角度计算经典模型大全

角度计算经典模型大全
角度计算经典模型大全

小学数学所有图形计算公式

小学数学图形计算公式 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积C周长∏ d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏ 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

常用形体体积面积计算公式大全

图形 常用形体的体积、表面积计算公式 尺寸符号 a-棱於-对角 线S-表両积 K-侧表面积 讥h-边长 0-底面对角线的交点 a上川-边畏 力-高 F-JK S积 0 ■底両中线的交点 y-一个组合三角老的両积 左-组合三角形的个数 0-锻底答对角线交点 此凤-两平行底面的面积 力■底面间更离 。-一个组合梯形的面积 和-组合梯形数 卫-外半径一內 半径 £-柱壁厚度 P-平均半径勺= 内外侧面积 仿积(卩)底面积 (F)表面积(小侧表 面积(仓) /= Q?決h S = 2(c? ? E +a ? % +E ? %)

百度文库?让每个人平等地捉升口我 夙一球半径 ①巳-底面半径 /腰高 兔-球心o 至帝底圆心q 的距 离 对于抛物线形桶体 y = ^-(2D 2+Dd + -d 2) 15 4 对于回形桶仿 7略(仃+八) a,b,c ■半轴 交 叉 柱 体 卩=加(屮一些 心3-下底边长 上底边长 h_上、下底边距离(高) V = -[(2a +勺加+(2甸诃如 6 =—[ab+(a +(?})(& 十劣十 ? 如 6 、 常用图形求面积公式 图形 尺寸符号 而积(F )表而积(S ) Q ■中间断面直径 H -底直径 I-桶高 ¥ r U :

各种图形面积计算公式

各种图形面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积=长×宽×高V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 15、圆柱的侧面积=底面圆的周长×高S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh 各种图形体积计算公式 平面图形 名称符号周长C和面积S 1、正方形a—边长C=4a S=a2 2、长方形a和b-边长C=2(a+b) S=ab 3、三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形d,D-对角线长

常见数学图形计算公式大全

常见数学图形计算公式大全 1 、长方形的周长 = (长 + 宽) × 2 C= ( a + b ) × 2 2 、长方形的面积 = 长 × 宽 S=a × b 3 、正方形的周长 = 边长 × 4 C=a × 4 4 、正方形的面积 = 边长 × 边长 S=a × a 5 、三角形的面积 = 底 × 高 ÷ 2 S=a × h ÷ 2 6 、平行四边形的面积 = 底 × 高 S=a × h 7 、梯形的面积 = ( 上底 + 下底 ) × 高 ÷ 2 S= ( a + b ) × h ÷ 2 8 、圆的周长 = 圆周率 × 直径 C= π × d 9 、圆的面积 = 圆周率 × 半径 × 半径 S= πr 10 、长方体的表面积 = (长×宽 + 长×高 + 高×宽)× 2 S 表 = ( a × b + a × h + h × b )× 2 11 、长方体的体积公式 = 长 × 宽 × 高v =a × b × h 12 、正方体的表面积 = 棱长 × 棱长 × 6 S 表 = a × a × 6 13 、正方体的体积 = 棱长 × 棱长 × 棱长 V=a × a × a 14 、圆柱的侧面积 = 底面周长 × 高 S 侧 =C 底 × h 15 、圆柱的表面积 = 侧面积 +2 个底面积 S 表 =S 侧 +2 S 底

16 、圆柱的体积 = 底面积 × 高 V= S 底 × h 17 、圆锥的表面积 = 圆锥的侧面积 + 底面圆的面积 S 表 = S 侧 +S 底 18 、圆锥的体积 = 底面积 × 高 ÷ 3 V= S 底 × h ÷ 3 19 、环形的面积 = 外圆的面积 - 内圆的面积 S=S 外圆 - S 内圆 20 、平行四边形的周长 = ( 长边 + 短边) ×2 S= (a+b ) ×2

常用面积体积计算公式大全

电如_边長 馬-高 F-底面积 0-底両申銭的交点 卩=FJ — (c -+i H - c) * b+2F 禺="+6+c)*ft ,-一个粗合三箱我的両积 71 -组合三角形的惱 O-锥底备对角護交点 年店-两平行底面的面积 力L 底面间歴畫 "-一个爼舍梯戒的面积 R-组合梯形数 多面体的体积和表面积 体积(茁)庭百积(F ) 表面瞅门侧恚面积(鬲) 图形 尺寸符号 d-刘角爲 表 面积 覇-侧表面积 长 方 扩=Q S=6a 2 CS 血为-边拴 0-底面对角线的交点 V = a*h* h S = 2(a ? b 4-(j ? h +i * ft) £l-2Ma+&) 圆 柱 和 空 心 圆 柱 A 管 去-外宰径 —内半径 £-柱壁區度 p -平均半径 心=内外側面祝 B&- $=2滋?/! +2JC £^ E\ = 2/rR ? h 空心言圆柱: F =凤疋7勺=2叭伤 S=X?4F )JU2/I (用-沔 场=2品第卄) 5=n?/ + F

h -盘小高度 怒-毘大高度F-属面举径 尸-廐面半径巾-高卜母爼长 E工-虧面半径巾-高 ”母緩g ■制血+吩2*卩+—!_:cos a 禺F偽十吗) & = + F — ttri y-^^2+ ^+^) 禺■忒迎肝) 卩十押 十试疋■!■/) 球扇r-*e 4宜径 尸■兰直玉■輕:?口」 石6沪 3 6 S =血2 -

夙-球半径 ①巳-底面半径 S ■ 4nJ -2J &, ■ £戊■矽一4了*彷 V a,b,c-半轴 交 叉 圆 柱 体 球 缺 椭 球 体 A 胎 D-中间斷面苴狂 说 -廐直径 『-桶高 = 2冲丘= ST ⑷-Q 护=佩乃 -町 十山2 y~—(3R^3^+h^ $■2鈕 g= 2fviih 十牙叶 4-^) 卫-風总儒平旳半径 0-同环体平均半径 川-凰环体截面言径 r-回环体茁両半径 .—— 圆 环 体 为-球鎂的高 r- 瑋岐半栓 日-平切厨言径 业=曲面"5^ 球破表面积 用于抛物线我桶徘 卩=竺口“+戊4丄护) 15 4 对于园飛确体 卩皤用十吗

初中数学几何角度计算十一种模型梳理

初中数学角度计算中11个经典模型(56页wo rd) 模型1猪脚模型 图1 图2 【条件】如图1 【结论】∠3=∠1+∠2 【证明】如图2,过拐点作平行线 ∠1=∠4,∠5=∠2 ∠3=∠4+∠5=∠1+∠2 即∠3=∠1+∠2 例题1 如图,∠BCD=70°,AB∥DE,则∠α与∠β满足() A.∠α+∠β=110°B.∠α+∠β=70°C.∠β﹣∠α=70°D.∠α+∠β=90° 【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,即可解答.【解析】如图,过点C作CF∥AB, ∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β, ∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【小结】考查平行线性质,正确作出辅助线,掌握平行线的性质进行推理证明是解题关键.

变式1 如图,AB //EF ,∠D =90° ,则α,β,γ的大小关系是( ) A .βαγ=+ B .90βαγ=+-? C .90βγα=+?- D .90βαγ=+?- 【解析】如图,过点C 和点D 作CG //AB ,DH //AB , ∵CG //AB ,DH //AB ,∴CG //DH //AB ,∵AB //EF ,∴AB //EF //CG //DH , ∵CG //AB ,∴∠BCG =α,∴∠GCD =∠BCD -∠BCG =β-α,∵CG //DH ,∴∠CDH =∠GCD =β-α, ∵HD //EF ,∴∠HDE =γ,∵∠EDC =∠HDE +∠CDH =90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D . 模型2 铅笔模型 图1 图2 【条件】如图1 【结论】∠1+∠2+∠3=360° 【证明】如图2,过拐点作平行线 根据同旁内角互补得,∠1+∠4=180°,∠2+∠5=180° 又∠3=∠4+∠5 所以∠1+∠2+∠3=∠1+∠2+∠4+∠5=360° 【推广】∠1+∠2+∠3+…+∠n = 180°(n -1)【即变异铅笔模型】

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

图形各面积、体积计算公式大全

长方形的周长=(长+ 宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+ 下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径 圆的周长=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高

平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a b c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长

α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

最经典的数学模型

最经典的数学模型 怎样得到最好的女孩子的数学模型 【关键词】怎样得到最好女孩子数学模型 由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。 人们常常希望能够获得一个最可爱的人作为自己的伴侣。但是,由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。也许你很早就结婚了,但是结婚之后却又不断发现还有不少更好更适合结婚的异性,这就是结婚太早的机会成本。那么,是不是晚一点结婚就可以避免这个问题呢?不是的!当结婚太晚,你错过最好的异性的可能性也就更大。那么,一个人究竟应采取什么样的策略才能最大可能地遇到最适合的异性,从而使结为伴侣的机会成本最低呢?我们不妨建立一个模型来考察。 假设你是一个男孩子,而老天爷在你20岁到30最之间安排了20位适合你的女孩子。这些女孩子都愿意作为你的伴侣,但是你只能选择其中的一位。对于你来说,这20位女孩子的质量是可以排序的,也就是说事后你可以对她们的质量排名,质量排第一的对你来说就是最好的,排第20的对你来说就是最差的。可惜的是,由于20位女孩不是同时出现在你的生命中,而是按时间先后出现,每出现一个你都要决定是否留下她或拒绝她。如果留下她则她成为你的伴侣,你将再没有权利选择后面的女孩子;如果拒绝她,则你还可以选择后面的女孩子,但是对前面已经拒绝的女孩子将没有机会从头再来。 20个女孩子的排名虽然可以在事后决定,但是在观察完20个女孩子之前,你并不知道全部女孩子的排名,你只知道已经观察过的女孩子谁比谁会更好。而且,上帝是完全随机地安排每个时间段出现的女孩子的,也就是说出现时间的先后与女孩子的质量是完全没有关系的。那么,你应该在什么时候决定接受一个女孩子,并且使得被接受那个女孩子属于最好女孩的概率最大呢? 当然,你完全可以在碰到第一个女孩子时就接受她。她确有可能刚好就是最好的,但也有可能是最差的。当你接触到第二个女孩子,你可以知道她和第一个女孩子谁更好,但却不知道她们与剩下的18个女孩比又如何——前两个分别是最差的、次差的概率当然有,但前两个刚好是最好的、次好的可能性也是存在的,其他的概率情况也是有的。看来,你要尽可能挑到最好的女孩做伴侣还真是费神哦。 现在让我们来设计几种挑选策略,以便在不确定性中尽可能找到最好的女孩子。 策略1:事先抽签,抽到第几个就第几个。比如,抽到第10位,那么第10个在你生命中出现的女孩就事前被确定为你的伴侣。而她刚好是最好的女孩之概率是多少呢?答案是1/20=0.05。这种策略使你有5%的可能性获得最好的女孩。这样的概率显然太小,很难发生。 策略2:把全部女孩分成前后两段,最先出现的10位均不接受,但了解了这10位女孩的质量,然后在后来出现的10位女孩当中,第一次碰到比以前都可爱的女孩子,就立马接受。这是一种等一等、看一看的策略。这样的策略中,你得到最好的女孩子的概率是

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

八年级数学上册角度计算中的经典模型(举一反三)(含解析版)

角度计算中的经典模型【举一反三】 【模型1 双垂直模型】 【条件】∠B=∠D=∠ACE=90°. 【结论】∠BAC=∠DCE,∠ACB=∠CED. 【例1】(2019春?润州区校级月考)如图,在△ABC中,∠ACB=90°,F是AC延长线上一点,FD⊥AB,垂足为D,FD与BC相交于点E,∠BED=55°.求∠A的度数. 【变式1-1】(2019秋?凉州区校级期中)如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,

求∠A的度数. 【变式1-2】(2019春?莲湖区期中)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D. (1)求证:∠ACD=∠B; (2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE. 【变式1-3】(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么? (2)如图②,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状是什么?为什么? (3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么? 【模型2 A字模型】

【结论】∠BDE+∠CED=180°+∠A 【例2】(2019春?资中县月考)如图所示,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2等于多少度? 【变式2-1】(2019春?长沙县校级期中)如图,已知∠A=40°,求∠1+∠2+∠3+∠4的度数. 【变式2-2】(2019春?盱眙县期中)我们容易证明,三角形的一个外角等于它不相邻的两个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢? Ⅰ.尝试探究: (1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?

各种图形计算公式

圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2= a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴 二维图形

三角形中角度计算相关的模型---7.5

三角形中与角度计算相关的模型 两个定理: 一、平面内,三角形的三个内角和为180°。 二、平面内,三角形的一个外角等于其不相邻的两个外角和。 由上述两个定理可导出本文如下说要讲述的相关模型:8字模型、飞镖模型、两内角角平分线模型、两外角角平分线模型、内外角角平分线模型、共顶点的角平分线与高线夹角模型。下面一一推导证明。 模型一:8字模型 条件:AD、BC相交于点O。 结论:∠A+∠B=∠C+∠D。(上面两角之和等于下面两角之和) 证明:在∠ABO中,由内角和定理:∠A+∠B+∠BOA=180° 在∠CDO中,∠C+∠D+∠COD=180°, ∠∠A+∠B+∠BOA=180°=∠C+∠D+∠COD, 由对顶角相等:∠BOA=∠COD 故有∠A+∠B=∠C+∠D 应用:如下左图所示,五角星中,∠A+∠B+∠C+∠D+∠E=180°

模型二:飞镖模型 条件:四边形ABDC如上左图所示。 结论:∠D=∠A+∠B+∠C。(凹四边形凹外角等于三个内角和) 证明:如上右图,连接AD并延长到E,则: ∠BDC=∠BDE+∠CDE=(∠B+∠1)+(∠2+∠C)=∠B+∠BAC+∠C。本质为两个三角形外角和定理证明。 应用:如下左图, 则∠A+∠B+∠C+∠D+∠E+∠F=260°(下右图中两个飞镖)。

条件:△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I 。 结论:A I ∠+ ?=∠2 1 90 证明: ∵BI 是∠ABC 平分线,∴ABC ∠= ∠2 1 2 ∵CI 是∠ACB 平分线,∴ACB ∠=∠2 1 3 由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A + ABC ∠21+ACB ∠21=∠A +)180(21A ∠-?=A ∠+?2 1 90. 应用:如上图,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I 。 (1) 若∠A =60° ,则∠I =120° (2) 若∠I =110°,则∠A =40° (3) 若∠A =α,则∠I =α2 1 90+ ?。

长方体和正方体周长面积和体积计算公式大全

长方体和正方体的周长面积和体积计算公式大全 周长: 长方形周长公式=(长+宽)X2 正方形周长公式=边长X4 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径,或=圆周率×半径×2 面积: 长方形面积=长X宽 正方形面积公式=边长X边长 三角形的面积=底×高÷2 平行四边形面积=底×高 梯形的面积=(上底+下底)×高÷2 圆的面积=圆周率×半径×半径 容积:容器若能容纳的物体的体积: 表面积:长方体或正方体六个面的总面积。 正方体的表面积:S=6a×a(棱长×棱长×6) 正方体体积公式:V=a×a×a(棱长×棱长×棱长) 长方体的表面积:S=2×(ab+bc+ac)((长×宽+长×高+宽×高)×2) 长方体体积公式:长X宽X高 长方体棱长总和公式:(长+宽+高)X4 正方体体积:Va×b×c(长×宽×高) 正方体棱长总:棱长X12 圆柱体的侧面积=底面圆的周长×高 圆柱体表面积=上下底面面积+侧面积,[或S=2π*r*r+2π*r*h(2×π×半径×半径+2×π×半径×高)] 圆柱体的体积=底面积×高,[或V=π *r*r*h(π×半径×半径×高)] 圆锥体积:V=S底×h÷3(底面积×高÷3) 正方体体积公式:棱长X棱长X棱长 通用体积公式:底面积X高 截面积X长

表面积的变化要会人折。 长方体或正方体被锯开后,一次会增加两个面;反之,两个相同,体或长方体拼在一起,一次 会减少两个面。 长方体和正方体的特征,相同点和不同点要牢记。 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2

小学数学所有图形计算公式

小学数学图形计算公式 一、平面图形 1、正方形C周长S面积a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a (或S=a2) 2 、长方形 C周长S面积a边长 周长=(长+宽)×2 面积=长×宽 C=2(a+b) S=ab 练习:①长方形的宽是3.4m,长是宽的1.8倍,请计算出长方形的周长和面积。 ②一个长方形画框,周长是1.8m,长是宽的2倍,它的长是多少?宽呢?面积呢? 3、三角形 s面积a底h高 面积=底×高÷2 三角形高=面积×2÷底三角形底=面积×2÷高s=ah÷2 h=s×2÷a a =s×2÷h (必须取相对应的底和高来计算,所谓相对应,就是底和高要互相垂直。) 练习:

4、平行四边形 s面积a底h高 面积=底×高 s=ah 5、梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 练习: s=(a+b)× h÷2 8 圆形 S面积C周长π圆周率d直径r半径 (1)周长=直径×π=2×π×半径 C=πd=2πr (2)(已知半径)面积=半径×半径×π s=πr2 (已知直径)面积=(直径÷2)2×π S=(d÷2)2×π (已知周长)面积=(周长÷π÷2)2×π S=(c÷π÷2)2×π 街心花园中圆形花坛的周长是18.84m,它的面积是多少?

立体图形 1、正方体:V:体积a:棱长 表面积=棱长×棱长×6 体积=棱长×棱长×棱长S表=a×a×6 V=a×a×a 2、长方体V:体积s:面积a:长b: 宽h:高 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh (1、计算式一定要先分清楚长、宽、高的数据,不能弄错) (2、计算表面积是,看好题目给算的是几个面的面积,比如算教室房间的粉刷面积,要把底面积和门窗的面积去掉;鱼缸所用材料、泳池粉刷面积就要把顶面积去掉。) (3如果是求桶的制作材料,要看题目是否要求有盖子,是一个还是一对)(4、如果是求烟囱、通风筒,那要去掉两个底面的面积) 练习:①有一块长方形的铁皮,长60厘米,宽40厘米。在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。 ②要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮? ③一个长方体形状的儿童游泳池,长40米、宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块? ④一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一

数学计算公式大全

一、数学计算公式大全: 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

空间几何体的表面积体积公式(大全)

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S ) (2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

相关文档
最新文档