普通晶闸管 可控硅模块 MTX110A1600V

普通晶闸管 可控硅模块 MTX110A1600V
普通晶闸管 可控硅模块 MTX110A1600V

特点

典型应用

主要参数

1). 芯片与底板电气绝缘,2500V 交流电压2). 全压接结构,优良的温度特性和功率循环能力3). 体积小,重量轻

1). 交直流电机控制2). 各种整流电源3). 变频器

I T(AV)

V DRM /V RRM I TSM I 2t

110A 600~1800V 2.4 A ×10329 A 2S*103

性能曲线图

Fig.5 ?? ?? ? ?Fig.6 ? ? ?? ?? ? ?

Fig.1? ? ? ?

Fig.2 ??? ? ?? ?

Fig.3 ?? ?? ? ?

Fig.4? ? ?? ?? ? ?

Fig.7 ? ????? ? ? ? ?

Fig.8 I 2t ? ?

乐清市柳晶整流器有限公司(编)

外形尺寸图

201F

Fig.9 ? ? ?Fig.10 ? ? ? ?

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

基于晶闸管的PSM模块CROWBAR控制研究

基于晶闸管的PSM模块CROWBAR控制研究 周君, 陈滋健等 摘要:本文根据EAST装置中NBI加速极高压电源特点,设计了基于晶闸管的PSM模块CROWBAR控制方法,在系统打火等严重故障情况下及时撤除高压以保护系统设备和人员安全。和传统引燃管CROWBAR保护相比,NBI加速极电源系统在每个PSM模块上并联晶闸管作为快速旁路开关,在CROWBAR动作后通过串联快速直流熔断器迅速切断电网和负载的连接。测试实验表明CROWBAR运行可靠稳定,具备抗干扰和快速动作能力,能够满足EAST对NBI系统的运行要求。 关键词:晶闸管;PSM模块;CROWBAR保护 The Research on CROWBAR Control of PSM based on Thyristor ZHOU-jun,CHEN-zijian,QIAN-lixiu,JIANG-lei (ECU Electronics CO.LTD.of CETC 38,hefei 230088,China) Abstract:Discussions focus on the design considerations of CROWBAR,which make sure safe operation of NBI system and personnel by removing high voltage when serious faults happen such as arc inside the NBI https://www.360docs.net/doc/8a10208002.html,pared with the CROWBAR protection of being composed of traditional high power ignitrons,NBI accelerator supply adopt parallel thyristor structure with each PSM modular act as rapid bypass switch,by means of series connection of fast fuse to cut the link between grid and load after the CROWBAR is triggered.The test experiment show that CROWBAR system can not only meet the standard of safe steady operation,with anti-jamming and rapid triggle capacity, but also be able to meet the requirement of EAST,an advanced full super-conducted TOKAMAK device. Key words: thyristor; PSM Modular; CROWBAR protection 1 引言 大型全超导托卡马克核聚变实验装置(Experimental Advanced Superconducting Tokamak:EAST)是国家“九五”重大科学工程之一,中性束注入NBI (Neutral Beam Injectors:)是托卡马克装置中电流驱动和芯部辅助加热的重要手段.为了满足实验要求,NBI电源系统由一组大功率直流脉冲电源组成,而加速极高压电源是整个供电系统中最关键的部分[1] [2] [4] . EAST实验需要将等离子体的离子温度达到8KeV,这就要求NBI系统的功率达到 6-8MW,NBI加速极高压电源输出电压达到100kV,输出额定电流100A。为实现该目标,采用PSM(Pulse Step Modulator)技术,由100个PSM电源模块串联得到100kV高压。 NBI在束源打火时,高压电源封锁输出,如故障保护系统监测到高压未切断(拒动)时间>4us,须启动CROWBAR,确保高压电源的能量输入NBI系统时间<15us的极限[1]。CROWBAR保护是NBI系统的“生命线”,一旦保护失败,就将损坏价值昂贵的设备,甚至危及到托卡马克的安全运行[3],故CROWBAR 保护动作的可靠性是整个装置的最关键的 设计之一。 鉴于NBI加速极高压电源系统具有高压大功率和快速关断的要求,结合PSM模块串联方案,本文提出每一个PSM模块均设置由晶闸管、快速直流熔断器和控制驱动电路组成的 CROWBAR保护系统。该方法具有分布式、低成本、高可靠的特点。 2 系统方案

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

可控硅模块原理

西玛华晶科技(深圳)有限公司 西玛华晶科技(深圳)有限公司的产品是引用德国国际半导体公司的产品技术和台湾半导体公司的封装工艺;由西玛科技集团联合上海华晶集团在深圳打造的亚洲区最大的功率模块供应平台,为亚洲区提供“品种齐全”“品质第一”“交付最快”“价格最低”的优质产品。公司销售的功率模块产品在制造過程中完全符合國際品質標准及國家工業標准,公司秉持“诚信经营”“客户至上”为宗旨;“品质第一”“交付最快”为目標。我們的專業研发設計人員爲達成最高目標、最高品質,不斷奉献智慧與心力,为您提供最佳品质的功率模块产品。 本公司专业研发制造:可控硅模块、二极管模块、快恢复二极管模块、IGBT 模块,在线智能调功模块等各類型功率模块;为客戶提供完整的電力节能解決方案。公司已能生产30多个系列、约400多种型号规格和60多种内部接线方式的可控硅模块、整流模块和超快恢复二极管模块等各种桥臂模;单三相整流桥模块,单三相交流开关模块,绝缘型降压硅堆模块以及三相整流桥,可控硅集成模块和电焊机及充电机专用硅整流组件等。并已广泛用于调光器,控温器,电解电镀和励磁电源,电池充放电,静止无功补偿装置,交直流电机控制,直流斩波调速,高频逆变焊机和工频电焊机,不停电UPS电源,开关电源,感应加热,交流电机软起动,变频装置以及各种自动化装置。产品在多项国家重点工程中得到应用,部分产品已出口全球(如:欧美,东南亚,俄罗斯,新加坡,马来西亚,印度等)。稳定可靠的产品质量满足了用户的设计制造及使用要求,深受广大用户的好评! 可控硅模块 可控硅模块的定义 可控硅模块又叫晶闸管(Silicon Controlled Rectifier, SCR)。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 用万用表可以区分晶闸管的三个电极 普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接

晶闸管及其应用讲解

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。 课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

晶闸管的结构以及工作原理教学内容

晶闸管的结构以及工 作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构 (PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

晶闸管模块

一、产品介绍 1、用途 广泛应用于不同行业各类用途如调温、调光、励磁、电镀、电解、电焊、等离子拉弧、充放电、稳压的电源装置,还可用于交流电机软起动和直流电机调速。 2、特点 (1)本说明书所覆盖的晶闸管智能控制模块,最大特点是采用本公司独立开发的全数字移相触发集成电路。控制电路与晶闸管主电路集成于一体后,使模块具备了强大的电力调控功能。模块输出对称性高,无直流分量。大规格模块具有过热、过流、缺相保护功能。 (2)采用进口方形芯片、高级芯片支撑板,模块压降小、功耗低,效率高,节电效果好。 (3)采用进口贴片元件,保证了触发控制电路的可靠性。 (4)采用(DCB)陶瓷覆铜板,经独特处理方法和特殊焊结工艺,保证焊接层无空洞,导热性能好。热循环负载次数超过国家标准近10倍。(6)采用高级导热绝缘封装材料,绝缘、防潮性能优良。 (5)触发控制电路、主电路与导热底板相互隔离,导热底板不带电,介电强度≥2500V(RMS),保证人身安全。 (6)输入0~10V直流控制信号,可对主电路输出电压进行平滑调节。(7)可手动、仪表或微机控制。 (8)适用于阻性和感性负载。 3、型号、规格 本说明书所介绍的三相模块,由于控制电路不同,而分为半控和全控两种形式,单相模块没有半控、全控之分。 (1)半控型(详见表1):

表 1 (2)全控型(详见表2): 表2

注: 1、规格栏中的电流为模块最大输出直流电流平均值和交流电流有效值。电压为模块最高输入交流线电压有效值。 2、备注栏内带“※”的型号,可具备过热、过流、缺相等保护功能(分别用h1、h2、h3表示)。当需要模块具有哪种保护功能时,应由用户订货时在模块型号后面加注所需保护种类代号,即h1、h2、h3。三种保护功能可同时具备,也可分别具备。若不需要模块具有保护功能,则不用填写保护代号。

晶闸管(Thyristor)

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化。晶闸管(Thyristor)是一种包含3个或3个以上PN结,它有三个极:阳极,阴极和门极,能从断态转入通态,或由通态转入断态的双稳态电力电子器件。它泛指所有PNPN类型的开关管,也可表示这类开关管中的任一器件。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 自1957年美国贝尔电话实验室将第一只晶闸管用于工业领域以来,由于它的优异性能,很快受到各国重视。随着新材料的出现,新工艺的采用,单只晶闸管的电流容量从几安发展到几千安,耐压等级从几百伏提高到几千伏,工作频率大大提高,器件的动态参数也有很大改进。80年代普通晶闸管的耐压等级和通流能力达到3500A/6500V,可关断晶闸管达3000A/4500V。随着应用领域的拓展,晶闸管正沿着高电压、大电流、快速、模块化、功率集成化、廉价的方向发展。 其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。 晶闸管为半控型电力电子器件,它的工作条件如下: 1.晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。 2.晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时 晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。 3.晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保 持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。 4.晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

各种规格型号可控硅晶闸管

KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1000A/1800V, KK1000A/2000V, KK1000A/2500V, KK1000A/3000V, KK1000A/3300V, KK1000A/3800V, KK1000A/4000V, KK1200A/600V, KK1200A/800V, KK1200A/1000V, KK1200A/1200V, KK1200A/1400V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK1200A/3800V, KK1200A/4000V, KK1500A/600V, KK1500A/800V, KK1500A/2000V,KK1500A/2500V KK1500A/1000V, KK1500A/1200V, KK1500A/1400V, KK1500A/1600V, KK1500A/1800V, KK1500A/2000V, KK1500A/2500V, KK1500A/3000V, KK1500A/3300V, KK1500A/3800V, KK1500A/4000V, KK1600A/600V, KK1600A/800V, KK1600A/1000V, KK1600A/1200V, KK1600A/1400V, KK1600A/1600V, KK1600A/1800V, KK1600A/2000V, KK1600A/2500V, KK1600A/3000V, KK1600A/3300V, KK1600A/3800V, KK1600A/4000V, KK2000A/600V, KK2000A/800V, KK2000A/1000V, KK2000A/1200V, KK2000A/1400V, KK2000A/1600V, KK2000A/1800V, KK2000A/2000V, KK2000A/2500V, KK2000A/3000V, KK2000A/3300V, KK2000A/3800V, KK2000A/4000V, KK2500A/600V, KK2500A/800V, KK2500A/1000V, KK2500A/1200V, KK2500A/1400V, KK2500A/1600V, KK2500A/1800V, KK2500A/2000V, KK2500A/2500V, KK2500A/3000V, KK2500A/3300V, KK2500A/3800V, KK2500A/4000V, KK3000A/600V, KK3000A/800V, KP3000A/1000V, KK3000A/1200V, KK3000A/1400V, KK3000A/1600V, KK3000A/1800V, KK3000A/2000V, KK3000A/2500V, KK3000A/3000V KK3000A/3500V,KK3500A/3000V,KK3000A/4000V,KK3500A/3000V,KK3500A/3500V,KK3500A/4000V KK3500A/4500V,KK3500A/5000V,KK3500A/5500V,KK3500A/6000V,KK4000A/3000V,KK4000A/3500V KK4000A/4000V,KK4000A/4500V,KK4000A/5000V,KK4000A/5500V,KK4000A/6000V,KK4000A/6500V KK5000A/3000V,KK5000A/3500V,KK5000A/4000V,KK5000A/4500V,KK5000A/5000V,KK5000A/5500V KP5000A/6000V,KP5000A/6500V,KP5500A/3000V,KP5500A/4000V,KP5500A/4500V,KP5500A/5000V KK5000A/6000V,KK5000A/6500V,KK5500A/3000V,KK5500A/4000V,KK5500A/4500V,KK5500A/5000V KP1000A/1800V, KP1000A/2000V, KP1000A/2500V, KP1000A/3000V, KP1000A/3300V, KP1000A/3800V, KP1000A/4000V, KP1200A/600V, KP1200A/800V, KP1200A/1000V, KP1200A/1200V, KP1200A/1400V, KP1200A/1600V, KP1200A/1800V, KP1200A/2000V, KP1200A/2500V, KP1200A/3000V, KP1200A/3300V, KP1200A/3800V, KP1200A/4000V, KP1500A/600V, KP1500A/800V, KP1500A/2000V,KP1500A/2500V KP1500A/1000V, KP1500A/1200V, KP1500A/1400V, KP1500A/1600V, KP1500A/1800V, KP1500A/2000V, KP1500A/2500V, KP1500A/3000V, KP1500A/3300V, KP1500A/3800V, KP1500A/4000V, KP1600A/600V, KP1600A/800V, KP1600A/1000V, KP1600A/1200V, KP1600A/1400V, KP1600A/1600V, KP1600A/1800V,

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

Simulink电力电子仿真模块详细介绍

Simulink电力电子仿真模块详细介绍 1、二极管 1.1、电路符号和静态伏安特性: 1.2、模块图标: 1.3、外部接口: 二极管模块有2个电气接口和1个输出接口。2个电气接口(a,k)分别位于二极管的阳极和阴极。输出接口(m)输出二极管的电流和电压测量值(Iak、Vak),其中电流单位A,电压单位V。 1.4参数设置:

(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0; (2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0; (3)Forward voltage Vf:正向电压,当二极管正向电压大于Vf后,二极管导通; (4)Initial current Ic:初始电流,通常为0; (5)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻; (6)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路; (7)Show measurement port:选中复选框,出现测量输出接线口m,可观测二极管的电流和电压值。 2、晶闸管模块 2.1、原理 当晶闸管承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定的晶闸管擎住电流I1,否则晶闸管任要转向关断。导通晶闸管阳极电流下降到0,或者承受反向电压时关断。 2.2、电路负荷和静态伏安特性 2.3、模块图例 详细模块简化模块 2.4、外部接口

晶闸管模块有2个电气接口,1个输入接口和1个输出接口。2个电气接口(a,k)分别对应晶闸管的阳极和阴极。输入接口(g)为门极逻辑信号。输出接口(m)输出晶闸管的电流和电压测量值(Iak、Vak),其中电流单位为A,电压单位为V。 2.5、参数设置: (1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0; (2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0; (3)Forward voltage Vf:正向电压,晶闸管的门槛电压Vf; (4)Latching current Il:擎住电流,(简单模块无该选项); (5)Turn-off time Tq:单位s,它包括阳极电流下降到0的时间和晶闸管正向阻断的时间,(简单模块无该项); (6)Initial current Ic:初始电流,单位A,当电感值大于0时,可以设置仿真开始晶闸管的初始电流值,通常为0; (7)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻; (8)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路; (9)Show measurement port:选中复选框,出现测量输出接线口m,可观测晶闸管的电流和电压值。 3、可开断晶闸管模块 3.1、原理

可控硅晶闸管的基础知识

关于可控硅 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 二、可控硅的种类 可控硅有多种分类方法。 (一)按关断、导通及控制方式分类:可控硅按其关断、导通及控制方式可分为普通可控硅、双向可控硅、逆导可控硅、门极关断可控硅(GTO)、BTG可控硅、温控可控硅和光控可控硅等多种。 (二)按引脚和极性分类:可控硅按其引脚和极性可分为二极可控硅、三极可控硅和四极可控硅。 (三)按封装形式分类:可控硅按其封装形式可分为金属封装可控硅、塑封可控硅和陶瓷封装可控硅三种类型。其中,金属封装可控硅又分为螺栓形、平板形、圆壳形等多种;塑封可控硅又分为带散热片型和不带散热片型两种。 (四)按电流容量分类:可控硅按电流容量可分为大功率可控硅、中功率可控硅和小功率可控硅三种。通常,大功率可控硅多采用金属壳封装,而中、小功率可控硅则多采用塑封或陶瓷封装。 (五)按关断速度分类:可控硅按其关断速度可分为普通可控硅和高频(快速)可控硅。 图2 三、晶闸管的主要工作特性 为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢? 图3 这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。 晶闸管的特点:是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加

晶闸管及其应用教案

课题 任务九晶闸管及其应用 9.1 单、双向晶闸管和单结晶闸管的认识和检测 课型 新课授课班级授课时数 2 教学目标 了解单向、双向晶闸管和单结晶体管的结构、引脚、主 要参数、基本特性 教学重点 万用表的正确使用方法 教学难点 单、双向晶闸管和单结晶闸管的认识和检测 学情分析 教学效果 教后记

A、导入新课 实物展示:向学生展示单向、双向晶闸管和单结晶体管,提出本次课任务。 B、新授课 基础知识 一、单向晶闸管 ㈠外形 单向晶闸管的外形如图9-1所示。 图9-1 单向晶闸管外形 ㈡结构与符号 单向晶闸管是由三个PN结及其划分为四个区组成,如图9-2所示。由外层的P型和N型半导体分别引出阳极A和阴极K,由中间的P型半导体引出控制极G。文字符号用“V”表示。 (a)结构(b)符号 图9-2 单向晶闸管的结构与符号展示法 (结合演示讲解) 实物展示

㈢工作特性 ⒈单向晶闸管的导通必须具备两个条件: ①在阳极(A)与阴极(K)之间必须为正向电压(或正向偏压);即: U AK>0; ②在控制极(G)与阴极(K)之间也应有正向触发电压;即:U GK >0。 ⒉晶闸管导通后,控制极(G)将失去作用,即:当U GK=0,晶闸管仍然导通。 ⒊单向晶闸管要关断时必须满足: 使其导通(工作)电流小于晶闸管的维持电流值或在阳极(A)与阴极(K)之间加上反向电压(反向偏压);即:I V<I H或U AK<0。 二、双向晶闸管 ㈠外形 双向晶闸管的外形如图9-3所示。 图 9-3 双向晶闸管外形 ㈡结构与符号 双向晶闸管的结构与符号如图9-4所示,它是一个NPNPN五层结构的半导体器件,其功能相当于一对反向并联的单向晶闸管,电流可以从两个方向通过。所引出的三个电极分别为第一阳极T1、第二阳极T2和控制极G。结合演示讲解 实物展示

相关文档
最新文档