拉延筋技术

拉延筋技术
拉延筋技术

拉延筋技术

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

拉延筋技术

1.拉延筋在板料拉深中的作用

拉深成形生产中,尤其是象车身覆盖件等这样的大型工件的拉深工序中,往往会因为零件几何型面的不对称,使得板坯在成形时各处材料沿凹模口的流动速度不均衡(图1一1),造成拉深后的工件,局部减薄量大出现颈缩或者破裂,而有些部位出现起皱、波纹等质量缺陷。为了改善这种状况,需要在压料面上控制对工件不同部位提供的进料阻力(毛坯在进入凹模前遇到的阻力),即在需要材料多的部位相应的进料阻力小,而在需要材料少的部位相应的进料阻力大(图1一),从而平衡坯料在凹模口部的流动速度差异(图1),提高零件成形质量。

改变压料面上进料阻力的方法有:

1.改变压边力或采用变压边力压边

2.改变压料面与模具之间的间隙

3.改变凹模口圆角半径

4.设置拉延筋等。

设置拉延筋是应用较灵活方便、修改较容易的一种方法,主要表现为:

(1) 控制变形区材料的进料阻力,调节冲压变形区的拉力及其分布

(2) 通过对拉延筋各项参数的适当配置,能够通过均衡工件各部分的进料阻力来调节材料的流动情况,增加坯料流动的稳定性,得到变形均匀的冲压件;

(3) 使用拉延筋后,压料面间隙可适当加大,表面精度可适当降低,从而减少压料面的磨损,降低模具制造成本

(4) 通过增加径向拉应力,使材料的塑性变形程度、硬化程度得以提高,减少由于变形不足而产生的松弛回弹以及波纹等缺陷,提高工件的刚度

(5) 可防止因凸缘周边材料不均匀流动而不可避免产生的皱纹进入修边线内,减轻或消除复杂零件悬空部分因材料集中而发生的内皱现象

(6) 拉延筋提供的进料阻力,可以在一定程度上降低对压床吨位的需求;通过增加胀形成分和增大进料阻力,可减小板料外形尺寸,提高材料利

用率。

目前 ,在多数板料拉深中,拉延筋是必不可少的模具组成部分,针对拉延筋的研究己经成为当今板料冲压成形领域的重要课题之一。

2 .拉延筋的设置

以半圆形筋为例(图1一4),板料在通过拉延筋时,在点1到点6之间发生了弯曲、回复、反弯曲的反复变形,这些变形所需要的变形力加上板料与拉延筋之间的摩擦力构成了拉延筋的进料阻力。因此,不同断面形状、不同尺寸的拉延筋对板料的作用效果是不同的。

为了能够适应特定冲压零件成形的需要,拉延筋在种类、断面各尺寸、长度、条数、位置等参数上都要做特定的选择。参考前人学者们对拉延筋布置规律的研究成果,拉延筋的经验布置原则总结如下: (1) 按拉延筋作用布置。

拉延筋的布置原则:

布置原则

增加进料阻力放整圈的或间断的1条拉延槛或1-3条拉延筋增加径向拉应力,

降低切向压应力,防止毛坯起皱在容易起皱的部位设置局部的短筋

调整进料阻力和进料

量拉延深度大的直线部分,放卜3条拉延

筋;拉延深度大的圆弧部分,不放拉延筋:

拉延深度相差较大时,在深的部位不设拉

延筋,浅的部位设拉延筋

(2)按凹模口形状布置。拉延筋的布置方法见图1一5及表1一2。(典型图)

(3) 拉延筋布置方向。拉延筋一定要与材料流动方向垂直,一般情况下,筋的走向与其对应的凹模口形状一致。

拉延模设计手册

拉延模设计手册 一、拉延模的分类 拉延模分双动拉延模与单动拉延模两类 1、双动拉延模是在专用的双动压力机上生产的拉延模,通常上模为凸模,下模为凹模,压边圈安装在压机的外滑块上,其结构如下图,此种结构拉延模压边力较为稳定,但由于需要专用的压机,安装较为烦琐,且结构尺寸较大,现在已经运用的越来越少。 2、单动拉延模是在单动压机上生产的拉延模,通常上模是凹模,下模是凸模,压边圈由下气垫或其它压力源(例于氮气弹簧)提供压料力,其结构如下图,由于模具通用性好,现大部分拉延模为此种结构。 工作台 下模 上模 压边圈 上模垫板 内滑块 外滑块 下模 上模 工作台 压边圈 上滑块

二、拉延模的主要零件(主要为单动拉延模) 拉延模一般有上模、下模、压边圈三大部件组成(根据结构的不同要求,可能增加一此部件,例于局部的小压料板),以及安装这三大部件上的其它功能零件,主要有以下零件: 1、导向零件:耐磨板、导向腿,导柱; 2、限位调压零件:平衡块、到底块; 3、坯料定位零件:定位具、气动定位具; 4、安全装置:卸料螺钉(等向套筒,也起锁付的作有)、安全护板; 5、拉延功能零件:到底印记、弹顶销、通气管、CH孔合件; 6、取送料辅助零件:辅助送出料杆、打料装置。 三、单动拉延模的设计 (一)模具中心的确认与顶杆的分布 模具中心的确认通常依据顶杆的布置的需要设定。一般在工艺设计时,会按钣件的中心确定一个数模中心。顶杆的分布需尽量靠近分模线,并均匀布,通常两根顶杆之间最多空一个顶杆位,顶杆数量要尽可能多。在模具设计时首先以数模中心与压机工作台中心重合,如顶杆分布满足上述要求,则以数模中心做为模具中心。如无法满足上述要求,侧在需要更改的方向上移动(最大1/2顶杆间距),确认一个最优化的方案,同时以工作台的中心做为模具的中心。 (注:在试模压力机与工作压力机顶杆孔不致时,需设置试模顶杆,并在优先保证生产顶杆的要求下,优化顶杆部置) 模具中心与数模中心重合

拉延筋设计

1.3 拉延筋技术 1。3。1 拉延筋在板料拉深中的作用 拉深成形生产中,尤其是象车身覆盖件等这样的大型工件的拉深工序中, 往往会因为零件几何型面的不对称,使得板坯在成形时各处材料沿凹模口的 流动速度不均衡(图1一1),造成拉深后的工件,局部减薄量大出现颈缩或者 破裂,而有些部位出现起皱、波纹等质量缺陷。为了改善这种状况,需要在 压料面上控制对工件不同部位提供的进料阻力(毛坯在进入凹模前遇到的阻 力),即在需要材料多的部位相应的进料阻力小,而在需要材料少的部位相应 的进料阻力大(图1一),从而平衡坯料在凹模口部的流动速度差异(图1刁), 提高零件成形质量。 改变压料面上进料阻力的方法有: 1.改变压边力或采用变压边力压边、 2.改变压料面与模具之间的间隙、 3.改变凹模口圆角半径 4.设置拉延筋等。 设置拉延筋是应用较灵活方便、修改较容易的一种方法,主要表现为,润: (1) 控制变形区材料的进料阻力,调节冲压变形区的拉力及其分布: (2) 通过对拉延筋各项参数的适当配置,能够通过均衡工件各部分的进 料阻力来调节材料的流动情况,增加坯料流动的稳定性,得到变形均匀的冲 压件; (3) 使用拉延筋后,压料面间隙可适当加大,表面精度可适当降低,从 而减少压料面的磨损,降低模具制造成本; (4) 通过增加径向拉应力,使材料的塑性变形程度、硬化程度得以提高, 减少由于变形不足而产生的松弛回弹以及波纹等缺陷,提高工件的刚度; (5) 可防止因凸缘周边材料不均匀流动而不可避免产生的皱纹进入修 边线内,减轻或消除复杂零件悬空部分因材料集中而发生的内皱现象;

(6) 拉延筋提供的进料阻力,可以在一定程度上降低对压床吨位的需 求;通过增加胀形成分和增大进料阻力,可减小板料外形尺寸,提高材料利 用率。 目前,在大多数板料拉深中,拉延筋是必不可少的模具组成部分,针对 拉延筋的研究己经成为当今板料冲压成形领域的重要课题之一。 1.3。2 拉延筋的设置 以半圆形筋为例(图1一),板料在通过拉延筋时,在点1到点6之间发生了弯曲、回复、反弯曲的反复变形,这些变形所需要的变形力加上板料与 拉延筋之间的摩擦力构成了拉延筋的进料阻力。因此,不同断面形状、不同 尺寸的拉延筋对板料的作用效果是不同的。 为了能够适应特定冲压零件成形的需要,拉延筋在种类、断面各尺寸、 长度、条数、位置等参数上都要做特定的选择。参考前人学者们对拉延筋布 置规律的研究成果,拉延筋的经验布置原则总结如下: (1) 按拉延筋作用布置。拉延筋的布置原则见表卜1. 表1一1拉延筋的布置原则 要求布置原则 增加进料阻力放整圈的或间断的1条拉延槛或1-3条拉延筋 增加径向拉应力, 降低切向压应力,防止毛坯起皱在容易起皱的部位设置局部的短筋 调整进料阻力和进料量拉延深度大的直线部分,放卜3条拉延 筋;拉延深度大的圆弧部分,不放拉延筋: 拉延深度相差较大时,在深的部位不设拉 延筋,浅的部位设拉延筋 (2)按凹模口形状布置。拉延筋的布置方法见图1一5及表1一2。(典型图) (3) 拉延筋布置方向。拉延筋一定要与材料流动方向垂直,一般情况下,

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

AUTOFORM分析拉延成型

常见缺陷及解决办法 1.拉延开裂 开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。产生开裂的原因大致有: (1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。 (2)工艺补充、压边圈的设计不合理。 (3)拉延筋设计不合理,不能很好的控制材料流动。 (4)压边力过大。 (5)模具型面表面粗糙度达不到要求,摩擦阻力大。 (6)模具加工精度差,凸凹模间隙小,板料流动性差。 目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R角、合理设计工艺补充及压料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。 2.起皱 起皱是拉延工序中另一个常见的缺陷,也是很难解决的板件缺陷。板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。 目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下几点: (1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。 (2)工艺上可以考虑增加整形工序。 (3)分模线调整。随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。 (4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。 (5)合理设计拉延筋,以确保各个方向进料均匀为目标。 (6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。 AutoForm模拟分析算法 AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。 1.隐式算法 静态隐式算法是解决金属成形问题的一种方法。在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。理论上在这个算法中的增量步可以很大,但是实际运算中要受到接触以及摩擦等条件的限制。随着单元数目的增加,计算时间几乎呈几何级数增加。由于需要矩阵求逆以及精确积分,对内存要求很高。隐式算法的不利方面还有收敛问题不容易得到解决以及当开始起皱失稳时,在分叉点处刚度矩阵出现奇异等。其中静态隐式算法多配合动态显式算法用于求解成形后的回弹分析。 2.一步成形法 一步法有限元方程利用虚功原理导出,其基本思想是采用反向模拟。将模拟计算按照与实际成形相反的顺序,从所期望的成形后的工件形状通过计算得出与此相对应的毛坯形状和有关工艺参数。板材成形过程的变形决定其有利于进行方向模拟。在冲压成形过程中,成形后的工件为一空间曲面,而板料毛坯为一平板。以板平面为X-Y坐标平面,整个成形过程中各质点的Z向位移是确定的。采用有限元计算求解时,节点未知量仅为X和Y方向的位移。板料成形的方向模拟多采用近似方法,假设变形过程为简单加载过程,用塑性变形的理论进行模拟分析。在分析的过程中以利用工件形状进行计算,用简化的方法避免了非常麻烦的接触处理。一步法方向模拟要求输入的数据少,因此可以在概念及初期设计阶段就投入使用,可以预测毛坯形状,整个计算可以很快地求解出结果,因此可以反复调整参数进行计算模拟,对毛坯形状、压边力和拉延筋等进行优化。 3.AutoForm分析流程

汽车覆盖件拉伸模的设计及调试

汽车覆盖件拉伸模的设计及调试 【摘要】介绍汽车覆盖件拉伸模的设计要点及主要的调试经验,并对汽车覆盖件在拉伸过程中容易出现的起皱和开裂现象进行了分析,从工艺分析、模具结构设计及调试等几个方面详细说明了拉伸模设计及调试的重要性。 1 大型覆盖件拉伸模的设计 1.1 拉伸件冲压工艺方案的确定 拉伸件的工艺性是编制覆盖件冲压工艺首先要考虑的问题,只有设计出一个合理的、工艺性好的拉伸件,才能保证在拉伸过程中不起皱、不开裂、少起皱、少开裂。覆盖件拉伸工序的处理不仅是为拉伸工序 建立良好的变形条件,而且要为以后的工序提供方便。所以在设计拉伸件时不但要考虑冲压方向、压料面的形状、拉延筋的形状及位置、工艺补充部分的合理性以及与下道工序之间的关系。 (1)冲压方向的确定。 正确地确定拉伸方向不仅是获得理想拉伸件的保证,而且将对后续工序的安排产生较大的影响,因此拉伸方向是确定拉伸件的第一要素。确定拉伸方向时主要考虑:保证凸模能顺利进入凹模,且进入拉伸件的所有角落;开始拉伸时凸模与毛坯应尽量的使接触面大,且接触面应尽量位于冲模中心;压料面各进料阻力应均匀。 (2)合理增加工艺补充部分。 汽车覆盖件种类繁多,一些覆盖件形状复杂,结构不对称,直接成形较困难,设置必要的工艺补充部分有利于改善拉伸件的工艺性,提高拉伸件的质量。工艺补充部分是拉伸件不可缺少的部分,在拉伸完成 后又需要将它切掉,因此,确定拉伸件工艺补充部分应遵循以下原则:使拉伸深度尽量浅;尽量利于垂直修边;工艺补充部分应尽量小。 (3)压料面形状的确定。 压料面是工艺补充的一部分,在增加工艺补充时必须正确确定压料面的形状,使压料面各部分的进料阻力均匀。要做到这一点,必须保证 各方向的拉伸深度均匀,因为只有在压边圈将拉伸毛坯压紧在凹模压 料面上,不形成皱纹或折痕,才能保证拉伸件不皱不裂。在确定压料面形状时要尽量降低拉伸深度,使形面平缓,由于凸模对拉伸毛坏要有一定的拉伸作用,所以必须保证压料面展开长度比凸模展开长度短,材

独立基础底板配筋构造及计算方法

本文分为两个部分,一个是独立基础底板配筋构造,一个是独立基础底板配筋计算。让我们通过实际例子,明确图中的平法标注、钢筋和基本信息,学会钢筋长度和根数的计算。 ▍图1 独立基础底部配筋 首先看集中标注和原位标注。 集中标注的内容有什么呢? 包括:编号、截面竖向尺寸、高度、X和Y方向的底部钢筋等。 原位标注的内容有什么呢? 包括:底部的平面尺寸等。 通过原位标注和集中标注的信息,我们知道图1所示独立基础底部配筋的基本情况。 需要知道的是,钢筋的重量=长度*理论重量。 而理论重量可以通过钢筋的直径确定。我们要做的就是根据平法图集的构造规定,确定每根钢筋的直径、长度、根数,从而进行钢筋的计算。 通过原位标注和集中标注的信息,我们可以知道了钢筋的直径、每一个方向的间距,那么如何确定每根钢筋的长度,如何根据间距确定根数呢?

▍图2 某独立基础施工图 我们知道,16G图集分为两部分:第一部分是制图规则,第二部分是构造详图(包括一般构造和各个构件的标准构件详图)。 一般构造的内容是在使用构造详图时,为我们提供基础性的数据,这里暂且不谈。 那么,对于每一个构件的标准构件详图,就是用来确定不同的钢筋之间,它的长度、间距、如何排布等问题,通过查阅每一个构件的标准构造详图,结合它的制图规则来整个确定钢筋的布置和构成。 我们要做的就是通过制图规则和构造详图,将平面的标注的图纸,还原成立体的构件。也就是我们图集的使用方法。

▍图3 图集16G101-3第67页 图3所示是两种独立基础的底板配筋构造(一个是阶形,一个是坡形)。我们看这个图的时候,觉得钢筋一个疏一个密,有的人可能会问,那是不是阶形的钢筋布置就密一些,坡形的 就疏一些呢? 不是的。图3所示只是一个例子,具体的钢筋布置的疏密是由设计人员决定的,不是预算人 员决定的。我们学习这张图,就是为了学会钢筋的排布规则,用以确定钢筋计算的信息而已。如图3所示,独立基础底部的X和Y方向都是受力钢筋。那双向受力钢筋的长度如何确定?我们可以依据保护层的定义进行确定:用构件的外截面尺寸,减去两个保护层的厚度,就得 到了受力钢筋的长度。X方向和Y方向均是这样。

独立基础底板配筋构造及计算

独立基础底板配筋构造及计算 本文通过一个是独立基础底板配筋构造,一个是独立基础底板配筋计算的实际例子,明确图中的平法标注、钢筋和基本信息,学会钢筋长度和根数的计算。 图1 独立基础底部配筋 首先看集中标注和原位标注。 集中标注的内容有什么呢? 包括:编号、截面竖向尺寸、高度、X和Y方向的底部钢筋等。 原位标注的内容有什么呢? 包括:底部的平面尺寸等。 通过原位标注和集中标注的信息,我们知道图1所示独立基础底部配筋的基本情况。 需要知道的是,钢筋的重量=长度*理论重量。

而理论重量可以通过钢筋的直径确定。我们要做的就是根据平法图集的构造规定,确定每根钢筋的直径、长度、根数,从而进行钢筋的计算。 通过原位标注和集中标注的信息,我们可以知道了钢筋的直径、每一个方向的间距,那么如何确定每根钢筋的长度,如何根据间距确定根数呢? 图2 某独立基础施工图 我们知道,16G图集分为两部分:第一部分是制图规则,第二部分是构造详图(包括一般构造和各个构件的标准构件详图)。 一般构造的内容是在使用构造详图时,为我们提供基础性的数据,这里暂且不谈。 那么,对于每一个构件的标准构件详图,就是用来确定不同的钢筋之间,它的长度、间距、如何排布等问题,通过查阅每一个构件的标准构造详图,结合它的制图规则来整个确定钢筋的布置和构成。 我们要做的就是通过制图规则和构造详图,将平面的标注的图纸,还原成立体的构件。也就是我们图集的使用方法。

图3 图集16G101-3第67页 图3所示是两种独立基础的底板配筋构造(一个是阶形,一个是坡形)。我们看这个图的时候,觉得钢筋一个疏一个密,有的人可能会问,那是不是阶形的钢筋布置就密一些,坡形的就疏一些呢? 不是的。图3所示只是一个例子,具体的钢筋布置的疏密是由设计人员决定的,不是预算人员决定的。我们学习这张图,就是为了学会钢筋的排布规则,用以确定钢筋计算的信息而已。 如图3所示,独立基础底部的X和Y方向都是受力钢筋。那双向受力钢筋的长度如何确定? 我们可以依据保护层的定义进行确定:用构件的外截面尺寸,减去两个保护层的厚度,就得到了受力钢筋的长度。X方向和Y方向均是这样。

冲压件钣金设计规范

一冲压件的分类 冲压件按其主要工序可以分为: 拉延件:毛坯(板料)在拉延工序中,有很大的拉伸、压缩变形; 一般拉延件:她的拉延工序在有压边力的情况下,在单动压床上进行。如梁、加强板等; 大型覆盖件:它的拉延工序主要以双动压床为主; 外覆盖件:它的曲面是外形面的一部分,有外形设计给出数据。结构设计时充实与周边件的联结结构,分块与间隙;如车门外板,前围外板,侧围外板,顶盖等;内覆盖件:其曲面结构是根据功能、强度、刚度要求来设计。如车门里板、后围内板、地板等; 成型件:毛坯在成型工序中,材料有局部的拉延、压缩及弯曲变形,他的主要工序在无压边力情况下,在单动压床上进行。如梁、加强板等; 弯曲件(压弯件):毛坯在弯曲工序中,材料只有弯曲变形,基本无拉伸、压缩变形。有压弯、卷圆、滚压成型等工序。如支架、铰链等。 二点焊 点焊焊点直径,焊点间的最小距离,板件的最小搭(对)接边尺寸等与板件厚度之间的关系:

注: 1、板料厚度: 1)两层板焊接时,t为厚度小的板厚值; 2)三层板焊接时,厚板夹在中间时,t为薄板厚度值;薄板夹在中间时,t为厚板厚度值; 3)在两层板焊接时,厚薄板厚度之比不能大于3。在三层板焊接时,总厚不大于薄板厚度的4倍。 2、焊接方法的选择:

板料厚度在1.6以下,一般选点焊; 板料厚度在1.6—3.2,可选点焊或熔接焊; 板料厚度在3.2以上,一般选择熔焊; 3、焊点强度为剪切强度,板料的强度极限为30Kg/mm2。三最小冲孔尺寸: 孔与孔、孔与边缘的最小尺寸:

C: 大于或等于3-5t

外凸圆的最大翻边高度:

平板件的最小翻边高度: 翻边,拉延,成形时,最小内圆角半径: 落料的最小圆角半径:

基础计算方法

6 . 基础设计 F+G p max min 6.1.1柱下独立基础计算: 用正常使用极限状态下荷载效应的标准组合中最不利荷载组合来确定基础底面尺寸。用承载能力极限状态下荷载效应的基本组合中最不利荷载组合来进行独立基础的设计计算。 设计资料: 持力层的地基承载力特征值:200ak f KPa = 基础及其台阶上土的平均重度:3/20m KN G =γ 垫层采用10C 混凝土,厚度为mm 100。独立基础采用25C 混凝土,2/27.1mm N f t =,钢筋采用235HPB ,2/210mm N f y =。 柱子尺寸:600×600 计算④轴横向框架地梁传给基础顶面荷载: 1、地梁传给A 、D 轴位置基础顶面荷载: 纵向地梁传来荷载 ① 地梁自重: 25×××= ② 地梁上部材料传来荷载: 墙重: 19×××= 窗重: ××= 横向地梁传来荷载 ① 地梁自重: 25××××= KN 地梁传给A 、D 轴位置基础顶面荷载: ∑F=+++= 2、地梁传给B 、C 轴位置基础顶面荷载: 纵向地梁传来荷载 地梁自重: 25×××= ② 地梁上部材料传来荷载: 墙重: 19××()×= 门重: ××=

横向地梁传来荷载 ① 地梁自重: 25×××(+)/2= KN 地梁传给B 、C 轴位置基础顶面荷载: ∑F=+++= ⑴ A 、D 轴柱下独立基础设计: 按构造一般要求拟定独立基础的截面尺寸,如下图所示: N= M= V= 1、按轴心荷载初步确定基础底面面积: 20963.5563.77 5.0626020 2.85 ak G N F A m f d γ++≥==--? 考虑偏心荷载的影响,将0A 增大%30后有: 201.3 1.3 5.06 6.58A A m ==?= 采用方形基础: 2.6b A m == 6.1.2 计算基底最大压力max p 基础及回填土重:220 2.6 2.85385.32G G Ad KN γ==??= 基底处竖向力合力:963.55385.321384.87k F KN =+=∑ 基底处总力矩:53.0934.620.983.71k M KN m =+?=?∑ 偏心矩 83.71 2.6 0.060.431384.8766 k k M b e m m F = = =<==∑∑ 所以偏心力作用点在基础截面内。 基底最大压力: 2261384.8760.0611233.232.6 2.6k kmas F e p KPa b b ?????=+=?+= ? ????? ∑ 3、地基承载力特征值及地基承载力验算

盒形件落料拉深

计算机毕业设计https://www.360docs.net/doc/8716815601.html,JSPJAVAVBC++DelphiPHPVFPPB网络电子毕业设计电子信息通信单片机嵌入式 机电毕业设计机械模具数控工艺夹具电气PLC机电一体汽车土木毕业设计 当前位置:主页 > 机电毕业设计 > 模具 > 盒形件落料拉深复合冲裁模具设计 摘要我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模模具设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计模具中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的 摘要 我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的计算公式、盒形件用压边圈拉深系数、盒形件角部的第一次拉深系数等,然后再集结了自己平时的所学,还有通过对工件的零件、模具工作部分(凸凹模、拉深凸模、落料凹模)、模具装配图的绘制,我的绘图功底也有了一定程度地提高。 本次设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。 我觉得通过本次的毕业设计,达到了这样的目的: 1.综合运用本专业所学课程的理论和生产实际知识,进行一次冷冲压模具(落料拉深冲裁模)设计工作的实际训练,从而培养和提高我们独立工作的能力。 2.巩固与扩充所学有关冷冲模具设计课程的内容,掌握冷冲压模具设计的方法和步骤。 3.掌握冷冲压模具设计的基本技能,如计算、绘图、查阅设计资料和手册,熟悉标准和规范等。 关键词:冷冲压落料拉深

基础配筋计算

11基础配筋计算 设计基础的荷载包括:a.框架柱传来的弯矩、轴力和剪力(可取设计底层柱的相应控制内力);b.基础自重,回填土的重量。 11.1荷载设计值 外柱基础承受的上部荷载: 框架柱传来:11125.07.,824.75, 2.62M kN m N kN V kN === 内柱基础承受的上部荷载 框架柱传来: 11199.80.,1079.06,51.96M kN m N kN V kN === 该工程框架层数不多,地基土较均匀且柱距较大,可选择独立柱基础,据地质报告基础埋深需在杂填土一下。取基础混凝土的强度等级为C15,查GBJ10-89,表2.1,f c =7.2N/mm 2; f t =0.9 N/mm 2. 11.2柱独立基础的设计 11.2.1 初步确定基底尺寸 选择基础的埋深d=1.80m(大于建筑物高度的1/15) 地基承载力的深度修正(基础的埋置深度大于0.5m ) 根据设计资料提供,基底以下为粘土,查表知承载力修正值:。.4.1;15.0==d b ηη 重度计算:杂填土3 1116.5/0.5kN m h m γ== 粘土3 2219/1.80.5 1.3kN m h m γ==-= 则基础底面以上土的加权平均重度: (先不考虑对基础宽度进行修正) 11.2.2基础底面尺寸 先按照中心荷载作用下计算基底面积: 但考虑偏心荷载作用应力分布不均匀,故将计算出的基底面积增大1.2~1.4,取1.2。 选用矩形:a:b=1.5~2.0,即:宽×长=1.6m×2.4m,A=3.84m 2(满足要求)b ≤3m 满足要求,地基承载力不必对宽度进行修正。 11.2.3地基承载力验算 基础底面的抵抗弯矩:22311 1.5 2.5 1.6766W bh m ==??= 作用于基底中心的弯矩轴力分别为: 11.2.4 基础剖面尺寸的确定 采用台阶式独立柱基础 构造要求:一阶台阶宽高比≤1.75,二阶宽高比≤1.0。阶梯形每阶高度益为300~500,当h>900时,采用三阶,阶梯得水平宽度和阶高尺寸均为100mm 的倍数。基底垫层在底板下浇筑一层素混凝土,垫层的厚度为100mm ,两边伸出基础底板为100mm.初步选择基础高度h=600mm,从下至上分350,250两个台阶。h 0=550mm 11.2.5土净反力F l 的计算

汽车外覆盖件DL设计-13

a)骄车后侧围外板拉延制件工艺补充面放大图 (图一百一十六)骄车后侧围外板拉延制件成形工艺分析图 延制件工艺补充面放大图。图中显示了凸模工艺补充面上的凸包和凹坑,也显示了它们的凸模圆角半径和凹模圆角半径的变化规律,其变化规律与(图一百一十四)和(图一百一十五)所阐述的变化规律相同。设置凸模工艺补充面上的凸包和凹坑都是为了增加该处附近板材的塑性变形程度,以求遵守“拉延制件塑性变形应遵守的准则”。选择它们的凸模圆角半径和凹模圆角半径数值大小,可以改变该处变形程度的大小,因为该处的塑性变形內容与(图十七)所阐述的塑性变形內容相同,大的凸模圆角半径和凹模圆角半径显示了较小的变形程度;小的凸模圆角半径和凹模圆角半径显示了较大的变形程度。 8,完善DL图或工法图或加工要领图的可视化内容: 拉延制件三维数模的建立,只是完成了车身覆盖件各道冲压工序件的三维数模形状和尺寸,还没有把DL图或工法图或加工要领图应该表达的【27】项内容用可视化的方式表达出来,特别是必要的文字说明。如何使得DL图或工法图或加工要领图的使用人能够一目了然地领悟图中的内容,有以下三种方法: (1)将拉延制件三维数模通过计算机绘图软件转换成二维三向视图,通过制图的方法完善DL图或工法图或加工要领图,如(图八十五)所示。 (图八十四)的二维三向视图也是(图八十三)的三维立体数模通过计算机绘图软件转换而成,再通过制图的方法完善说明和表达。 这种方法是把车身覆盖件各道冲压工序件要说明的事都表达在一张二维三向视图上,故称综合工序图。它的优点是对照查看比较方便,但是,需要说明的事不是很多。适合于单冲压工序模具在压力机生产线上排序冲压的情况。 (2)将拉延、修边、翻边、斜契冲孔等各道冲压工序件的三维数模通过计算机绘图软件分别转换成各道冲压工序件的二维三向视图,通过制图的方法完善每一道冲压工序件及其模具设计需要说明的事,包括模具型面精细设计及加工需要说明的事等等。例如(图一百)拉延件的二维三向视图就是(图九十九)拉延件的三维立体数模通过计算机绘图软件转换而来;(图九十六)修边件的二维三向视图就是(图九十五)修边件的三维立体数模通过计算机绘图软件转换而来;(图八十四)翻边件的二维三向视图就是(图八十三)翻边件的三维立体数模通过计算机绘图软件转换而来。我们在这些二维三向视图上注明该付模具使用、制作、安装、调整、保管等需要详细说明的事项,故称加工要领图。我们再把这些二维三向视图连起来,即称冲压工法图。

拉延模设计规范

拉延模设计规范 模具大小分类: 注:为导板宽度

5 模具端头设计 上下模导向型式尺寸 导柱规格 d di D D1 D2 H1 H2 A ?50 50 40 70 60 125 75 70 140 ?60 60 50 :80 70 135 : 90 90 160 ?80 80 60 100 90 155 120 120 190 ?100 100 80 120 110 不套导 柱 150 150 210 h ■ 1? 严1 1 1 J' 常 — 工 I 1 町 1 1B 1 10 d . A A rj o 十 p — 1 II I 1 —1 + “ ,1 ■ L ---- ■ ? ----- 11 |i —1— 模具端头主要型式和尺寸如下: A <1> <2> <3>

模具锁附及压板槽结构压板槽结构如下: 4 60r ir' 般 模 结 自动装模、 用结构 装 用 构 注:1.H值见筋厚规定 9 Or In 模具长度L 压板槽单边数量 L W 1600 2 1600VL W 2500 3 L>2500 4 压板槽设置数量:

5 限位柱 模具类别 特大型 大型 中型 小型 限位柱直径D 80 P 70 60 60 限位柱处方形 平 台尺寸A 100 90 80 80 注:1.每套模具在四角设置4处 材科:45

5 安全平面 每套模具必须设置4处安全平面(空间不允许时可仅设2处),且设置在明显处 安全平面尺寸: 注:1.中型模具空间有限时可设成120X120或120X150 2.上下模安全平面在闭合状态下相距110。

基础承台钢筋计算

1)基础承台: 底板钢筋长度=底板边长-2×保护层 根数=板底另一边边长-2min(75mm,s/2)(注:取小值)÷s(注钢筋间距)-1 Kg/m=长度×0.00617×b2 2)注:单柱独立柱基础边长≥2.5m时,基础底板配筋,按0.9边长下料,交错布置。外侧钢筋长度=底板边长-2保护层 根数=2根(两边各一根钢筋) 其余钢筋长度=底板边长×0.9-保护层 或者底板边长-0.1底板边长-保护层 其余钢筋根数=底板另一侧长度-2min(75mm,S/2)/S-1

03G101图集计算 1)柱纵筋=柱净高+柱基础插筋+(柱顶)锚固长度2)柱基础插筋=基础高度-保护层+弯折长度

3)柱顶锚固:中柱:梁高-保护层(柱的)≥lae,则直锚, 直锚长度=梁高-保护层 梁高-保护层<lae时,则弯锚12d,弯锚长度=梁高-保护层+12d 边角柱:外侧钢筋=1.5lae 内侧钢筋同中柱 注:Lae=保护长度

柱箍筋根数: 1)加密段箍筋根数计算: 根数=加密段长度/加密间距+1【取max(本层净高,柱边长尺寸、500)】 2)非加密箍筋根数计算:根数=非加密段长度/非加密间距-1【取max(本层净高,柱边长尺寸、500)】 例子:(0.55+0.558)/0.1+1+(0.558/0.1+1)+(3.9-0.55-0.558×2/0.2-1)梁+下部0.1加密区 + 下部加密区 +中间非加密区

柱和梁箍筋 2)箍筋长度(外围一圈长度)=(b-2×保护层+2d)×2+(h-2×保护层+2d)×2+1.9d×2+2× max(75mm,10d)(注:取大值)03G规范计算。 箍筋长度(外围一圈长度)=(b-2×保护层)×2+(h-2×保护层)×2+1.9d×2+2×max(75mm,10d) (注:取大值)11G规范计算。 箍筋长度(里面一圈长度)=【(b(h)-2×保护层-D)/3×1+D+2D】×2+【h(b)-2×保护层+2d】×2+1.9d×2+2×max(10d,75) D—柱纵筋直径 d—箍筋直径 b—内侧钢筋箍宽 h—内侧钢筋箍高

AUTOFORM分析拉延成型

常见缺陷及解决办法1.拉延开裂 开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。产生开裂的原因大致有: (1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。 (2)工艺补充、压边圈的设计不合理。 (3 (4 (5 (6 2 (1 (2 (3)分模线调整。随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。 (4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。 (5)合理设计拉延筋,以确保各个方向进料均匀为目标。 (6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。 AutoForm模拟分析算法 AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。

1.隐式算法 静态隐式算法是解决金属成形问题的一种方法。在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。理论上在这个算法中的增量步可以很大,但是实际运算中要受到接触以及摩擦等条件的限制。随着单元数目的增加,计算时间几乎呈几何级数增加。由于需要矩阵求逆以及精确积分,对内存要求很高。隐式算法的不利方面还有收敛问题不容易得到解决以及当开始起皱失稳时,在分叉点处刚度矩阵出现奇异等。其中静态隐式算法多配合动态显式算法用于求解成形后的回弹分析。 2.一步成形法 一步法有限元方程利用虚功原理导出,其基本思想是采用反向模拟。将模拟计算按照与实际成形相反的顺序,从所期望的成形后的工件形状通过计算得出与此相对应的毛坯形状和有关工艺参数。板材成形过程的变形决定其有利于进行方向模拟。 3. 1 由于 图1? 导入CAD模型 2.网格检查及空洞填充

拉延模设计要点

拉延模设计 一:认真阅读DL图 1. 工件分析——拉延深度,形状尺寸 顶杆行程S1应保证压边圈的压料面高于凸模即工件最高点5mm以上。 限位螺钉行程S2= S1+15~20mm 2. 冲压方向和送料方向 3. 数模基准点和模具中心 4. 凸模轮廓线和压边圈轮廓线 5. 压料面形状 6. 拉延筋中心线 7. 试冲模板料压料面大小由试冲模板料向外偏移15mm来定 8. 标记销即R/L指示 9. 技术条件——材料,料厚,数模基准,冲压设备 二.压边圈轮廓尺寸的确定 1. 外轮廓的躲避尺寸:一般≥20mm 2. 压料面尺寸:试冲模板料向外偏移15mm 厚度H>25%L 但Hmin=150mm 宽度W>75%H 但Wmin=130mm(拉延前毛坯宽加大40~180mm般取 3. 压料面的轮廓尺寸应考虑制件的拉延深度和压床顶杆的布置 4.压边圈外缘面轮廓下降至少15mm,对轮廓形状变化比较大的压料面外缘形状设计时可 以给出简单形状尺寸 5.压边圈平面轮廓但毛坯板料形状复杂时应设计成简单的形状图 6.压边圈前后侧至少设置1~2处60mm以上观察凸模状态的铸造通孔和排气用铸造通孔

三导向设计 1. 气垫顶起时至少应有50mm导向接触面,大模具可延伸至100mm (1)导向腿设置在模具中部的尺寸规格 ①用于小型模具 注: 1. 图为单独使用导向腿和导向腿+导柱二者共用形式 2. 图中B,D,M处为设置导柱衬套时使用的尺寸

②用于中大型模具 注: 1. 图为单独使用导向腿和导向腿+导柱二者共用形式 2. 图中B,D,M处为设置导柱衬套时使用的尺寸(2)导向腿设置在木角部形式的尺寸规格

拉延模的设计

拉延模的设计

————————————————————————————————作者: ————————————————————————————————日期: ?

拉延模的设计 第一章、综述 第一节、拉延模的概念 拉延模是在压床的作用下,通过凸模、压边圈、凹模的联合作用使平板状坯料经过塑性变形获得稳定的空间形状的一种工艺装备。 第二节、拉延模的种类 根据使用设备的不同,拉延模可分为单动拉延模和双动拉延模; 单动拉延模:(两种类型的图形上下模都反了) 单动拉延模是利用机床的气垫机构进行压料,靠凸模和凹模进行成形。其特点是结构较简单,模具安装较方便。 双动拉延模: 双动拉延模是利用机床外滑块机构压料,靠凸模和凹模进行成形。其特点是四角的压料力可分别调整,但模具安装、调整较费时间,现采用较少。

以下仅对单动拉延模结构加以介绍。 单动拉延模可分为以下多种形式: 1、按下模铸造结构特点分:分体,整体; 2、按压边圈与凸模的导向形式特点分:内导向,外导向; 3、按制件形状特点分:沿形,不沿形;(何时出现?如很少见可不介绍。) 4、按凸模轮廓线封闭与否分:开口,闭口; …… 详见拉延模设计规范 第三节、拉延模的设计要点 一、根据制件的大小、形状、受力情况确定采用哪种形式的结构 二、确定数模中心、压床中心、模具中心三者之间的关系,尽量使三心重合 三、确定压边圈的行程 四、确定气垫顶杆的数量、位置以及长度 …… 1、充分分析工 艺要求,了解制件的产品部分和工艺补充部分,确定拉延是否必须镦实,以及冲压方向、送料方向、料厚及方向等。

2、建立模具中 心、数模中心、压床中心之间的关系,尽量使三心重合。 3、分析拉延所 需行程,确定压边圈工作行程。 4、气垫顶杆布 置。 5、其它结构设 计。 第二章、单动拉延模的设计 第一节、单动拉延模的基本结构 基本结构简图 第二节、单动拉延模的行程计算 一、压料行程 1、定义:当压料面为曲面时,从凹模接触板料到被凹模与压边圈固定住,上模在垂直方向运动 的距离。(当制件比较大或者拉延深度较深时)当压料面起伏较大时(如行李箱盖板),压料过程中如果不对板料加以约束,将会影响坯料定位。(压料行程的确定对于板料的定位有着决定性作用。) 2、计算方法:根据模具的实际情况,按照理想状态估计压料行程再加上5-10的余量即可(加 10~20较好,对行李箱盖还应在挡料机构上对坯料约束,如对坯料运动过程分析后,将挡料板做斜度,或做摆动结构等)。

拉延筋技术

拉延筋技术 1.拉延筋在板料拉深中的作用 拉深成形生产中,尤其是象车身覆盖件等这样的大型工件的拉深工序中,往往会因为零件几何型面的不对称,使得板坯在成形时各处材料沿凹模口的流动速度不均衡(图1一1),造成拉深后的工件,局部减薄量大出现颈缩或者破裂,而有些部位出现起皱、波纹等质量缺陷。为了改善这种状况,需要在压料面上控制对工件不同部位提供的进料阻力(毛坯在进入凹模前遇到的阻力),即在需要材料多的部位相应的进料阻力小,而在需要材料少的部位相应的进料阻力大(图1一),从而平衡坯料在凹模口部的流动速度差异(图1),提高零件成形质量。

改变压料面上进料阻力的方法有: 1.改变压边力或采用变压边力压边 2.改变压料面与模具之间的间隙 3.改变凹模口圆角半径 4.设置拉延筋等。 设置拉延筋是应用较灵活方便、修改较容易的一种方法,主要表现为: (1) 控制变形区材料的进料阻力,调节冲压变形区的拉力及其分布 (2) 通过对拉延筋各项参数的适当配置,能够通过均衡工件各部分的进料阻力来调节材料的流动情况,增加坯料流动的稳定性,得到变形均匀的冲压件; (3) 使用拉延筋后,压料面间隙可适当加大,表面精度可适当降低,从而减少压料面的磨损,降低模具制造成本 (4) 通过增加径向拉应力,使材料的塑性变形程度、硬化程度得以提高,减少由于变形不足而产生的松弛回弹以及波纹等缺陷,提高工件的刚度(5) 可防止因凸缘周边材料不均匀流动而不可避免产生的皱纹进入修边线内,减轻或消除复杂零件悬空部分因材料集中而发生的内皱现象(6) 拉延筋提供的进料阻力,可以在一定程度上降低对压床吨位的需求;通过增加胀形成分和增大进料阻力,可减小板料外形尺寸,提高材料利用率。

汽车覆盖件冲压工艺设计DOC

汽车覆盖件冲压工艺设计 1.汽车覆盖件的特点 (3) 2.汽车覆盖件冲压工艺设计 (3) 2.1汽车覆盖件冲压工艺设计内容 (3) 2.2拉延工艺设计 (9) 2.2.1拉延冲压方向的确定 (9) 2.2.2拉延工艺补充、压料面、及凸模轮廓线的设计 (9) 2.2.3拉延筋的应用及设计 (11) 2.2.4拉延毛坯形状及展开 (17) 2.2.5 DL图的内容及设计 (19) 2.3修边冲孔工艺设计 (22) 2.3.1 修边冲孔冲压方向的确定 (22) 2.3.2修边冲孔工艺方案的设计 (25) 2.4翻边工艺设计 (39) 2.4.1翻边冲压方向的确定 (39) 2.4.2翻边工艺方案的设计 (39) 2.5整形工艺设计 (45) 2.6回弹分析及校正工艺设计 (46) 2.6.1回弹的分类及产生原因 (46) 2.6.2常见的回弹及其对策 (46) 2.7特殊材料的汽车覆盖件冲压工艺设计 (49) 2.7.1拼焊板的冲压工艺设计 (49)

2.7.2复合板的冲压工艺设计 (52) 2.7.2铝合金板的冲压工艺设计 (53) 3.汽车覆盖件典型零件冲压工艺分析及方案 (55) 3.1 顶盖的冲压工艺分析及方案 (55) 3.2 后围外板的冲压工艺分析及方案 (55) 3.3 车门外板的冲压工艺分析及方案 (56) 3.4长头车前围外板的冲压工艺分析及方案 (56) 3.5油底壳的冲压工艺分析及方案 (57)

1.汽车覆盖件的特点 (内容见原书) 2.汽车覆盖件冲压工艺设计 2.1汽车覆盖件冲压工艺设计内容 随着人们对汽车覆盖件冲压工艺设计重要性认识的加深,覆盖件冲压工艺的设计内容已经不再局限于简单的工艺排序及拉延补充,而是深入到模具设计、模具制造、乃至模具及冲压件检查等各个方面。目前,汽车覆盖件冲压工艺设计的内容主要包括: 1.确定基准点及与冲模中心的关系 所谓基准点是指基于汽车产品坐标系,位于汽车覆盖件表面或接近汽车覆盖件表面,用于反映汽车覆盖件在模具中的位置关系的一个空间坐标点。 基准点的设定需注意: ①基准点应尽量取在汽车覆盖件的坐标交点上,其坐标值最好是 整数。 ②如将基准点放在汽车覆盖件表面,则要尽量放在平滑的表面 上。 ③标记方法: 按汽车覆盖件相对与冲压方向的旋转情况分为以下三种情况: ⑴汽车覆盖件相对与冲压方向无旋转

相关文档
最新文档