。 1.5 小结.................................................................................................. 4厦礴恳蹒骈時盡继價骚。第二章基于MATLAB的单相桥式整流电路仿真分析................................. 5茕桢广鳓鯡选块网羈泪。 2.1单相桥式半控整流电路................................................................ 5鹅娅尽損鹌惨歷茏鴛賴。 2.2 单相桥式半控整流电路带纯电阻性负载情况............................ 7籟丛妈羥为贍偾蛏练淨。 2.3 单相桥式全控整流电路.............................................................. 12預頌圣鉉儐歲龈讶骅籴。 2.4 单相桥式全控整流电路带纯电阻性负载情况.......................... 14渗釤呛俨匀谔鱉调硯錦。 2.5 单相桥式全控整流电路带电阻电感性负载情况...................... 16铙誅卧泻噦圣骋贶頂廡。结论 .............................................................................................................. 18擁締凤袜备訊顎轮烂蔷。参考文献:................................................................................................... 19贓熱俣阃歲匱阊邺镓騷。致谢 .............................................................................................................. 20坛摶乡囂忏蒌鍥铃氈淚。

内点法matlab仿真doc资料

编程方式实现: 1.惩罚函数 function f=fun(x,r) f=x(1,1)^2+x(2,1)^2-r*log(x(1,1)-1); 2.步长的函数 function f=fh(x0,h,s,r) %h为步长 %s为方向 %r为惩罚因子 x1=x0+h*s; f=fun(x1,r); 3. 步长寻优函数 function h=fsearchh(x0,r,s) %利用进退法确定高低高区间,利用黄金分割法进行求解h1=0;%步长的初始点 st=0.001; %步长的步长 h2=h1+st; f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); if f1>f2 h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3; f3=fh(x0,h3,s,r); end else st=-st; v=h1; h1=h2; h2=v; v=f1; f1=f2; f2=v; h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3;

f3=fh(x0,h3,s,r); end end %得到高低高的区间 a=min(h1,h3); b=max(h1,h3); %利用黄金分割点法进行求解 h1=1+0.382*(b-a); h2=1+0.618*(b-a); f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); while abs(a-b)>0.0001 if f1>f2 a=h1; h1=h2; f1=f2; h2=a+0.618*(b-a); f2=fh(x0,h2,s,r); else b=h2; h2=h1; f2=f1; h1=a+0.382*(b-a); f1=fh(x0,h1,s,r); end end h=0.5*(a+b); 4. 迭代点的寻优函数 function f=fsearchx(x0,r,epson) x00=x0; m=length(x0); s=zeros(m,1); for i=1:m s(i)=1; h=fsearchh(x0,r,s); x1=x0+h*s; s(i)=0; x0=x1; end while norm(x1-x00)>epson x00=x1; for i=1:m s(i)=1; h=fsearchh(x0,r,s);

基于MATLAB的Boost电路仿真

基于Matlab的Boost 电路仿真 姓名: 学号: 班级:

1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: Boost 电路的结构 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)

(c) 开关状态3 (电感电流为零) 3、Matlab仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真,均可以得到精确的仿真结果。采用Matlab仿真分析方法,可直观、详细的描述Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分析,便于我们真正掌握Boost电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。

PID控制算法的matlab仿真

PID 控制算法的matlab 仿真 PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。被控对象的传递函数如下: ()1d s f Ke G s T s τ-= + 其中各参数分别为30,630,60f d K T τ===。MATLAB 仿真框图如图1所示。 图1 2 具体内容及实现功能 2、1 PID 参数整定 PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。在此处选用扩充临界比例度法对PID 进行整定,其过程如下: 1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为 60d τ=,故可选择采样周期1s T =。 2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K , 使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。 3) 选择控制度为 1.05Q =,按下面公式计算各参数:

0.630.490.140.014p k i k d k s k K K T T T T T T ==== 通过仿真可得在1s T =时,0.567,233k k K T ==,故可得: 0.357,114.17,32.62, 3.262p i d s K T T T ==== 0.0053.57 p s i i p d d s K T K T K T K T === = 按此组控制参数得到的系统阶跃响应曲线如图2所示。 01002003004005006007008009001000 0.20.40.60.811.21.41.6 1.8 图2 由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。根据以下原则对控制器参数进行调整以改善系统的暂态过程: 1) 通过减小采样周期,使响应曲线平滑。 2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。 3) 减小比例系数与微分时间常数,以减小系统的超调。 改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、

RLC并联谐振电路

电路课程设计举例:以RLC并联谐振电路 1 ?电路课程设计目的 (1)验证RLC并联电路谐振条件及谐振电路的特点; (2)学习使用EWB仿真软件进行电路模拟。 2 ?仿真电路设计原理 本次设计的RLC串联电路图如下图所示。 图1 RLC并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 1 1 1 1 Y j C j( C ) R j L R L 1 发生谐振时满足0C ,则RLC并联谐振角频率0和谐振频率f 0 o L 0 RLC并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小丫 = J G2+B2 =G . (2 )若外施电流I s—定,谐振时,电压为最大,U °=h,且与外施电流同相。 G (3)电阻中的电流也达到最大,且与外施电流相等,I R = I S. (4)谐振时| L ^ | C=0,即电感电流和电容电流大小相等,方向相反。 3?谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 分别是

这里有几种方法可以观察电路发生串联谐振:

⑴ 利用电流表测量总电流 I s 和流经 R 的电流I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经 R 的电流波形,两者同相即为并联谐振。 例题:已知电感 L 为0.02H,电容C 为50uf,电阻R 为200。 按上图进行EWB 的仿真,得到下图。 流经电阻R 的电流和总电流I 相等为10mA,流进电感L 和电容C 的总电流为5.550UF ,几乎 为零,所以电路达到谐振状态。 f o = 157.1Hz 50 uF

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

LMMSE算法信道均衡MATLAB仿真

一.信道均衡的概念 实际的基带传输系统不可能完全满足无码间串扰传输条件,因而码间串扰是不可避免的。当串扰严重时,必须对系统的传输函数 进行校正,使其达到或接近无码间串扰要求的特性。理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频,和相频特性从而减小码间串扰的影响这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 均衡分为频域均衡和时域均衡。频域均衡是从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。而时域均衡,则是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。 频域均衡在信道特性不变,且传输低速率数据时是适用的,而时域均衡可以根据信道特性的变化进行调整,能够有效地减小码间串扰,故在高速数据传输中得以广泛应用。 时域均衡的实现方法有多种,但从实现的原理上看,大致可分为预置式自动均衡和自适应式自动均衡。预置式均衡是在实际传数之前先传输预先规定的测试脉冲(如重复频率很低的周期性的单脉冲波形),然后按“迫零调整原理”自动或手动调整抽头增益;自适应式均衡是在传数过程中连续测出距最佳调整值的误差电压,并据此电压去调整各抽头增益。一般地,自适应均衡不仅可以使调整精度提高,而且当信道特性随时间变化时又能有一定的自适应性,因此很受重视。这种均衡器过去实现起来比较复杂,但随着大规模、超大规模集成电路和微处理机的应用,其发展十分迅速。 二.信道均衡的应用 1.考虑如图所示的基带等效数据传输系统,发送信号k x 经过ISI 失真信道传输,叠加高斯加性噪声。 图1基带等效数据传输模型 设发送信号采用QPSK 调制,即(1)k x j =±±ISI 信道的冲击响应以向量的形式表示为h 2211[,,,]T L L L h h h --+=???。典型的ISI 信道响应向量有三种: h [0.04,0.05,0.07,0.21,0.5,0.72,0.36,0,0.21,0.03,0.07]T A =--- h [0.407,0.815,0.407]T B = h [0.227,0.46,0.6888,0.46,0.227]T C = k ω为实部与虚部独立的复高斯白噪声,其均值为零,方差为2 ωσ。 2.实现目的

相关文档
最新文档