第一章概率论典型例题

第一章概率论典型例题
第一章概率论典型例题

典型例题:

一.排列

1.特殊排列

相邻、彼此隔开、顺序一定和不可分辨

例1.晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?

①3个舞蹈节目排在一起;

②3个舞蹈节目彼此隔开;

③3个舞蹈节目先后顺序一定。

例2.4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?

例3.5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?

2.重复排列和非重复排列(有序)

例4.5封不同的信,有6个信箱可供投递,共有多少种投信的方法?

3.对立事件

例5.七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?

例6.15人中取5人,有3个不能都取,有多少种取法?

例7.有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

4.顺序问题

例8.3白球,2黑球,先后取2球,放回,2白的种数?(有序)

例9.3白球,2黑球,先后取2球,不放回,2白的种数?(有序)

例10.3白球,2黑球,任取2球,2白的种数?(无序)

二.概率

1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.

2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的

概率;(3)目标被命中的概率.

3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.

4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.

1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。如果字母的各种排列是随机的(等可能的),问“恰好组成“MATHEMATICIAN ”一词的概率为多大?

解 显然样本点总数为!13,事件A “恰好组成“MATHEMATICIAN ”包含

!2!2!2!3个样本点。所以!

1348!13!2!2!2!3)(==A P 1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。

解 任意固定红“车”的位置,黑“车”可处于891109=-?个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。故所求概率为

89

17)(=A P 1.9 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客。电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率。

解 每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79。事件A “没有两位及两位以上乘客在同一层离开”相当于

“从9层中任取7层,各有一位乘客离开电梯”。所以包含79A 个样本点,于是

7799

)(A A P =。 1.13 把n 个完全相同的球随机地放入N 个盒子中(即球放入盒子后,只能区别盒子中球的个数,不能区别是哪个球进入某个盒子,这时也称球是不可辨的)。如果每一种放法都是等可能的,证明(1)某一个指定的盒子中恰好有k 个球的概

率为???

? ??-+???? ??---+n n N k n k n N 12,n k ≤≤0

(2)恰好有m 个盒的概率为???? ??-+???? ??---???? ??n n N m N n m N 111,1-≤≤-N m n N

(3)指定的m 个盒中正好有j 个球的概率为???? ??-+???

? ??---+-???? ??--+n n N j n j n m N m j m 1111,

.0,1N j N m ≤≤≤≤

解 略。

1.18 在平面上画有间隔为d 的等距平行线,向平面任意地投掷一个三角形,该三角形的边长为c b a ,,(均小于d ),求三角形与平行线相交的概率。

解 分别用321,,A A A 表示三角形的一个顶点与平行线相合,一条边与平行线相合,两条边与平行线相交,显然.0)()(21==A P A P 所求概率为)(3A P 。分别用bc ac ab c b a A A A A A A ,,,,,表示边c b a ,,,二边bc ac ab ,,与平行线相交,则=)(3A P ).(bc ac ab A A A P ??显然)(a A P )()(ac ab A P A P +,=)(b A P )()(bc ab A P A P +,=)(c A P )()(bc ac A P A P +。所以

21)(3=A P [+)(a A P +)(b A P )(c A P ])(22c b a d ++=π)(1c b a d

++=π 1.20 甲、乙两人从装有a 个白球与b 个黑球的口袋中轮流摸取一球,甲先取,乙后取,每次取后都有不放回,直到两人中有一人取到白球时停止。试描述这一随机现象的概率空间,并求甲或乙先取到白球的概率。

解1ω表示白,2ω表示黑白,3ω表示黑黑白,…白黑黑表示个

b b 1+ω,

则样本空间=Ω{1ω,2ω,…,1+b ω},并且b

a a P +=})({1ω, 1})({2-+?+=

b a a b a b P ω, 2

11})({3-+?-+-?+=b a a b a b b a b P ω,…, )

1()2()2(11})({--+?--+--??-+-?+=i b a a i b a i b b a b b a b P i ω

a

b a b a a b P b )1)((!})({1-++=+ω 甲取胜的概率为})({1ωP +})({3ωP +})({5ωP +…

乙取胜的概率为})({2ωP +})({4ωP +})({6ωP +…

1.24 在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:

(1)只订甲报的;

(2)只订甲、乙两报的;

(3)只订一种报纸的;

(4)正好订两种报纸的;

(5)至少订一种报纸的;

(6)不订任何报纸的。

解 事件A 表示订甲报,事件B 表示订乙报,事件C 表示订丙报。 (1) ))(()(AC AB A P C B A P ?-==)()(AC AB P A P ?-=30% (2) %7)()(=-=ABC AB P C AB P (3) %23)]()()([)()(=-+-=ABC P BC P AB P B P C A B P %20)]()()([)()(=-+-=ABC P BC P AC P C P B A C P ?C B A P (+C A B +)B A C =)(C B A P +)(C A B P +)(B A C P =73% (4) =++)(A BC B AC C AB P %14)()()(=++A BC P B AC P C AB P

(5) %90)(=++C B A P (6) %10%901)(1)(=-=++-=C B A P C B A P

1.26 某班有n 个学生参加口试,考签共N 张,每人抽到的考签用后即放回,在考试结束后,问至少有一张考没有被抽到的概率是多少?

解 用i A 表示“第i 张考签没有被抽到”, N i ,,2,1 =。要求)(1 N

i i A P =。

n i N N A P ??

? ??-=1)(,n j i N N A A P ??? ??-=2)(,……,0)(1=??? ??-=n N N N N A A P n N i i N N N A P ??? ??-????? ??=∑=11)(1n

N N N ??? ??-???? ??-=-11)1(11

n N i j i N N N A A P ??? ??-???? ??-=-∑≤≤22)(1n

N N N ??? ??-???? ??-=-22)1(12,…… 所以n N i i N i i N i N A P ??? ??--=∑=-=111

)1()( 1.27 从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的概率是多少?

解n 阶行列式的展开式中,任一项略去符号不计都可表示为n ni i i a a a 2121,当且仅当n ,,2,1 的排列)(21n i i i 中存在k 使k i k =时这一项包含主对角线元素。用k A 表示事件“排列中k i k =”即第k 个主对角线元素出现于展开式的某项中。则

n i n n A P i ≤≤-=

1!)!1()( )1(!)!2()(n j i n n A A P j i ≤<≤-=,…… 所以!1)1(!)!()1()(11111i n i n i n A P n i i n i i N i i ∑∑=-=-=-=-???

? ??-= 1.31 n 个人用摸彩的方式决定谁得一张电影票,他们依次摸彩,求:

(1)已知前1-k )(n k ≤个人都没摸到,求第k 个人摸到的概率;

(2)第k )(n k ≤个人摸到的概率。

解 设i A 表示“第i 个人摸到”, n i ,,2,1 =。 (1) 1

1)1(1)|(11+-=--=-k n k n A A A P k k (2) =)(k A P =

-)(11k k A A A P n k n n n n n 111121=+-??--?- 1.32 已知一个母鸡生k 个蛋的概率为)0(!>-λλλe k k

,而每一个蛋能孵化成小

鸡的概率为p ,证明:一个母鸡恰有r 个下一代(即小鸡)的概率为p r

e r p λλ-!

)(。 解 用k A 表示“母鸡生k 个蛋”, B 表示“母鸡恰有r 个下一代”,则 )|()()(k r k k A B P A P B P ∑∞==r k r r k k p p r k k e -∞=--????

? ???=∑)1(!λλ

∑∞=----=r

k r k r

r k p e r p )!()]1([!)(λλλ)1(!)(p r

e e r p --?=λλλ p r

e r p λλ-=!

)( 1.37 证明:若三个事件A 、B 、C 独立,则B A ?、AB 及B A -都与C 独立。

证明 (1))()()())((ABC P BC P AC P C B A P -+=?

=)()(C P B A P ?

(2))()()()()()C P AB P C P B P A P PABC ==

(3))())(())((ABC AC P C AB A P C B A P -=-=-=)()(C P B A P -

1.39 设n A A A ,,,21 为n 个相互独立的事件,且)1()(n k p A P k k ≤≤=,求下列事件的概率:

(1) n 个事件全不发生;

(2) n 个事件中至少发生一件;

(3) n 个事件中恰好发生一件。

解 (1) ∏∏===-==n

k k k k n k k p A P A P n 111)1()()( (2) ∏===--=-=n

k k n k k n k k p A P A P 111)1(1)(1)( (3) ])1([)()]([111111 n

k j j j n k j j n k k j n k k n k n k j j j k p p A A A A P ≠=≠====≠=-==∑∑.

1.40 已知事件B A ,相互独立且互不相容,求))(),(min(B P A P (注:),min(y x 表示y x ,中小的一个数)。

解 一方面0)(),(≥B P A P ,另一方面0)()()(==AB P B P A P ,即)(),(B P A P 中至少有一个等于0,所以.0))(),(min(=B P A P

1.41 一个人的血型为AB B A O ,,,型的概率分别为0.46、0.40、0.11、0.03,现在任意挑选五个人,求下列事件的概率

(1)两个人为O 型,其它三个人分别为其它三种血型;

(2)三个人为O 型,两个人为A 型;

(3)没有一人为AB 。

解 (1)从5个人任选2人为O 型,共有???

? ??25种可能,在其余3人中任选一人

为A 型,共有三种可能,在余下的2人中任选一人为B 型,共有2种可能,另一

人为AB 型,顺此所求概率为:0168.013.011.040.046.023252≈?????????

? ??

(2) 1557.040.046.03522≈?????

? ?? (3) 8587.0)03.01(5≈-

1.43 做一系列独立的试验,每次试验中成功的概率为p ,求在成功n 次之前已失败了m 次的概率。

解 用A 表示“在成功n 次之前已失败了m 次”, B 表示“在前1-+m n 次试验中失败了m 次”, C 表示“第m n +次试验成功”

则 p p p m m n C P B P BC P A P m n ?-???

? ??-+===-)1(1)()()()(1

m n p p m m n )1(1-???

? ??-+= 1.45 某数学家有两盒火柴,每盒都有n 根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根。求他用完一盒时另一盒中还有r 根火柴(n r ≤≤1)的概率。

解 用i A 表示“甲盒中尚余i 根火柴”, 用j B 表示“乙盒中尚余j 根火柴”,

D C ,分别表示“第r n -2次在甲盒取”

,“第r n -2次在乙盒取”, C B A r 0表示取了r n -2次火柴,且第r n -2次是从甲盒中取的,即在前12--r n 在甲盒中取了

1-n ,其余在乙盒中取。所以 2

12121112)(10???? ?????

? ?????? ??---=--r n n r n r n C B A P 由对称性知)()(00D B A P C B A P r r =,所求概率为: =?)(00D B A C B A P r r 12021112)(2--??

? ?????? ??---=r n r n r n C B A P

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论第四章习题解答

第四章 随机变量的数字特征 I 教学基本要求 1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望; 2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差; 3、了解切比雪夫不等式及应用; 4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念; 5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理; 6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用. II 习题解答 A 组 1、离散型随机变量X 的概率分布为 求()E X 、(35)E X +、2 ()E X ? 解:()(2)0.4000.3020.300.2E X =-?+?+?=-; (35)3()5 4.4E X E X +=+=; 2222()(2)0.4000.3020.30 1.8E X =-?+?+?=. 2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元.求产品的平均价值? 解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为 则()80.1898100.80889.61E X =?+?≈(元). 3、设随机变量X 的分布函数为0 0()/40414x F x x x x ≤?? =<≤??>? .求()E X ?

解:由分布函数知X 的密度函数为 1/404 ()0 x f x <≤?=? ?其它 则4 ()()24 x E X xf x dx dx +∞ -∞ = ==? ? . 4、设随机变量X 服从几何分布,即1 ()(1)k p X k p p -==-(1,2,)k =L ,其中 01p <<是常数.求()E X ? 解:1 11 1 ()(1) (1)k k k k E X kp p p k p +∞ +∞ --=== -=-∑∑ 由级数 21 2 1123(1) k x x kx x -=+++++-L L (||1)x <,知 211 ()[1(1)]E X p p p =? =--. 5、若随机变量X 服从参数为λ的泊松分布,即 ()! k p X k e k λλ-== (0,1,2,)k =L 求()E X 、2 ()E X ? 解:1 00 ()!(1)!k k k k E X k e e e e k k λ λ λλλλλλλ-+∞ +∞ --- === ===-∑∑; 12 2 010 (1)()[]! (1)!!k k k k k k k k E X k e e e k k k λ λ λ λλλλλ-+∞ +∞ +∞ ---===+===-∑∑∑ 1 21 []()(1)! ! k k k k e e e e k k λ λλλλλλλλλλλ-+∞ +∞ --===+=+=+-∑ ∑ . 6、某工程队完成某项工程的时间X (单位:月)服从下述分布 (1) 求该工程队完成此项工程的平均时间; (2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1) ()100.4110.3120.2130.111E X =?+?+?+?=(月);

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率论与数理统计经典考试题型

概率论经典考试题型 一,选择题 1 设A 、B 为互不相容的事件,且()0,()0,P A P B >>下面四个结论中, 正确的是( ) (A)(|)0P B A > (B)(|)0P A B = (C)(|)()P A B P A =(D)()()()P AB P A P B = 如果A 、B 为互不相容的事件,且 ()0,()0,P A P B >>则上述不正确的是( ) 2 总体),(~2 σμN X ,n X X X ,,,21 是来自总体的样本, ∑==n k k X n X 1 1,则n X /σμ- ~ ( ) (A) ),(2σμN (B) )1,0(N (C) )(n t (D) )1(-n t 3. 已知相互独立的随机变量 ~(1,16), Y ~(2,9), (2)X N N D X Y -=则

。 4. 设3.0)(=A P , 6.0)(=B P , 且事件A 与B 互不相容, ()P A B ?=则 。 5. 已知随机变量X 的概率密度为 2,0,()0,0.x ae x f x x -?>=?≤? 则a = . 6. 设随机变量X 满足2(),()E X D X μσ==, 则由切比雪夫不等式,有{||3}P X μσ-≥≤ 。 7.设总体),(~2σμN X ,2,σμ未知, n X X X ,,,21 是来自总体 X 的样本, 则 μ的矩估计量是 ,2σ最大似然估 计量 。

8 电路由电池A 、B 及两个并联的电池C 、D 串联而成, 设电池A, B, C, D 损坏与否是 相互独立的, 且它们损坏的概率依次为0.3, 0.2, 0.2, 0.5, 求这个电路发生间断的概率. 9 已知(,)X Y 的联合分布率如下: 求(1)边缘分布率; (2))(),(X D X E ; (3) Z X Y =+的分布率。

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

概率论经典试题

第一章 概率论的基本概念课外习题 一.单项选择题 1. 设1)|()|(,1)(0,1)(0=+<<<

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析 一:全概率公式和贝叶斯公式 例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。(同步45页三、1) 解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。P(A1)=1/2, P(A2)=1/3, P(A3)=1/6, P(B| A1)=0.08,P(B| A2)=0.09,P(B| A3)=0.12。 由全概率公式P(B) = P(A1)P(B|A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9 练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】

练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5) (1)取出的零件是一等品的概率; (2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一 等品} (1)P(1 B )=P(1 A )P(1 B |1 A )+P(2 A )P(1 B |2 A )=5 230 182150 10 21= + (2)P(1 B 2 B )= 194 .02121230 2 182 50 2 10=+ C C C C ,则P(2 B |1 B )= ) ()(121B P B B P = 0.485 二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为 ?? ?<<=others x x x f 02 0)(λ 求:(1)常数λ;(2)EX ;(3)P{1