传感器课程设计——霍尔传感器测量磁场

传感器课程设计——霍尔传感器测量磁场
传感器课程设计——霍尔传感器测量磁场

目录

一、课程设计目的与要求 (2)

二、元件介绍 (3)

三、课程设计原理 (6)

3.1霍尔效应 (6)

3.2测磁场的原理,载流长直螺线管内的磁感应强度 (8)

四、课程设计内容 (10)

4.1电路补偿调节 (10)

4.2失调电压调零 (10)

4.3按图4-3接好信号处理电路 (10)

4.4按图4-4接好总测量电路 (11)

4.5数据记录与处理 (12)

4.6数据拟合 (14)

五、成品展示 (16)

六、分析与讨论 (17)

实验所需仪器 (19)

个人总结 (20)

致谢 (21)

参考文献 (22)

参考网址 (22)

一、课程设计目的与要求

1.了解霍尔传感器的工作原理

2.掌握运用霍尔传感器测量磁场的方法

二、元件介绍

CA3140

CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。

应用范围:

.单电源放大器在汽车和便携式仪表

.采样保持放大器

.长期定时器

.光电仪表

.探测器

.有源滤波器

.比较器

.TTL接口

.所有标准运算放大器的应用

.函数发生器

.音调控制

.电源

.便携式仪器

3503霍尔元件

UGN3503LT,UGN3503U和UGN3503UA霍尔效应传感器准确地跟踪磁通量非常小的变化,密度变化通常太小以致不方便操作霍尔效应开关。

可作为运动探测器,齿传感器和接近探测器,磁驱动机械事件的镜像。作为敏感电磁铁的显示器,就可以有效地衡量一个系统的负载量可以忽略不计的性能,同时提供隔离污染和电气噪声。

每个霍尔效应集成电路包括一个霍尔传感元件,线性放大器和射极跟随器输出级。

三种封装形式提供了对磁性优化包大多数应用程序。封装后缀“LT”是一个缩影SOT-89/TO243AA表面贴装应用的晶体管封装;后缀“U”是一个微型三引脚塑料SIP,而'UA'是一个三引脚超小型SIP协议。所有器件的额定连续运行温度范围为-20 °C至+85°C。

特点:

2极为敏感

2至23 kHz的平坦的响应Array2低噪声输出

24.5 V至6 V的操作

2磁性优化装箱

图2-4 3503霍尔元件封装及引脚图

三、课程设计原理

3.1霍尔效应

图3-1-1 霍尔效应原理图

把矩形的金属或半导体薄片放在磁感应强度为的磁场中,薄片平面垂直于磁场方向。如图3-1-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。(图3-1-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。由于洛伦兹力B v e F m ?-=的作用,电子向一侧偏转,在半导体薄片的横向两端面间形成电场

称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。电子在霍尔电场H 中所受的电场力为H H e -=,当电场力与磁场力达到平衡时,有

()()

0=?-+-e e H

B v E H ?-= 若只考虑大小,不考虑方向有 E H =vB

因此霍尔电压

U H =wE H =wvB (1)

根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为

I=nevwd (2)

式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。由式(1)和式(2)可得

IB K IB d R end IB U H H H =???

??==

(3)

I K U B H H

=

(4)

式中

en R H 1

=

是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,

而K H 称为霍尔元件的灵敏度。在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。对于一定的霍尔元件,K H 是一常数,可用实验方法测定。

虽然从理论上讲霍尔元件在无磁场作用(B=0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。随着科技的发展,新的集成化(IC)器件不断被研制成功,本课程设计采用AN503型集成霍尔传感器。AN503型集成霍尔传感器有三根引线,分别是:“V+”、“V -”、“V out ”。其中“V+”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于AN503型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。在实验时,只要在磁感应强度为零(B=0)条件下,“V out ”和“V -”之间的电压为2.500V ,实际测得2.53V ,则传感器就处于标准工作状态之下(V+标号为1,V-标号为2,V out 标号为3)。

所以要对霍尔传感器进行电路补偿,使得传感器在0磁场的条件下接入电路输出电压Uo=0V ,则补偿电路如下:

图3-1-2 霍尔传感器的补偿电路

3.2测磁场的原理,载流长直螺线管内的磁感应强度

对于密绕的螺线管,可以看成是一列有共同轴线的圆形线圈的并排组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆形电流在轴线上该点所产生的磁感应强度进行积分求和得到。根据毕奥—萨伐尔定律,当线圈通以电流IM 时,管内轴线上P 点的磁感应强度为

)cos (cos 21210ββμ-=M P NI B 5

其中μO 为真空磁导率,μO =4π310-7亨利/米,N 为螺线管单位长度的线圈匝数,IM 为线圈的励磁电流,β1、β2分别为点P 到螺线管两端径失与轴线夹角,如图3-2-1所示。

对于一个有限长的螺线管,在距离两端口等远的中心处轴上O 点,

2

21)2()2(2cos D L L +=

β 6

2

22)2()2(2cos D L L +-

7

图3-2-1

式中D 为长直螺线管直径,L 为螺线管长度。 此时,磁感应强度为最大,且等于

2

20222200)

)2

1()21(21)21()21(21(21

D L L NI D L L D L L NI B M

M +=+++=

μμ 8

由于本设计所用的长直螺线管满足L>>D ,则近似认为

M NI B 00μ= 9 在两端口处,

2

21)21(cos D L L

+=

β, 0cos 2=β 10

磁感应强度为最小,且等于

2

201)21(2

1

D L L

NI B M +=

μ 11

同理,由于本设计所用的长直螺线管满足L>>D ,则近似认为

M NI B 0121

μ=

12

由(11)、(12)式可知, 0121B B =

由图3-2-2所示的长直螺线管的磁力线分布可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。根据上面理论计

算,长直螺线管一端的磁感应强度为内腔中部磁感应强度的1/2。

图 3-2-2

四、课程设计内容

4.1电路补偿调节

(1)按图3-1-2接好电路。集成霍尔传感器与5V微机电源相接(正负极请勿接错)。如图标号,1接正极,2接地,3和2与数字电压表+、-相接。

(2)霍尔传感器处于零磁场条件下,传感器工作电源输出电压5V,测得数字电压显示的电压指示值为2.53V,调节传感器补偿电路中的可调电阻,也就是用一外接2.53V的电位差与传感器输出2.53V电位差进行补偿,使数字电压表指示值为0(这时应将数字电压表量程开关拨向mV档),这时集成霍尔元件便达到了标准化工作状态,即集成霍尔传感补偿电路的输出电压恰好达到U0=0V。

4.2失调电压调零

按图2-3接好电路。调节可调电阻使得运算放大器的输出端电压Uo=0V。

4.3按图4-3接好信号处理电路

图4-3 信号处理电路

4.4按图4-4接好总测量电路

图4-4为螺线管磁场测量电路示意图,即总电路图。

螺线管长度:22.3cm ,平均直径:25mm 。螺线管匝数:2000±20匝。螺线管中央均匀磁场长度:>10.0cm 。

电源组和数字电压表:传感器工作电源5V ,传感器补偿电源5V 。

【注意事项】

1.集成霍尔元件的“V+”和“V -”不能接反,否则将损坏元件。

2.实验中常检查Im=0时,传感器输出电压是否为2.500V 。

3.用mV 档读U'值。当Im=0时,输出端mV 指示应该为0。

5.拆除接线前应先将螺线管工作电流调至为零,再关闭电源。以防止电感电流突变引起高电压。

6.实验完毕后,请逆时针地旋转仪器上的三个调节旋钮,使恢复到起始位置(最小的位置)。

4.5数据记录与处理

(1)三位半数字万用表测量数据

表一正向测量结果

表二反向测量结果

(2)四位半数字万用表测量数据

表三正向测量结果

表四反向测量结果

4.6数据拟合

(1)

y = 165.1745 x – 7.6376线性度el = 0.76%

y = 162.8667x - 5.8409线性度el = 0.71%

(2)

y = 169.0742x + 9.4787线性度el = 0.21%

y = 1681321x - 14.3265线性度el = 0.2%

五、成品展示

1、全图

图 5

2、面包板接线

六、分析与讨论

1、补偿电路的分压电阻的大小对整个电路的输出电压是否有影响?

答:有影响。

现象1:分压电阻用10k的电阻,可调电阻用50k的电阻。虽然此时补偿后传感器的输出电压可基本调至0.而整个电路的输出无法调至0,且数值波动很大。

现象2:分压电阻用0.51k的电阻,可调电阻用1k的电阻。此时补偿后传感器的输出电压可基本调至零,且整个电路的输出电压也可基本调至零,且波动很小。

由此可以得出,输入阻抗的大小对整个电路的输出电压是有影响的,所以补偿电路的分压电阻的大小对整个电路的输出电压是有影响的。

2、失调电压调零电路的电阻对传感器的输出是否有影响?

答:有影响。

现象1:当用1k和0.51k电阻并联时,输出端电压可基本调至0,但是接入电路时,输出电压稳定,且可基本调至0。

现象2:当换成10k电阻时,输出电压也可基本调至0,但是接入电路时输出电压不稳定,且波动较大。

由此可以得出,失调电压调零电路的电阻对传感器的输出是有影响

3、放大电路的放大倍数是否只能取决于一个点的输入输出电压?

答:不能。

放大电路的放大倍数不能只取决于一个点的输入输出电压,而应该用输出变化量与输入变化量的比值来表示。

现象:若用一个点的输入输出电压时,其放大倍数为100倍。不符设计电路计算结果;而用输出变化量与输入变化量的比值来表示时其放大倍数为十倍。符合设计电路计算结果。

4、霍尔元件伸入螺线管的长度对磁场的测量是否有影响?

答:有影响。

螺线管两端的磁场分布不均匀,中间分布均匀,当伸入长度极短时是有影响的,但伸入长度稍微长一些时,保证其再均匀区域内,伸入长度是没有影响的。

5、为什么要求磁场方向垂直于霍尔元件平面,否则测出的霍尔电压将如何变化?

答:霍尔效应要通过测两板间的电势差,如果不垂直的话,正负电荷不能完全聚于两板,所以两板间的电势差偏小,导致霍尔电压偏小。

实验所需仪器

YB1732A 5A直流稳压电源 1个WD 990 A微机电源 1个HT-30B开关电源 1个VC980A+数字万用表 1个VC9807A四位半数字万用表 1个螺线管 1个AN503霍尔元件 1个面包板 1块导线若干CA3140运算放大器 2个1K可调电阻 2个10K可调电阻 1个0.51K电阻 2个100k电阻 5个10K电阻 2个

个人总结

为期两周的课程设计很快进入最后阶段,此次课程设计是我们第一次真正的感受我们的专业课,第一次自己动手设计,制作试验器件。这次课程设计让我学会了很多东西,从学习态度到知识的掌握,再到问题的解决。我们平时所掌握的知识都是分别从各科目课本上学习所得,从来没有系统的把所学知识联系、应用起来,更不曾得知实践与理想值之间的差距。

此次课程设计的课时安排是10天,我们小组用第1天去总体设计电路和搭建基本的电路框架,接下来的3天我们都在不断的修改我们的电路,因为我们发现按照最初的思路制作的电路根本得不到预期的结果。由此,我深刻的体会到课本知识的重要性,有时就是因为忽视了书本上提到的一个条件或者是一句话就会导致结果上很大的偏差。同时,我也懂得了一句话——尽信书则不如无书,书本上的知识是我们理解一门学科的基础也是我们实践的依据,但现实远非课本上的那么多理想情况,没有完全相等的电阻,也没有不漂移的电路。凡事都要在认识的基础上去亲身实践,只有把理论付诸于行动才能得到最好的理解。

霍尔传感器小车测速)

成绩评定: 传感器技术 课程设计 题目霍尔传感器小车测速

摘要 对车速测量,利用霍尔传感器工作频带宽、响应速度快、测量精度高的特性结合单片机控制电路,设计出了一种新型的测速系统,实现了对脉冲信号的精确、快速测量,硬件成本低,算法简单,稳定性好。霍尔传感器测量电路设计、显示电路设计。测量速度的霍尔传感器和车轴同轴连接,车轴没转一周,产生一定量的脉冲个数,有霍尔器件电路部分输出幅度为12 V 的脉冲。经光电隔离器后成为输出幅度为5 V 转数计数器的计数脉冲。控制定时器计数时间,即可实现对车速的测量。在显示电路设计中,实现LED上直观地显示车轮的转数值。与软件配合,实现了显示、报警功能 关键词:单片机AT89C51 传感器 LED 仿真

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 1 3.2设计步骤------------------------- 3 3.3设计原理分析--------------------- 10 四、课程设计小结与体会 ---------------- 11 五、参考文献------------------------- 11

一、设计目的 通过《传感器及检测技术》课程设计,使学生掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 用霍尔元件设计测量车速的电子系统,通过对霍尔元件工作原理的掌握实现对车速测量的应用,设计出具体的电子系统电路,并且能够完成精确的车速测量。 二、设计内容及要求 2.1设计任务 霍尔传感器一般由霍尔元件和磁钢组成,当霍尔元件和磁钢相对运动时,就会产生脉冲信号,根据磁钢和脉冲数量就可以计算转速,进而求出车速。 现要求设计一个测量系统,在小车的适当位置安装霍尔元件及磁钢,使之具有以下功能: 功能:1)LED数码管显示小车的行驶距离(单位:cm)。 2)具有小车前进和后退检测功能,并用指示灯显示。 3)记录小车的行驶时间,并实时计算小车的行驶速度。 4)距离测量误差<2cm。 5)其它。 2.2设计要求 设计要求首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。其次设计一个单片机小系统,掌握单片机接口电路的设计技巧,学会利用单片机的定时器和中断系统对脉冲信号进行测量或计数。再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 三、设计步骤及原理分析 3.1 设计方法 3.1.1 霍尔效应 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

基于霍尔式传感器的电子秤-课程设计

基于霍尔式传感器的电子秤-课程设计

————————————————————————————————作者:————————————————————————————————日期:

课程设计报告 设计题目基于霍尔式传感器的电子秤 指导老师 摘要 科学技术的发展对称重技术提出了更高的要求,尤其是微处理技术和传感技术的巨大进步,大大加速了这个进程。目前,电子秤在商业销售中的使用已相当普遍,但在市场上仍广泛使用的电子秤有很大局限性。这些电子秤体积大、成本高,又不便随身携带,而目前市场上流行的便携秤又大都采用杆式秤或以弹簧压缩、拉伸变形来实现计量的弹簧秤等,其计量误差大,又容易损坏。杆式秤和弹簧秤等计量器械将逐渐被淘汰。因此,一种能够在未来更方便、更准确的普及型电子秤的发展受到人们的重视,设计一种重量轻、计量准确、读数直观的民用电子秤迫在眉睫。 本设计过程充分利用传感器的有关知识,利用霍尔传感器设计的简单电子秤很大程度上满足了此应用需求,并从简单电子秤的基本构造进一步了解大型电子秤的构造原理。 关键词:CSY传感器实验仪;电子秤;霍尔式传感器;差动放大器

目录 第一章绪论 (1) 1.1 电子秤概述 (1) 1.1.1 电子秤的发展 (1) 1.2 电子秤的组成 (2) 1.2.1 电子秤的基本结构 (2) 1.2.2 电子秤的基本工作原理 (2) 第二章电子秤设计的目的意义及设计任务与要求 (4) 2.1 电子秤设计目的 (4) 2.2 此课程在教学计划中的地位和作用 (4) 2.3 电子秤设计任务与要求 (4) 2.3.1 设计任务 (4) 2.3.2 设计要求 (4) 第三章电子秤总体设计方案 (5) 3.1 电子秤设计思想 (5) 3.2各电路单元或部件选择 (6) 3.2.1 直流稳压电源的选择 (6) 3.2.2 电桥平衡网络的选择 (6) 3.2.3 称重传感器的选择 (6) 3.2.4 差动放大器的选择 (9) 3.2.5 F/V表的选择 (9) 3.3 最终方案的确定 (10) 第四章硬件设计 (11) 4.1 硬件设计概要 (11) 4.1.1 硬件电路设计原理说明及电路图 (11)

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

霍尔传感器的工作原理

两种霍尔传感器的工作原理 霍尔电流传感器是根据霍尔原理制成的.它有两种工作方式,即磁平衡式和直式.霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成. 1 直放式电流传感器(开环式) 众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出.这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V. 2 磁平衡式电流传感器(闭环式) 磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。 磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is.这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小.当与I H与匝数相乘与“原边电流与匝数相乘”所产生的磁场相等时, I H不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过I H来平衡.被测电流的任何变化都会破坏这一平衡.一旦磁场失去平衡,霍尔器件就有信号输出.经功率放大后,立即就有相应的电流I H流过次级绕组以对失衡的磁场进行补偿.从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。

工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流 IP 会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP 其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数; NP/NS—匝数比,一般取 NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般很小,只有 10~400mA。如果输出电流经过测量电阻 RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压 VA VA 指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围 Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值 IPN。二、电流传感器主要特性参数1、标准额定值 IPN 和额定输出电流 ISN IPN 指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN 的大小与传感器产品的型号有关。ISN指电流传感器额定输出电流,一般为10~400mA,当然根据某些型号具体可能会有所不同。 2、偏移电流 ISO 偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。 3、线性度 线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度。 4、温度漂移 偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。5、过载电流传感器的过载能力是指发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电 流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。

浅谈霍尔电流传感器ACS785ACS712系列电流检测方式

浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式 浅谈电流检测方式 一、检测电阻+运放 优势:成本低、精度较高、体积小 劣势:温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT 和PT 就是特殊的变压器。基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号). 工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。 4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV 或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

霍尔传感器课程设计

吉林建筑工程学院 电气与电子信息工程学院 传感器及检测技术课程设计报告 设计题目: 霍尔元件小车测速系统设计 专业班级: 电子信息科学与技术081班 学生姓名: 赵越 学 号: 10308105 指导教师: 王 超 吴鹤君 设计时间: 2011.12.12-2011.12.23 目 录 教师评语: 成绩 评阅教师 日期

1 绪论 (1) 1.1设计任务 (1) 1.2方案分析论证 (1) 2 基于霍尔传感器的电机转速测量系统硬件设计 (2) 2.1电机转速测量系统的硬件电路设计 (2) 2.2霍尔传感器测量电路设计 (4) 2.3单片机AT89C51 (8) 2.4显示电路设计 (11) 2.5系统软件设计 (14) 3 系统仿真和调试 (16) 3.1Proteus软件 (16) 3.2硬件调试 (17) 3.3软件调试 (19) 3.4软硬件联调 (19) 4 结论 (21) 参考文献 (22) 附录硬件实物图 (23)

1 绪论 1.1 设计任务 1.1.1课程设计目的: 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 1.1.2课程设计题目: 霍尔元件小车测速系统设计 1.1.3 课程设计内容: 1、霍尔元件测速系统设计 霍尔传感器一般由霍尔元件和磁钢组成,当霍尔元件和磁钢相对运动时,就会产生脉冲信号,根据磁钢和脉冲数量就可以计算转速,进而求出车速。 现要求设计一个测量系统,在小车的适当位置安装霍尔元件及磁钢,使之具有以下功能: 1)LED数码管显示小车的行驶距离(单位:cm)。 2)具有小车前进和后退检测功能,并用指示灯显示。 3)记录小车的行驶时间,并实时计算小车的行驶速度。 4)距离测量误差<2cm。 5)其它。 1.2 方案分析论证 1.2.1 霍尔测速模块论证与选择 方案一:采用型号为A3144的霍尔片作为霍尔测速模块的核心,该霍尔片体积小,安装灵活,价格合理,可用于测速,可与普通的磁钢片配合工作。 方案二:采用型号为CHV-20L的霍尔元器件作为霍尔测速模块的核心,该霍尔器件额定电流为100mA,输出电压为5V,电源为12~15V。体积较大,价格昂贵。 因此选择方案一。 1.2.2 单片机模块论证与选择 方案一:采用型号为AT89C51的单片机作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。AT89C51是带4K字节闪烁可编程擦除只读存储器的低电压、高性能CMOS8位微处理器。它将多功能8位CPU和闪烁存储器组合在单个芯片中,为许多控制提供了灵活性高且价格低廉的方案[3]。

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

相关文档
最新文档