《宽禁带半导体发光材料》 氮化物材料的性质

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

建筑材料——建筑材料的基本性质

第一章 建筑材料的基本性质 一、授课提纲及讲解内容 1、物理性质 主要搞懂密度与表观密度、密度与孔隙率、孔隙率与空隙率之间的联系和区别。 2、力学性质 变形性质有弹塑性变形、脆塑性材料、弹性模量、徐变和松弛几个内容。强度主要了解材料实际强度为什么比理论强度低许多。其他性质有脆性、韧性、疲劳、硬度、磨损等,一般了解即可。 3、触水性质 搞明白亲水性与憎水性、吸水性与吸湿性、耐水性、抗渗、抗冻性概念。 4、热工性质 主要是绝热性能,指标导热系数。 5、耐久性 是一个综合指标。 6、其他性质 装饰性、防火性、放射性。 二、讲解时间 3×50min 。 三、讲稿与板书(*加黑部分为黑板板书内容) §1-1 材料的物理性质 1、密度与表观密度 密度 V m =ρ; 表观密度00V m =ρ V —材料在绝对密实状态下的体积,是指不包括孔隙体积在内的固体所占有的实体积。 0V —材料在自然状态下的体积,或称表观体积,是指包括内部孔隙的体积。 测得含孔材料的V 时,一般用磨细的方法来求得。 表观密度0ρ,一般是指材料在气干状态下的0ρ,在烘干状态下的0ρ,称为干表观密度。 2、密实度与孔隙率 密实度是指材料体积内被固体物质所填充的程度;孔隙率是指材料体积内,孔隙体积所占的比例。即 ρρ0 0==V V D 0001ρρ-=-=V V V P D 和P 从两个不同侧面来反映材料的密实程度,两者关系为1=+D P 。D 和P 通常用百分数表示。 3、堆积密度、填充率和空隙率 堆积密度是指粉状、粒状和纤维材料在堆积状态下(包括了颗粒内部的孔隙和颗粒之间的空

隙),单位体积所具有的质量: '='00V m ρ '0ρ的大小,不仅取决于材料的0ρ,而且还与材料的疏密度有关,还受材料含水程度的影响。 填充率D '是指散粒材料在堆积体积中,被颗粒填充的程度。空隙率ρ' 是颗粒之间的空隙所占堆积体积的比例。即 0000ρρ'='='V V D ;000001ρρ'-='-'='V V V P P '和D '从两个侧面反映材料颗粒互相填充的疏密程度。 §1-2 材料的力学性质 1、变形性质 弹性变形:外力除去后可完全消失的变形。 塑性变形:外力除去后不能消失的变形。 脆性材料:材料在破坏前有明显的塑性变形者。 塑性材料:材料在破坏前无明显的塑性变形者。 弹性模量:εσ= E 。 徐变与松弛:在长期不变外力作用下,变形逐渐增大的现象叫徐变;在长期荷载作用下,如总变形不变,而引起应力逐渐降低的现象,成为应力松弛。 2、材料的强度 理论强度:指按材料结构质点引力计算的强度,一般都很高。 实际强度:按材料在荷载下实际具有的强度,一般远远低于理论强度。原因是材料内部都存在很多缺陷。 通常意义上的强度是指材料的实际强度,常用强度有:压、拉、弯、剪强度。 3、其他性质 脆性:外力下,直到断裂前都不出现明显塑性变形性质。 韧性:在冲击、振动荷载下,材料能承受很大变形而不致破坏的性质。 疲劳极限:交替荷载作用下,应力也随时间作交替变化,这种应力超过某一限度而长期反复会造成材料的破坏,这个限度叫做疲劳极限。 硬度:受外界物质的摩擦作用而减小质量和体积的现象。 磨损:同时受摩擦和冲击两种作用,而减小质量和体积的现象。 §1-3 材料与水有关的性质 1、亲水性与憎水性 材料很快将水吸入内部或使水在材料表面散开来,这种与水的亲和性称为亲水性。 材料不吸水或使水呈珠状存在于材料表面,这种不易被润湿的性质成为憎水性。 2、吸水性与吸湿性

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

建筑材料考试试题及答案 基本性质

建筑材料与建筑科学的发展有何关系? 答:首先,建筑材料是建筑工程的物质基础;其二,建筑材料的发展赋予了建筑物以时代的特征和风格;其三,建筑设计理论不断进步和施工技术的革新不但受到建筑材料发展的制约,同时亦受到其发展的推动;其四,建筑材料的正确、节约、合理的使用直接影响到建筑工程的造价和投资。 影响材料强度试验结果的因素有哪些? 1、材料的组成 2、材料的形状和大小 3、材料的养护温湿度 4、试验时的加载速度 5、材料的龄期(主要是混凝土) 6、试验时的含水状况 天然大理石板材为什么不宜用于室外? 大理石一般都含有杂质,尤其是含有较多的碳酸盐类矿物,在大气中受硫化物及水气的作用,容易发生腐蚀。腐蚀的主要原因是城市工业所产生的SO2与空气中的水分接触生成亚硫酸、硫酸等所谓酸雨,与大理石中的方解石反应,生成二水硫酸钙(二水石膏),体积膨胀,从而造成大理石表面强度降低、变色掉粉,很快失去光泽,影响其装饰性能。其反应化学方程式为: CaCO3+H2SO4+H2O=CaSO4?2H2O+CO2↑ 在各种颜色的大理石中,暗红色、红色的最不稳定,绿色次之。白色大理石成分单纯,杂质少,性能较稳定,不易变色和风化。所以除少数大理石,如汉白玉、艾叶青等质纯、杂质少、比较稳定耐久的品种可用于室外,绝大多数大理石品种只宜用于室内。 石灰石主要有哪些用途?

一、粉刷墙壁和配臵石灰砂浆和水泥混合砂浆 二、配制灰土和三合土 三、生产无熟料水泥、硅酸盐制品和碳化石灰板 亲水材料与憎水材料各指什么? 亲水材料是指亲水材料是指::水滴在该材料表面的接触角θ大小来判断θ<90度,则材料为亲水材料,θ=90度,则为顺水材料。 憎水材料是指:水滴在该材料表面的接触角θ大小来判断,若θ>90度,表示材料为憎水材料 ::水滴在该材料表面的接触角θ大小来判断θ<90度,则材料为亲水材料,θ=90度,则为顺水材料。 憎水材料是指:水滴在该材料表面的接触角θ大小来判断,若θ>90度,表示材料为憎水材料 水泥的细度是指什么,水泥的细度对水泥的性质有什么影响? 细度是指水泥颗粒总体的粗细程度。水泥颗粒越细,与水发生反应的表面积越大,因而水化反应速度较快,而且较完全,早期强度也越高,但在空气中硬化收缩性较大,成本也较高。如水泥颗粒过粗则不利于水泥活性的发挥。一般认为水泥颗粒小于40μm(0.04mm)时,才具有较高的活性,大于100μm(0.1mm)活性就很小了。实际上水泥厂生产各种标号的水泥是同一操作方法,但在最后分级时,通过筛分,将细度最小的定为最高级,细度最大的定为最低级。细度3-5的定为42.5,细度5-8的定为32.5,小于3的定为特种水泥。 影响硅酸盐水泥凝结硬化的主要因素? 矿物组成直接影响水泥水化与凝结硬化,此外还与下列因素有关:

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

建筑材料基本性质 习题与答案

建筑材料的基本性质 一、填空题 1.材料的密度是指材料在( 绝对密实 )状态下( 单位体积的质量 )。用公式表示为( ρ=m/V )。 2.材料的表观密度是指材料在( 自然 )状态下( 单位体积的质量 )。用公式表示为(ρ0=m/V 0 )。 3.材料的表观体积包括(固体物质)和( 孔隙 )两部分。 4.材料的堆积密度是指(散粒状、纤维状)材料在堆积状态下( 单位体积 )的质量,其大小与堆积的( 紧密程度 )有关。 5.材料孔隙率的计算公式是( ρρ01-=P ),式中ρ为材料的( 密度 ),ρ0为材料的( 表观密度 )。 6.材料内部的孔隙分为( 开口 )孔和( 闭口 )孔。一般情况下,材料的孔隙率越大,且连通孔隙越多的材料,则其强度越(低),吸水性、吸湿性越(大)。导热性越(差)保温隔热性能越(好)。 7.材料空隙率的计算公式为( 0'0'1ρρ-=P )。式中0ρ为材料的(表 观)密度,0 ρ'为材料的( 堆积 )密度。 8.材料的耐水性用( 软化系数)表示,其值越大,则耐水性越( 好 )。一般认为,( 软化系数 )大于( 0.85 )的材料称为耐水材料。 9.材料的抗冻性用( 抗冻等级 )表示,抗渗性一般用( 抗渗等级)表示,材料的导热性用( 导热系数 )表示。 10.材料的导热系数越小,则材料的导热性越( 差 ),保温隔热性能越( 好)。常将导热系数(k m w *23.0≤)的材料称为绝热材料。

二、名词解释 1.软化系数:材料吸水饱和时的抗压强度与其干燥状态下抗压强度的比值。 2.材料的吸湿性:材料在潮湿的空气中吸收水分的能力。 3.材料的强度:材料抵抗外力作用而不破坏的能力。 4.材料的耐久性:材料在使用过程中能长期抵抗周围各种介质的侵蚀而 不破坏,也不易失去其原有性能的性质。 5.材料的弹性和塑性:材料在外力作用下产生变形,当外力取消后,材 料变形即可消失并能完全恢复原来形状的性质 称为弹性; 材料在外力作用下产生变形,当外力取消后,仍保持 变形后的形状尺寸,并且不产生裂缝的性质称为塑性。 三、简述题 1.材料的质量吸水率和体积吸水率有何不同?什么情况下采用体积吸水率来反映材料的吸水性? 答:质量吸水率是材料吸收水的质量与材料干燥状态下质量的比值; 体积吸水率是材料吸收水的体积与材料自然状态下体积的比值。 一般轻质、多孔材料常用体积吸水率来反映其吸水性。 2.什么是材料的导热性?材料导热系数的大小与哪些因素有关? 答:材料的导热性是指材料传导热量的能力。 材料导热系数的大小与材料的化学成分、组成结构、密实程度、含 水状态等因素有关。

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

《无机材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。如采用四元件模型来表示线性高聚物的蠕变过程等。 ). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0 1 2 3 4 5 0.0 0.20.40.60.81.0 σ(t )/σ(0) t/τ 应力松弛曲线 012345 0.0 0.2 0.4 0.6 0.8 1.0 ε (t )/ε(∞) t/τ 应变蠕变曲线 )(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82 332min 2MPa Pa N F F f =?=? ? ??=?=? ???=?? ?? = πσπ τπτ:此拉力下的法向应力为为: 系统的剪切强度可表示由题意得图示方向滑移

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

第一章建筑材料的基本性质答案

第一章 建筑材料的基本性质 一、填空题 1.材料的实际密度是指材料在( 绝对密实 )状态下( 单位体积的质量 )。用公式表示为( ρ=m/V )。 2.材料的体积密度是指材料在( 自然 )状态下( 单位体积的质量 )。用公式表示为(ρ0=m/V0 )。 3.材料的外观体积包括(固体物质)和( 孔隙 )两部分。 4.材料的堆积密度是指(散粒状、纤维状)材料在堆积状态下( 单位体积 )的质量,其大小与堆积的( 紧密程度 )有关。 5.材料孔隙率的计算公式是( 01r r R =- ),式中ρ为材料的( 实际密度 ),ρ0为材料的( 体积密度 )。 6.材料内部的孔隙分为( 开口 )孔和( 闭口 )孔。一般情况下,材料的孔隙率越大,且连通孔隙越多的材料,则其强度越(低),吸水性、吸湿性越(大)。导热性越(差)保温隔热性能越(好)。 7.材料空隙率的计算公式为( ''001r r R =- )。式中0r 为材料的(体积)密度,0ρ'为材料的( 堆积 )密度。 8.材料的耐水性用( 软化系数)表示,其值越大,则耐水性越( 好 )。一般认为,( 软化系数 )大于( 0.80 )的材料称为耐水材料。 9.材料的抗冻性用( 抗冻等级 )表示,抗渗性一般用( 抗渗等级)表示,材料的导热性用( 热导率 )表示。 10.材料的导热系数越小,则材料的导热性越( 差 ),保温隔热性能越( 好)。常将导热系数(k m w *175.0≤)的材料称为绝热材料。

二、名词解释 1.软化系数:材料吸水饱和时的抗压强度与其干燥状态下抗压强度的比值。 2.材料的吸湿性:材料在潮湿的空气中吸收水分的能力。 3.材料的强度:材料抵抗外力作用而不破坏的能力。 4.材料的耐久性:材料在使用过程中能长期抵抗周围各种介质的侵蚀而不破坏,也不易失去其 原有性能的性质。 5.材料的弹性和塑性:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完 全恢复原来形状的性质称为弹性; 材料在外力作用下产生变形,当外力取消后,仍保持变形后的形状尺寸, 并且不产生裂缝的性质称为塑性。 三、简述题 1.材料的质量吸水率和体积吸水率有何不同?什么情况下采用体积吸水率来反映材料的吸水性? 答:质量吸水率是材料吸收水的质量与材料干燥状态下质量的比值; 体积吸水率是材料吸收水的体积与材料自然状态下体积的比值。 一般轻质、多孔材料常用体积吸水率来反映其吸水性。 2.什么是材料的导热性?材料导热系数的大小与哪些因素有关? 答:材料的导热性是指材料传导热量的能力。 材料导热系数的大小与材料的化学成分、组成结构、密实程度、含水状态等因素有关。 3.材料的抗渗性好坏主要与哪些因素有关?怎样提高材料的抗渗性? 答:材料的抗渗性好坏主要与材料的亲水性、憎水性、材料的孔隙率、孔隙特征等因素有关。 提高材料的抗渗性主要应提高材料的密实度、减少材料内部的开口孔和毛细孔的数量。 4.材料的强度按通常所受外力作用不同分为哪几个(画出示意图)?分别如何计算?单位如何?

无机材料物理性能重点

一·辨析 1. 铁电体与铁磁体的定义和异同 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。铁磁体是指具有铁磁性的物质。 2. 本征(固有离子)电导与杂质离子电导 答:本征电导是源于晶体点阵的基本离子的运动。这种离子自身随着热振动离开晶体形成热缺陷。这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。 相同点:二者的离子迁移率 和电导率 表达形式相同 不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量 B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B 比本征电导低一些 C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高 3. 离子电导和电子电导 答:携带电荷进行定向输送形成电流的带点质点称为载流子。载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导 不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动 B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏 C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子 D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加 4.铁电体与反铁电体 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料 不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列 2.反铁电体具有双电滞回线,铁电体具有电滞回线 3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计 铁电体 铁磁体 自发极化 自发磁化 不含铁 含铁 电畴 磁畴 电滞回线 磁滞回线

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

建筑材料的基本性质试题(卷)(答案解析)

建筑材料的基本性质 一、名词解释 1.材料的空隙率 2.堆积密度 3.材料的强度 4.材料的耐久性 答案: 1.材料空隙率是指散粒状材料在堆积体积状态下颗粒固体物质间空隙体积(开口孔隙与间隙之和)占堆积体积的百分率。 2.是指粉状或粒状材料在堆积状态下单位体积的质量。 3.是指材料在外界荷载的作用下抵抗破坏的能力。 4.是指材料在周围各种因素的作用下,经久不变质、不破坏,长期地保持其工作性能的性质。 二、填空题 1.材料的吸湿性是指材料在________的性质。 2.材料的抗冻性以材料在吸水饱和状态下所能抵抗的________来表示。 3.水可以在材料表面展开,即材料表面可以被水浸润,这种性质称为________。 4.材料地表观密度是指材料在________状态下单位体积的质量。 5. 建筑材料按化学性质分三大类:( 有机 ) 、( 无机 ) 、( 复合材料) 6.大多数建筑材料均应具备的性质,即材料的 (基本性质 ) 7.材料吸收水分的能力,可用吸水率表示,一般有两种表示方法:(质量吸水率W )和 (体积吸水率W0 ) 答案: 1.空气中吸收水分2.冻融循环次数3.亲水性4.自然 三、单项选择题 1.孔隙率增大,材料的________降低。 A、密度 B、表观密度 C、憎水性 D、抗冻性 2.材料在水中吸收水分的性质称为________。 A、吸水性 B、吸湿性 C、耐水性 D、渗透性 3.含水率为10%的湿砂220g,其中水的质量为________。 A、19.8g B、22g C、20g D、20.2g 4.材料的孔隙率增大时,其性质保持不变的是________。 5. 在冲击荷载作用下,材料能够承受较大的变形也不致破坏的性能称为___D___。 A.弹性 B.塑性 C.脆性 D.韧性 6.某铁块的表观密度ρ0= m /( A )。 A、V0 B、V孔 C、V D、V0′ A、表观密度 B、堆积密度 C、密度 D、强度 答案:

无机材料物理性能_完美版

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有___、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.判断正误。(2×10=20分) 1.正应力正负号规定是拉应力为负,压应力正。() 2.Al2O3结构简单,室温下易产生滑动。() 3.断裂表面能比自由表面能大。() 4.一般折射率小,结构紧密的电介质材料以电子松弛极化性为主。()5.金红石瓷是离子位移极化为主的电介质材料。() 6.自发磁化是铁磁物质的基本特征,是铁磁物质和顺磁物质的区别之处。 () 7.随着频率的升高,击穿电压也升高。() 8.磁滞回线可以说明晶体磁学各向异性。() 9.材料弹性模量越大越不易发生应变松弛。() 10.大多数陶瓷材料的强度和弹性模量都随气孔率的减小而增加。() 三.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 四.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中 离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。

无机材料物理性能复习资料(精.选)

一、名词解释 塑性形变:指一种在外力移去后不能恢复的形变 延展性:材料在经受塑性形变而不破坏的能力称为材料的延展性 黏弹性:一些非晶体和多晶体在受到比较小的应力作用时可以同时表现出弹性和粘性,这种现象称为黏弹性 滞弹性:对于实际固体,弹性应变的产生与消除都需要有限的时间,无机固体和金属表现出的这种与时间有关的弹性称为滞弹性 蠕变:当对黏弹性体施加恒定压力σ0时,其应变随时间增加而增加。这种现象叫蠕变,此时弹性模量Ec也将随时间而减小 Ec(t)=σ0/ε(t) 弛豫:如果施加恒定应变ε0,则应力将随时间而减小,这种现象叫弛豫。此时弹性模量Er也随时间降低Er=σ(t)/ε0 Grffith微裂纹理论:实际材料中总是存在许多细小的裂纹或缺陷;在外力作用下,这些裂纹和缺陷附近产生应力集中现象;当应力到达一定程度时,裂纹的扩展导致了材料断裂。(为什么某物质尖端易断?) 攀移运动:位错在垂直于滑移面方向的运动称为攀移运动。 热容:描述材料中分子热运动的能量随温度而变化的一个物理量,定义为使物体温度升高1K所需要外界提供的能量。 德拜热容理论(德拜三次方定律):在高于德拜温度θD时,热容趋于常数25 J/(mol·K),而在低于θD时热容则与T3成正比。 热稳定性:是指材料承受温度急剧变化而不破坏的能力,又称抗热震性。 抗热冲击断裂性能:材料发生瞬时断裂,抵抗这类破坏的性能为~ 抗热冲击损伤性能:在热冲击循环作用下,材料表面开裂、剥落,并不断发展,

最终破裂或变质,抵抗这类破坏的性能为~ 本征电导(固有电导):晶体点阵中基本离子的运动,称为~ 电介质的极化:电介质在电场作用下产生束缚电荷,也是电容器贮存电荷能力增强的原因。 居里温度:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁磁体从铁磁相转变成顺磁相的相变温度。也可以说是发生二级相变的转变温度。低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。 二、填空 晶体中的塑性形变有两种方式:滑移和孪晶 滑移系统包括滑移方向和滑移面 影响粘度的因素:温度、时间、组成 影响热导率的因素:温度、显微结构、化学组成、 反射分为:全反射、漫反射、镜面反射 载流子:电子、空穴、正离子、负离子、空位 金属材料电导的载流子是自由电子 无机非金属材料电导的载流子可以是电子、电子空穴、或离子、离子空位、 非金属材料按其结构状态可以分为晶体材料与玻璃态材料 杂质半导体:n型半导体(五价元素原子取代四价原子),p型半导体(三价元素原子取代四价原子) 超导特性:完全抗磁性在超导体内永远保持磁感应强度为零迈斯纳效应与零电阻现象是超导体的两个基本特性 提高材料透明度:细:细化晶粒密:减小气孔纯:减少杂质

建筑材料的基本性质整理

1、建筑材料的物理性质 ①材料的密度、表观密度、堆积密度 (1)密度:材料在绝对密度状态下单位体积的重量。 (2)表观密度:材料在自然状态下单位体积德重量。 (3)堆积密度:粉状或散粒材料在堆积状态下单位体积德重量。 ②材料的孔隙率空隙率 (1)孔隙率:材料体积内空隙体积所占的比例。 (2)空隙率:散装粒状材料在某堆积体积中,颗粒之间的空隙体积所占的比列。 ③材料的亲水性和憎水性 (1)润湿角的材料为亲水材料,如建材中的混凝土、木材、砖等。亲水材料表面做憎水处理,可提高其防水性能。 (2)润湿角的材料为亲水材料,如建材中的沥青、石蜡等。 ④材料的吸水性和吸湿性 (1)吸水性:在水中能吸收水分的性质。 吸水率 (2)吸湿性:材料吸收空气中水分的性质。 含水率。 ⑤材料的耐水性、抗渗性和抗冻性 (1)耐水性:材料长期在饱和水的作用下不破坏,而且强度也不显著降低的性质。 (2)抗渗性:材料抵抗压力水渗透的性质。一般用渗透系数K或抗渗等级P表示。 混凝土材料的抗渗等级P=10H-1,H-六个试件中三个试件开始渗水时的水压力。 K越小或P越高,表明材料的抗渗性越好。 (3)抗冻性:材料在吸水饱和状态下,能经受多次冻融循环作用而不破坏、强度又不明显降低的性质,常用抗冻等级F表示。 孔隙率小及具有封闭孔的材料有较高的抗渗性和抗冻性;具有细微而连通的空隙对材料的抗渗性和抗冻性不利。 (4)材料的导热性 导热性:材料传到热量的性质。用导热系数表示,通常将的材料称为绝热材料。 孔隙率越大、表观密度越小,导热系数越小。 2、建筑材料的力学性能 ①强度与比强度 强度是材料抵抗外力破坏的能力。 强度分为抗拉强度、抗压强度、抗弯强度和抗剪强度。孔隙率越大,强度越低。 比强度是按单位重量计算的材料强度,等于材料的强度与其表观密度之比。 ②弹性与塑性 (1)弹性:材料在外力作用下产生变形,当外力去除后,能完全恢复原来形状的性质。

相关文档
最新文档