土壤源热泵空调技术的应用及施工管理

土壤源热泵空调技术的应用及施工管理
土壤源热泵空调技术的应用及施工管理

浅析土壤源热泵空调技术的应用及施工管理

摘要:文章就土壤源的热泵系统工作原理以及系统安装施工及系统设计管理中存在的某些问题进行了大致的探讨。土壤源的热泵系统构成包括用户末端系统、热泵机组和地埋管式的换热系统。按照地下盘管敷设方式的不同,地埋管换热器又可分为垂直埋管和水平埋管等多种形式。通常情况下,工程中大多会使用垂直埋管的形式。对于较为大型的u型地埋管系统大多会采取多组并联管网形式,它的优点就在于方便进行分组调控,使运行的可靠性得到了提升。在施工过程中,需注意将地埋管的管材保护和验收工作做好。在完成换热管的下管施工之后,需用灌浆材料进行及时的回填封孔处理,同时按照规范要求将相应的水压试验工作做好。由于地热源泵的供暖空调技术具有非常好的环境效益和节能效益,因此得到了非常广泛的使用。文中就土壤源热泵的空调技术应用进行了大致论述,并对其施工管理方式也进行了一定的分析,以期为我国土壤源热泵技术的发展提供可供参考的意见和建议。

关键字:土壤源热泵;空调技术;施工管理;应用

一、土壤源热泵系统工作的原理

(一)工作原理

用户末端系统、热泵机组和地埋管式的热交换系统共同构成了土壤源热泵系统。在热泵机组的作用下,土壤源热泵系统将末端供暖系统和地埋管式的热交换系统连接起来。在水或者其他换热介质的载体作用下,土壤源热泵系统经由埋设于地表以下的换热器和岩土

地源热泵节能技术论文

地源热泵节能技术论文 为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。—了地源热泵节能技术,有的亲可以来阅读一下! 地源热泵节能分析 摘要:利用土壤、地表水和地下水等地表浅层的地源热泵,是夏季制冷以及冬季供暖的空调系统,相对比传统的空调系统地源热泵供暖空调技术因全年恒定的地源温度,所以其有较高的运行效率。地源热泵的经济竞争性还是有待考究的。文章首先对地源热泵技术的概念进行了描述,分析了地源热泵供暖空调技术的现状,阐述的地源热泵技术的优点,同时分析了地源热泵技术在国内发展中存在的障碍。 关键词:地源热泵;节能;分析 :TE08: A

为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。环保性能有效降低能源损耗,实现建筑暖通节能,为建筑节能做出贡献,为了更深入的了解地下水地源热泵系统特性,笔者现结合地下水地源热泵技术特点,对该技术在建筑暖通工程施工中的应用作详细探讨。 一、地源热泵原理与组成 随着经济的发展和生活水平的提高,公共建筑和住宅的供热和空调己成为普遍的需求。在发达国家中,建筑能源耗费量大约占总能耗的三分之一,其中供热和空调的能耗可占到建筑能耗的65%。在全球能源形势日趋紧张的今天,空调节能变得尤其重要。而且大量燃烧矿物燃料所产生的环境问题也己成为各国政府和公众关注的焦点。因此,除了集中供热以外,急需发展其他的替代供热方式。地源热泵就是能有效节省能源、减少大气污染的供热和空调新技术。地源热泵是利用大地“土壤、地表、地下水”作为热源。地源热泵系统一般由地热能交换系统、水源热泵机房系统和建筑内末端散热系统三部分组成。其中,地热能交换系统可以说是地源热泵与其它传统中央空调系统唯一和最大的区别。 二、地源热泵技术的概念及现状 地源热泵技术是指使用地下的岩石作为稳定的蓄热体,将地下浅层热资源,通过少量的高位能源,将低品位能源向高品位能转移,以实现冬

海水源热泵空调工程应用实例

1工程概况 该工程位于青岛发电厂内,建筑共2层,一层为职工食 堂,二层为工会办公楼,层高均为4.5m,建筑面积2400m2,空调总面积为1871.5m2(不计算浴室面积)。此热泵空调系 统同时供应洗澡热水,按100m2 /d计。 一层为职工食堂,分就餐区和厨房灶间两部分,24h正常营业。厨房灶间由于有蒸汽锅等散热量较大的设施、设 备,冬季白天温度大约在26! ̄28!,需要制冷运行;晚上需要制热运行。二层为工会办公室、歌舞厅、健身活动室以及会议室,各自冷热温度需求不同,使用时间分散且不固定。 2空调设计参数 2.1室内空气设计参数 室内空气设计参数按照采暖通风与空调设计规范选 取,其参数见表1。 表1室内空气设计参数表 2.2海水设计温度 青岛沿海海水温度水下5m处,冬夏海水温度变化不 大,因此本设计海水温度按照最低水位水下5m计算,其数 值夏季(7月"9月)25.2!;冬季(12月)6.39!,冬季(1月"2月) 3.74!。2.3空调负荷 1)夏季冷负荷:!L=231.5kW;冬季热负荷:!R=187.2kW。2)浴室热负荷: !R=273.5kW。3海水源热泵系统 3.1海水处理 海水中含有一些生物活性和高含量的固体粒子(砂子、 有机物质等),含盐量也很高。这些颗粒可能会在表面形成沉淀物,结果会增加生物活性以及微生物腐蚀的可能性。为了避免这些,在海水引入口安装一个机械过滤器来过滤掉这些颗粒,还要通过杀死细菌的方法减少生物活性。 3.2蒸发器 为了避免海水直接进入热泵机组,而对蒸发器产生腐蚀,该系统设计中我们引入了抗海水腐蚀的二级换热器,换热器采用钛板制作,其示意图如图1所示。 图1二级闭式循环换热器设计 3.3海水管道设计 海水管道采用硬聚氯乙烯给水管材(U—PVC),海面下管道在海底开槽挖沟安装,陆地上管道直埋敷设。 4空调系统设计 为满足不同区域在同一时间对冷热的不同需求,该工程中在室内采用水—空气热泵机组,保证机组可以随时冷热切换,用“二管制”替代了“四管制”,从而节省了水管路的费用,而且方便运行管理。 每台热泵机组根据室内新风需求,在回风管道上引入适量的新风,新风入口装有电动调节阀,风阀的开启与关闭与热泵机组的风机连锁。 每台机组具有制冷、制热与通风功能,并且均配有室内控制器。过度季节,可根据实际需要制冷、制热或通风运行。 水系统为异程设计,每台水—— —空气机组进水管上装有过滤器,回水管上装有自动排气阀。每层水管路连接的第 二次网循环系统 蒸发器 二级闭式循环换热器 海水 ?¢ ?¢ ?¢ ?¢ ?¢ ?¢/? ?¢£¤/(%) ?¢/? ?¢£¤/?%? NC ?¢ 23~26 55~60 21~23 20~30 ? ?¢ 26~28 ? 21~23 ? ? ?¢£ 24~26 40~50 20~22 20~30 33~35 ?¢£ 25~27 40~50 18~20 20~30 34~36 工程建设与设计#$$%年第&期地源热泵专题 [作者简介]祁俊山(1972"),男,山东陵县人,助理工程师,从事海水源热泵的研究与推广应用. 海水源热泵空调工程应用实例 祁俊山1,薛越霞2 (1.青岛新天地环境保护有限公司,山东青岛266003; 2.青岛市环境监察支队,山东青岛266003) [摘要]通过目前国内建成的海水源热泵空调系统示范工程的实施,介绍海水源热泵空调系统工作原理、工程设计、运行参数、节能效益分析,为实施大型海水源热泵区域供热供冷提供理论和实践样板。 [关键词]海水源热泵;示范工程;系统设计;节能环保 [中图分类号]TU833.+3[文献标识码]A[文章编号]1007-9467(2005) 09-0012-02’#

土壤源热泵

土壤源热泵系统的设计方法 上海工程技术大学 胡建平★ 摘要:本文主要介绍了土壤源热泵系统的设计方法和步骤,重点论述了地下热交换器的设计过程。并举例加以说明。 关键词:土壤源热泵 热交换器 设计 The Design Ways of Ground-coupled Heat Pump System By Hu Jianping ☆ Abstract: In this paper the design ways and steps of ground-coupled heat pump system have been introduced. The design of the underground heat exchanger has been discussed in details, and an example has been taken to illustrate the process of the design. Keywords: Ground-coupled heat pump Heat exchanger Design ☆Shanghai University of Engineering Science ,China 0 引言 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统[1]。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。 土壤源热泵系统的核心是土壤耦合地热交换器。 地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。 地表水热泵系统与土壤源热泵系统相似,用潜在水下并联的塑料管组成的地下水热交换器替代土壤热交换器。 虽然采用地下水、地表水的热泵系统的换热性能好,能耗低,性能系数高于土壤源热泵,但由于地下水、地表水并非到处可得,且水质也不一定能满足要求,所以其使用范围受到一定限制。国外(如美国、欧洲)主要研究和应用的地源热泵系统以及我国理论研究和实验研究的重点均是土壤源热泵系统。目前缺乏系统设计数据以及较具体的设计指导,本文进行了初步探讨,以供参考。 1 土壤源热泵系统设计的主要步骤 (1)建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算方法相同,可参考有关空调系统设计手册,在此不再赘述。 冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式[2]计算: ???? ? ?+?='11111COP Q Q kW (1) ???? ? ?-?='22211COP Q Q kW (2) 其中'1Q ——夏季向土壤排放的热量,kW 1Q ——夏季设计总冷负荷,kW

水冷螺杆机组与水源热泵机组工程应用实例比较.

水冷螺杆机组与水源热泵机组工程应用实例比较 以下是某单位发电站办公楼中央空调的冷水螺杆机组与节能水源热泵冷热水机组的设计实例与应用上的理论对比: 广州惠州抽水蓄能电站指挥部大楼总建筑面积11000m2,建筑高度为6层,其功能分别为:宾馆、办公楼、会议中心。发电站稍低于建筑,可以利用自然高差供水或使用水泵直接从发电站中引用水源进能冷热源交换。 该项目设计空调冷负荷1800kW,空调热负荷600kW,同时使用系统数为0.9,选主机制冷量为810kw*2= 1620kw,选用电热锅炉480kw,宾馆部分生活热水负荷400kW。空调冷热负荷采用水冷螺杆机组两台/电热锅炉一台,冷冻水泵三台(两用一备),冷却水泵三台(两用一备),冷却塔一台,风柜21台,风机盘管180台。生活热水采用太阳能热水器一批。供冷运行能耗为:主机179*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+冷却塔4kw+风柜21*2.2+风机盘管180*0.08kw=526.6kw。 供热运行能耗为:电锅炉480kw+冷冻水泵22kw*1+风柜21*2.2+风机盘管约180*0.08kw=562.6kw。 计算结果如下: ① 制冷工况:系统总制冷量:Q0=1620kW;系统总功率:Pi=526.6kW;系统制冷系数:Cop=3.08。 ② 热泵工况:系统总制热量:Qk=480kW;系统总功率:Pi=562.6kW;系统制热系数:Cop=0.85。 如果选用水源热泵机组,则选用水源热泵水机组wps230.1A,制冷量为861.5kw,输入功率116.2 kw, 制热量为880.9 kw,输入功率161.9 kw;冷冻冷却水泵均按螺杆机组方按选型。那么计算结果为供冷运行能耗为:主机116.2*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=397kw。 供热运行能耗为(一台主机就可以提供热源):161.9*1kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=326.5kw① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW;系统制冷系数:Cop=4.34。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW;系统制热系数:Cop=2.69。 如果冷却水泵直接采用发电站的高位差做动力,那么就省去冷却水泵的输入功率,这时运行能耗比为: ① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW-30*2kw=337kw;系统制冷系数:Cop=5.11。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW-30*2kw=266.5kw;系统制热系数:Cop=3.31。 同时,如果系统采用水源热水机组,还能为生活用热水提供足量的水源。节省了太阳能的初投初,又节省了大量的电能浪费。 水源热泵式中央空调是市场上最节能环保的中央空调系统之一。它具有供热、制冷、生活热水三联供的作用、无视觉污染、减少配电容量,减少资源浪费等特点,适用地区比较广[9]。近几年,水源热泵空调系统已经在我国得到了

土壤源热泵系统的设计计算方法

土壤源热泵系统的设计计算方法 摘要:本文主要介绍了土壤源热泵系统的设计方法和步骤,重点论述了地下热交换器的设计过程。并举例加以说明。 0 引言 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统[1]。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。 土壤源热泵系统的核心是土壤耦合地热交换器。 地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。 地表水热泵系统与土壤源热泵系统相似,用潜在水下并联的塑料管组成的地下水热交换器替代土壤热交换器。 虽然采用地下水、地表水的热泵系统的换热性能好,能耗低,性能系数高于土壤源热泵,但由于地下水、地表水并非到处可得,且水质也不一定能满足要求,所以其使用范围受到一定限制。国外(如美国、欧洲)主要研究和应用的地源热泵系统以及我国理论研究和实验研究的重点均是土壤源热泵系统。目前缺乏系统设计数据以及较具体的设计指导,本文进行了初步探讨,以供参考。 1 土壤源热泵系统设计的主要步骤 (1)建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算方法相同,可参考有关空调系统设计手册,在此不再赘述。 冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以 由下述公式[2]计算: ??????? ?+×=′11111COP Q Q kW (1) ??????? ??×=′22211COP Q Q kW (2) 其中——夏季向土壤排放的热量,kW ′1Q 1Q ——夏季设计总冷负荷,kW ′2Q ——冬季从土壤吸收的热量,kW 2Q ——冬季设计总热负荷,kW 1COP ——设计工况下水源热泵机组的制冷系数 2COP ——设计工况下水源热泵机组的供热系数 一般地,水源热泵机组的产品样本中都给出不同进出水温度下的制冷量、制热量以及制冷系数、供热系数,计算时应从样本中选用设计工况下的、。若样本中无所 1COP 2COP

江水源热泵的应用及设计研究现状

江水源热泵的应用与研究现状 1前言 江水具有很好的宏观热能特征,将其作为热泵冷热源为建筑物供暖供冷前景巨大,在国内引起了广泛关注,目前也有一些应用案例。相比各类空气源热泵,江水源热泵能够获得更高的能效,并能缓解城市热岛效应。 长江流域处于夏热冬冷地区[1],冬夏季空调负荷较大。随着经济的增长、人民生活水平的提高,空调系统必将普及,空调负荷必将大幅增长。水源热泵机组在冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水污水中的低品位热能供给室内取暖;在夏季则把室内的热量取山,释放到水中,制取冷水达到夏季空调供冷的目的。江水源热泵利用长江水作为系统的冷热源,效率高,且不需冷却塔和锅炉等设备,机房占用面积小,不向大气排放污染物及热量,改善室内环境及城市环境。充分利用长江水资源不仪能够人幅度降低冬夏季空调能耗,而且降低电网及燃气的供应尖峰,达到高效、节能、环保的目的。本文还综述了该领域目前的应用与研究现状。 2对江水作为冷热源的分析 由于江河水年四季温度变化较小,水量丰富稳定,是水源热泵良好的低位能源。长江、嘉陵江流经整个重庆主城区,常年年均水流量长江为8500m3/s,嘉陵江为2430m3/s,两江合流后为10930m3/s;冬(12-2月)夏(6-9月)季平均江水温度(水下0.5m处),冬季12.8℃,夏季23.5℃;冬夏季平均含砂量,夏季745mg/l,冬季30.6mg/l;嘉陵江夏季504mg/l,冬季5.34mg/l。 以嘉陵江冬季江水温度和大气温度的测量分析结果为例,见表1,得出冬季嘉陵江水温分布稳定,平均在9.2~13.1℃之间,且变化非常平稳,没有大的波动,最冷月平均水温8.8℃;而空气温度则存在较大的波动,月平均气温波动范围虽不大,在8.6~12.8℃,但日平均温度波动频繁,最低只有6.6℃,最高达17.7℃,分布极不稳定。通过测量得知,冬季水温沿深度方向呈递增的趋势,经分析,水面以下2~3m处水温已很接近。因此,江水用作空调冷热源在温度和稳定性方面都较空气有明显的优势。

土壤源热泵系统设计方法步骤(精)

土壤源热泵系统设计方法步骤 佚名 简介:随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。 关键字:土壤源热泵系统,地下热交换器 土壤源热泵系统的核心是土壤耦合地热交换器。 地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。 地表水热泵系统与土壤源热泵系统相似,用潜在水下并联的塑料管组成的地下水热交换器替代土壤热交换器。 虽然采用地下水、地表水的热泵系统的换热性能好,能耗低,性能系数高于土壤源热泵,但由于地下水、地表水并非到处可得,且水质也不一定能满足要求,所以其使用范围受到一定限制。国外(如美国、欧洲)主要研究和应用的地源热泵系统以及我国理论研究和实验研究的重点均是土壤源热泵系统。目前缺乏系统设计数据以及较具体的设计指导,本文进行了初步探讨,以供参考。 1 土壤源热泵系统设计的主要步骤 (1)建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算方法相同,可参考有关空调系统设计手册,在此不再赘述。 冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式[2]计算: kW (1) kW (2) 其中Q1'——夏季向土壤排放的热量,kW Q1——夏季设计总冷负荷,kW Q2'——冬季从土壤吸收的热量,kW Q2——冬季设计总热负荷,kW COP1——设计工况下水源热泵机组的制冷系数 COP2——设计工况下水源热泵机组的供热系数 一般地,水源热泵机组的产品样本中都给出不同进出水温度下的制冷量、制热量以及制冷系数、供热系数,计算时应从样本中选用设计工况下的COP1、COP2 。若样本中无所需的设计工况,可以采用插值法计算。 (2)地下热交换器设计 这部分是土壤源热泵系统设计的核心内容,主要包括地下热交换器形式及管材选择,管径、管长及竖井数目、间距确定,管道阻力计算及水泵选型等。(在下文将具体叙述) (3)其它 2 地下热交换器设计 2.1 选择热交换器形式 2.1.1 水平(卧式)或垂直(立式) 在现场勘测结果的基础上,考虑现场可用地表面积、当地土壤类型以及钻孔费用,确定热交换器采用垂直竖井布置或水平布置方式。尽管水平布置通常是浅层埋管,可采用人工挖掘,初投资一般会便宜些,但它的换热性能比竖埋管小很多,并且往往受可利用土地面积的限制,所以在实际工程中,一般采用垂直埋管布置方式。 根据埋管方式不同,垂直埋管大致有3种形式:(1)U型管(2)套管型(3)单管型(详见[2])。套管型的内、外管中流体热交换时存在热损失。单管型的使用范围受水文地质条件的限制。U型管应用最多,管径一般在50mm以下,埋管越深,换热性能越好,资料表明[4]:最深的U型管埋深已达180m。U型管的典型环路有3种,其中使用最普遍的是每个竖井中布置单U型管。 2.1.2 串联或并联 地下热交换器中流体流动的回路形式有串联和并联两种,串联系统管径较大,管道费用较高,并且长度压降特性限制了系统能力。并联系统管径较小,管道费用较低,且常常布置成同程式,当每个并联环路之间流量平衡时,其换热量相同,其压降特性有利于提高系统能力。因此,实际工程一般都采用并联同程式。结合上文,即常采用单U型管并联同程的热交换器形式。 2.2 选择管材 一般来讲,一旦将换热器埋入地下后,基本不可能进行维修或更换,这就要求保证埋入地下管材的化学性质稳定并且耐腐蚀。常规空调系统中使用的金属管材在这方面存在严重不足,且需要埋入地下的管道的数量较多,应该优先考虑使用价格较低的管材。所以,土壤源热泵系统中一般采用塑料管材。目前最常用的是聚乙烯(PE)和聚丁烯(PB)管材,它们可以弯曲或热熔形成更牢固的形状,可以保证使用50年以上;而PVC管材由于不易弯曲,接头处耐压能力差,容易导致泄漏,因此,不推荐用于地下埋管系统。

土壤源热泵方案及施工组织设计

jil^na*H

广州瑞姆节能设备有限公司简介 美国节能联盟(Allianee to save energy , 简称ATSE是全世界最专业的节能技术和产 品联合体,其总部设在美国纽约,主要在全世界范围内推广最新的节能技术和节能产品。广州瑞姆节能设备有限公司是美国ATSE在中国的战略合作伙伴。通过由美国ATSE提供最先进的热泵节能技术,结合天津大学热能研究所的深入研发,现拥有“热姆热泵” (REALM 自主品牌。在广州和天津分别设立了生产基地和研发中心,主要负责热姆热泵系列产品的研发,制造和中国境内的产品销售,美国ATSE负责国际市场的产品销售。 ?热姆热泵(REALM 系列产品主要有:家用、商用空气源热泵热水机组家用、商用冷暖热三联供机组热泵型冷暖中央空调 水源、地源热泵热水机组 ?我们的企业目标打造中国的节能品牌-- 热姆热泵成为国内先进的热泵新技术研发、新产品实验及生产基地建立国内一流的热泵营销、服务培训基地建立全国性的热姆热泵连锁专卖店及服务保障体系 ?我们的服务及保障产品整机保修一年,保修范围内的故障配件一年免费包换产品正常使用寿命10-15 年每年提供一次免费例行巡检服务 热姆热泵(REALM系列产品严格按照美国ATSE的质量控制体系及工艺要求进行生产,并通过了IS09001认证和美国EMC成员认证,中国CCC认证、全国工业产品生产许可证和节能认证,全国热泵热水器十大著名品牌,全国质量、信誉、服务AAA级会员单位。 目录

太阳能—土壤源热泵系统联合运行模式

文章编号: 1005—0329(2004)02—0041—05 制冷空调 太阳能—土壤源热泵系统联合运行模式的研究 杨卫波,董 华,周恩泽,胡 军 (青岛建筑工程学院,山东青岛266033) 摘 要: 针对青岛地区的气象条件,对太阳能—土壤源热泵系统联合运行的各种模式进行了模拟计算,并与土壤源热泵作了比较。结果表明,与土壤源热泵相比,联合运行各模式具有明显的节能效果,其节能率在12%以上,可作为实际工程设计、运行的优选方案。 关键词: 太阳能—土壤源热泵系统;联合运行模式;土壤源热泵 中图分类号: T U83211 文献标识码: A R esearch on Approach of Combined Operation in Solar—E arth Source H eat Pump System Y ANG Wei2bo,DONG Hua,ZHOU En2ze,H U Jun (Qingdao Institute of Architecture and Engineering,Qingdao266033,China) Abstract: Based on the climate condition of Qingdao,simulation com putation of various combined operation m odes of S olar—Earth S outh Heat Pum p System were carried out.The result indicates that com pare to G SHP combined operation m odes,have a notable energy conservation effect the energy2saving rate is m ore than12%,and can be used as an optimized scheme in the practical engineering design and operation. K ey w ords: S olar—Earth S ource Heat Pum p System;combined operation approach;G SHP 1 前言 太阳能—土壤源热泵系统(SESHPS)根据热源组合的不同而有多种不同的运行模式,最基本的模式有白天(晴天)采用太阳能热泵、阴雨天或夜晚采用土壤源热泵的交替运行模式和同时采用两热源的联合运行模式。目前,国内外对SESHPS 运行模式的研究并不多见,文献[1]对天津地区SESHPS交替运行进行了实验研究,得出太阳能热泵平均供热率为334W,平均供热系数为2.73,土壤源热泵的相应参数为2298W和2.83,SESHPS 的相应参数为2316W和2.78;文献[2]对寒冷地区SESHPS各运行模式运行时间的分配比例进行了理论研究,得出哈尔滨地区SESHPS中太阳能热泵、土壤源热泵及联合运行模式各自运行的时间比例分别为:48.26%、10.07%及41.67%;但对作为其主要运行模式之一的联合运行模式进行研究的几乎没有看到。本文旨在对SESHPS联合运行的各种模式进行数值模拟计算,以为其实际设计、运行及调试提供理论基础。 2 SESHPS的组成及其联合运行模式 211 系统组成 太阳能—土壤源热泵系统如图1所示。该系统可根据日照条件和热负荷变化情况采用多种不同运行模式,如太阳能热泵供暖、土壤源热泵供暖、太阳能—土壤源热泵联合(串联或并联)供暖 收稿日期:2003—06—20 基金项目:山东省科技发展计划项目“地热综合利用关键技术研究”(011150105)14 2004年第32卷第2期 流 体 机 械

海水源热泵工程案例

海水源热泵的现状及工程案例 1、国内外研究现状和发展趋势 国外有很多应用海水做热泵冷热源的实例。如20世纪70年代初建成的悉尼歌剧院,日本20世纪90年代初建成的大阪南港宇宙广场区域供热供冷工程,利用海水为23300kW的热泵提供冷热源。北欧诸国在利用海水热源方面具有丰富的实践经验,其中瑞典就是一个典型应用海水源热泵集中供冷/暖的国家。瑞典首都斯德哥尔摩建设了总能力为180MW的世界上最大的海水热泵站,用于区域供热,占城市中心网输送总量的60%。热泵站由6台供热能力为30MW/台热泵机组组成,1984-1986年调试完成,投入运行。 我国第一个海水源热泵项目于2004年在青岛发电厂建成使用。该厂总面积达1871平方米的职工食堂,成为我国第一个供热不需要煤炭、油料,只使用海水提供采暖的建筑。此外,大连市星海假日酒店海水源热泵中央空调工程也已正式启动,此次海水源热泵中央空调将为4万平方米的建筑提供制冷和采暖。 日前,经过申报和专家评审等程序,大连市被国家选为全国唯一的水源热泵技术规模化应用示范城市,这标志着大连市今后将有望以海水为能源,进行室内空气的冷热调节。 日照港青岛千禧龙花园居民小区7.2万平米,冬夏收费标准22元/平方米,青岛的采暖标准30.4元/平方米;青岛海天大酒店周围海水源热泵区域供热供冷站。和瑞典AF公司合作,承担山东路以西约100万平方米的区域供热供冷站作更深一步的可研。小港湾和记黄埔93万平方米已确定用海水源热泵。 2、政策支持 按照国家《建筑节能实施方案》要求,“十一五”期间,示范城市的水源热泵供热、制冷面积要达到500万平方米以上。示范内容包括水源热泵供热、供冷和相关的技术研发集成及产业化。对示范城市的示范项目,国家将提供专项资金,用于补贴70%的增量成本。目前,大连市正积极推进小平岛新区、星海湾商务区、软件产业带等区域实施海水热泵技术的前期工作。以水源热泵技术供热(制冷)主要是利用大型热泵对事先抽取的海水进行处理,将其中的热量提取出来,用于供热和制冷,并将能量通过城市原有的供热(制冷)系统输送到户,这就完

美意水源热泵应用工程实例

美意水源热泵应用工程实例 摘要:水源热泵是利用地下水、地表水作为冷热源的热泵机组,但水源的水质问题一直是困扰水源热泵设计的一大技术要点,对此有两种解决办法:处理水质和采用闭式换热系统。本文介绍闭式换热系统的一种形式:湖水换热系统。 关键词:水源热泵闭式换热系统PE 管湖水换热系统 水源热泵的运行工况是一年四季相对稳定的,地下水与土壤浅层温度为16~20℃,大容量地表水体温度为6~14℃(冬季),22~26℃(夏季),比环境空气温度好很多,使运行更稳定可靠,热泵寿命可长达25 年以上,保证了系统的高效性和经济性。与空气源热泵及溴化锂直燃机相比,相当于减少35?"50% 以上的能源消耗。 水源热泵是以水为冷热源。水流经机组的换热器将冷/热量交换给制冷剂,再由机组将冷/热量泵到所需适用区域。水源热泵适用的水源可以是江、河、湖、海水、地下水,甚至中水、城市污水等。 水源热泵换热系统型式分为开式系统和闭式系统。开式系统是所利用水源的水直接与水源热泵机组热交换器进行热交换。闭式系统是在机组的换热器与水源水之间外加一个换热器。闭式换热系统有如下两种形式:1、开式水源加板式换热器2、PE 管湖水换热系统。 深圳光明高尔夫球场会所采用的是PE 管湖水换热系统。下面对该项目的PE 管湖水换热系统进行介绍。 一、工程简介 本工程为深圳光明高尔夫会所中央空调工程。该建筑空调制冷面积约10,000m2,冷负荷1,000kW;生活热水用量40m3/d,出水温度55℃。为了与高尔夫球场的绿色秀美的环境相映衬,该项目的中央空调系统选用节能、环保的水源热泵空调系统。利用会所周围的人工湖湖水作为该会所空调系统的冷热源。

土壤源热泵施工工法9027

土壤源热泵施工工法 一、前言 地源热泵系统是随着全球性的能源危机和环境问题的出现而逐渐兴起的一门热泵技术。它是一种通过输入少量的高位能(如电),实现从浅层地能(土壤热能、地下水中的低位热能或地表水中的低位热能)向高位热能转移的热泵空调系统,被称为是21世纪的一项以节能和环保为特征的最具有发展前途的空调技术。 目前随着铁路建设水平的提高,越来越多的大型旅客站房采用大跨度网架屋面及玻璃幕墙结构,这种结构散热面大,对空调系统要求高。采用传统分体式空调系统及集中中央空调系统虽然初期投资少,但运营成本高,综合考虑全生命周期成本,地源地泵空调系统具有更大的优势。有研究数据表明,地源热泵系统相对家用分体空调器所增加的投资,在运营中用节约的电费偿还,偿还期只需4~5年。铁路大型旅客站房采用地源热泵空调系统具有一定的技术经济合理性。 二、地源热泵系统特点 1.资源可以再生利用。 2.运行费用低。 3.机房占地面积小,并可设在地下,节省建筑空间。 4.绿色环保,系统利用地球表面的浅层地热资源,没有燃烧,没有排烟及废弃物,清洁环保无任何污染。 5.自动化程度高。 6.一机多用,既可供暖,又可制冷,最大限度的利用了能源。 三、适用范围 可用于工厂、车站、商场、宾馆、酒店、商务办公、娱乐场所、住宅小区、别墅、蔬菜养花大棚等各类建筑。小到一、二百平米大到几十万平米,从单供暖、冷暖双供到冷暖及生活热水三供,都可以完美运行。 四、工艺原理 土壤源热泵是利用地下土壤、地下水温度相对稳定的特性,冬季通过消耗少

量的高位能量(电能)把土壤储存的低品位热能转移到需要供暖的室内;夏季却将室内的热量转移释放到土壤中,从而达到冬季供暖、夏季制冷的目的。地源热泵的工作原理参见图。 五、施工工艺 (一)工艺流程 1.竖直管施工工艺: 2.水平管施工工艺: (二)施工方法 1、测量、放线及钻机就位

地下水源热泵现状及应用介绍

地下水源热泵的现状与应用 引言 地下水源热泵(Ground Water Heat Pumps,GWHP)是地源热泵(Ground Source Heat Pumps,GSHP)的一个分支。这项技术起始于1912年,瑞士Zoelly提出了“地热源热泵”的概念。1948年,第一台地下水源热泵系统在美国俄勒冈州波特兰市的联邦大厦投入了运行。在其后的几十年中,地下水源热泵得到了更为广泛的应用。美国在过去的10年内,地下水源热泵的年增长率为12%,现在大约有500,000套(每套相当于12kW)地下水源热泵在运行,每年大约有50,000套地下水源热泵在安装。我国地下水源热泵从1997年开始学习和引进欧洲产品,出现了大规模的地下水源热泵采暖工程项目。到1999年底,全国大约有100套地下水源热泵供热或制冷系统[1]. 在我国,煤炭作为主要能源,长期以来在生产、消费中占据着绝对主导地位。尽管近年来煤炭所占比例略有下降,但仍保持在65%以上,并再次呈现出上升的迹象[2].只有减少煤炭的使用,大气污染问题才有可能得到解决。我国城乡建筑发展迅速,近几年来每年建成的住宅面积,城镇已至4~5亿平方米,农村则达7~8亿平方米,其中供热、空调的建筑面积高达6.5亿平方米。与气候条件接近的发达国家相比,我国居住建筑单位面积供暖能耗为他们的3倍左右[3].现在,这些高能耗建筑冬季供暖与夏季空调的使用正日益普遍,解决它们所造成的能源浪费和环境污染问题已成为紧迫的需要。现在我国禁止在城镇建设中小型燃煤锅炉房。因此,除了集中供热的型式以外急需发展其它的替代供热方式。热泵(包括地下水源热泵)就是这样一种可以有效节省能源、减少大气污染和CO排放的供热和空调新技术。 1、基本工作原理 地下水源热泵系统的低位热源是从水井或废弃的矿井中抽取的地下水。热泵机组冬季从生产井提供的地下水中吸热,提高品位后,对建筑物供暖,把低位热源中的热量转移到需要供热和加湿的地方,取热后的地下水通过回灌井回到地下。夏季,则生产井与回灌井交换,而将室内余热转移到低位热源中,达到降温或制冷的目的,另外还可以起到养井的作用。 如果是水质良好的地下水,可以直接进入热泵进行换热,这样的系统我们称为开式环路。实际工程中更多采用闭式环路形式的热泵循环水系统,即采用板式换热器把地下水和通过热泵的循环水分隔开,以防止地下水中的泥沙和腐蚀性杂质对热泵机组的影响[3]. 由于较深的地层不会受到大气温度变化的干扰,故能常年保持恒定的温度,远高于冬季的室外空气温度,也低于夏季的室外空气温度,且具有较大的热容量,因此地下水源热泵系统的效率比空气源热泵高,COP值一般在3和4.5之间,并且不存在结霜等问题。此外,冬季通过热泵吸收大地中的热量提高空气温度后对建筑物供热,同时使大地中的温度降低,即蓄存了冷量,可供夏季使用;夏季通过热泵把建筑物的热量传输给大地,对建筑物降温,同时在大地中蓄存热量以供冬季使用。这样,在地下水源热泵系统中大地起到了蓄能器的作用,进一步提高了空调系统全年的能源利用效率。 地下水源热泵系统还可以产出生活热水,其水路连接方式大致有四种。最简单的方式有空调水系统与生活热水水系统完全分开和相关联且井水系统串级连接这两种,但是前者冷凝

地源热泵工程实例

地源热泵工程实例 土壤源热泵系统的设计法 摘要:本文主要介绍了土壤源热泵系统的设计法和步骤,重点论述了地下热交换器的设计过程。并举例加以说明。 关键词:土壤源热泵热交换器设计 The Design Ways of Ground-coupled Heat Pump System By Hu Jianping☆ Abstract: In this paper the design ways and steps of ground-coupled heat pump system have been introduced. The design of the underground heat exchanger has been discussed in details, and an example has been taken to illustrate the process of the design. Keywords: Ground-coupled heat pump Heat exchanger Design ☆Shanghai University of Engineering Science,China 0 引言 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统[1]。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;

夏季向大地释放热量,给建筑物供冷。相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。 土壤源热泵系统的核心是土壤耦合地热交换器。 地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。 地表水热泵系统与土壤源热泵系统相似,用潜在水下并联的塑料管组成的地下水热交换器替代土壤热交换器。 虽然采用地下水、地表水的热泵系统的换热性能好,能耗低,性能系数高于土壤源热泵,但由于地下水、地表水并非到处可得,且水质也不一定能满足要求,所以其使用围受到一定限制。国外(如美国、欧洲)主要研究和应用的地源热泵系统以及我国理论研究和实验研究的重点均是土壤源热泵系统。目前缺乏系统设计数据以及较具体的设计指导,本文进行了初步探讨,以供参考。 1 土壤源热泵系统设计的主要步骤 (1)建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算法相同,可参考有关空调

土壤源热泵系统的热平衡问题

土壤源热泵系统的热平衡问题 马宏权 龙惟定 (同济大学) 摘 要 本文分析了土壤源热泵热平衡问题的由来与影响,提出了解决该问题的技术思路,并结合几个项目的问题分析和实测讨论了对解决该问题有利的系统的设计原则和运行模式。 关键词 地源热泵 热平衡 优化设计 1 引言 土壤源热泵系统(ground-coupled heat pump )的研究和项目实施是我国地源热泵系统(Ground Source Heat Pump )三种形式中开始最晚的一种,其造价和运行费用相对也较地下水(underground water Heat Pump )和地表水地源热泵系统(surface water Heat Pump )要稍高。但这些都并不能妨碍土壤源热泵成为迅速发展的一支力量,原因在于土壤源热泵采用土壤换热器内循环水换取土壤中贮存的温差能,没有对自然水源的开采要求和污染的担心,因此适用性更广,安全稳定性更高,尤其在夏热冬冷地区不失为一种新的空调冷热源解决思路。 我国的土壤源热泵系统数量和规模近年来不断增大,全国已经有多个数十万平米的土壤源热泵项目在建。与欧美土壤源热泵主要是布置水平埋管式土壤换热器,通过小型热泵机组承担别墅等小型住宅空调的方式不同,我国的土壤源热泵系统主要服务对象是规模较大的多层住宅和办公建筑,土壤换热器一般采用在一定区域内密集布置的垂直单U 或双U 型土壤换热器群,或者利用建筑物地基内的工程桩或灌注桩密集布置土壤换热器群。这样普遍采用的密集型垂直埋管群和不断增大的土壤源热泵规模使得土壤换热器埋管范围内的土壤热平衡问题得到了越来越多的担心。 作者简介 马宏权,男,1979年1月生,在读博士研究生 201804 上海市曹安公路4800号同济大学嘉定校区13-306信箱 (021)69584901 E-mail: mhqtj@https://www.360docs.net/doc/8813968764.html, 2 土壤热平衡问题的由来与影响 土壤源热泵依靠土壤换热器(underground heat exchanger )从地下土壤中提取温差能,热泵机组的热源和热汇是扩散半径范围内的土壤,因此全年运行的土壤源热泵系统需要考虑全年时从土壤取放热量的平衡问题,这即通常称谓的土壤源热泵热平衡问题。在大多数情况下土壤换热器全年从地下土壤获得的冷热量是不平衡的。在我国夏热冬冷地区,建筑物夏季供冷的时间要比冬天供暖的时间长大约2个月,夏季冷负荷绝对值也比冬季热负荷的绝对值高出近1倍,这样系统冬夏取放热量差异较大,运行一年后多余的热量会积累在地下引起土壤温度逐年上升,严重时土壤换热器内循环冷却水温可以达到40℃以上,造成热泵机组夏季的效率下降和制冷量严重降低。土壤温度升高是我国土壤热平衡问题的的主要可能性,如图1所示的上海某办公楼土壤源热泵系统,由于土壤换热器设置数量过少,每天系统启动后冷却水温度持续上升越6℃,热泵机组效率从启动工况的3.655下降到最不利时的3.155,降幅达13.9%。在我国东北地区由于以供暖为主,也可能出现土壤源热泵连年运行后土壤温度下降,热泵机组冬季制热效率降低和制热量下降,但是相对发生的情况较少。因此土壤源热泵持续运行后的土壤温度上升和下降是土壤热量收支失衡的两种形式,都对系统持续稳定运行不利。 土壤换热器的实际传热过程是一个复杂的非稳态传热过程,它以土壤导热为主,但还同时包括了土壤多孔介质中的空气、地下水体的自然对流以及地下水的迁移传热,因此土壤的热物性、含水量、土壤初始温度以及变化、埋管材料、管子直径、管内流体的物性、流速等都对单个土壤换热器的传热 w w w . z h u l o n g .c o m

水源热泵与土壤源热泵的对比

水源热泵与土壤源热泵的对比 相同点:都是地源热泵,冷热源均是地球浅表,都是利用地球的尚未开发的可恢复的清洁能源。能效比基本上一样。 不同点: 1、政府支持度: a、土壤源热泵:明确支持和大力推广,有些地区已经实施每平米给予不同程度50-100元的补贴(北京,上海,浙江,山东某些地区等)。 b、水源热泵:未明确支持和大力推广,态度不明朗,有些地区明令禁止(天津,上海等)。 2、环保生态环境: a、土壤源热泵:真正环保,不抽取地下水,对环境无任何负面影响。 b、水源热泵:会对地下水资源、对周边环境造成了一定程度的破坏,实际上把对大气的污染转移到地下水水中,土壤中。虽然理论上抽取的地下水将回灌到地下水层,但目前国内抽取的地下水真正做到全部回灌的少之又少,回灌难落实,采水量大于回灌量,造成地下水位下降,严重时将导致地质层发生变化,地面沉降。另外,对水资源存在物理、化学、生物污染,怎样保证地下水层不受污染也是一个棘手的问题。(武汉汤逊湖地区做的地下水源热泵空调,已经停用,没地下水了!北京地区使用水源热泵机组的地区,由于长期使用地下水,倒至地表层下陷。) 3、适应性; a、土壤源热泵:运行稳定,免维护。与地下有无水没有任何关系。 b、水源热泵:一旦地下水量不能满足机组要求,系统将瘫痪。而且在使用过程中,一般3-5年需对水井、板式换热器进行定期维护。 4、寿命; a、土壤源热泵:土壤源热泵地埋管换热器由于周围土壤无变化,故其寿命取决于换热器本身,可使用50年。 B、水源热泵:主要取决于水井的寿命,达到设计出水的运行时间一般为3-5年。 5、运行费用:(包括设备运行费用和维护检修费用) a、土壤源热泵:土壤换热器免维护。设备维护费用为0。 b、水源热泵:水井、板式换热器需定期(一般为3-5年)维护,费用不菲,需交纳水资源费。 6、运行稳定性: a、土壤源热泵:由于其与土壤进行热交换,运行稳定性非常好。 b、水源热泵;地下水量随着运行时间的延长,不一定能满足机组要求,一旦地下水资源溃乏,系统随之瘫痪。 7、运行维护: a、土壤源热泵:土壤换热器50年内免维护。 B、水源热泵:板式换热器需定期维护;水井需养井,由于泥砂堵塞,回灌量逐年递减,井的寿命最多3~5年。 8、初投资: 土壤源热泵比水源热泵初投资略大。 9、使用风险性; a、水源热泵:风险性很大,地下水量的大小,国家对地下水源的使用政策都是不确定

相关文档
最新文档