ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..
ANSYS稳态和瞬态分析步骤简述..

ANSYS 稳态和瞬态热模拟基本步骤

基于ANSYS 9.0

一、 稳态分析

从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:

=0q q q +-流入生成流出

在稳态分析中,任一节点的温度不随时间变化。

基本步骤:(为简单起见,按照软件的菜单逐级介绍)

1、 选择分析类型

点击Preferences 菜单,出现对话框1。

对话框1

我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。

2、 定义单元类型

GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框

2

对话框2

(3-1)

点击Add,出现对话框3

对话框3

在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位

默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units

选择需要的温度单位。

4、定义材料属性

对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor>Material Props> Material Models 出现对话框4

对话框4

一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.

对话框5

若要设定材料的热导率随温度变化,主要针对半导体材料。则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确。设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

对话框5中,Material菜单,New Model选项,添加多种材料的热参数。

5、创建几何模型

GUI:Preprocessor>Modeling>Create

根据热模型,创建几何模型。

对于复杂的几何模型,可能要用到加、减、并、交等布尔运算,可参考相关资料。其中很重要而容易被忽视的一个操作就是粘结(Glue),用于不同图元之间,只在公共边界处相关的搭接,以保证热量在不同结构层间的传递。

GUI:Preprocessor>Modeling>Operate>Booleans>Glue

建模过程中同样可以对图元进行复制、移动、删除等命令。

其中需要注意的是删除一个面或者体的时候,为了使删除的彻底要用Preprocessor>Modeling>Delete>V olume and Below 这条命令,否则只能删除掉体,删除不了组成体的面以及线。

6、分配材料属性以及网格划分

之所以把这两个步骤放到一起,是因为ANSYS提供了一个方便的网格划分工具条可以快捷的完成这两步操作。

GUI:Preprocessor>Meshing>MeshTool 调出工具条对话框6

(1)、分配材料属性

在前面的第4步中,我们定义了材料的属性,但是并

没有分配给模型中的各层材料。在对话框6中,在单元属

性的下拉列表框中选择V olumes,然后点击Set,出现选择

体的对话框7。

对话框7

移动鼠标选择要赋予属性的体,点击对话框中的OK

按钮,出现赋予材料属性的对话框8。在对话框8中的

Material number项后选择与所选材料对应的材料序号。同对话框 6 样的方法,将所有定义好的材料属性赋予模型中对应的各

层材料。

对话框8

(2)划分网格

网格有两种划分方式:自由网格划分和映射网格划分。

自由网格划分对实体没有特殊的要求;自由体网格一般为四面体单元,这也就限制了第2步操作中的单元类型的选择;无法控制内部节点。

映射网格划分要求面或体是规则的形状;体网格只包含六面体单元;可以很好的控制内部节点的位置。

对于初学者,大都采用自由网格划分,映射网格可能需要更多的经验。在网格划分工具条Mesh后的下拉列表选择要划分的几何类型;shape项选择Tet(四面体)或者Hex(六面体);选择Free(自由网格);然后点击Mesh,即开始网格划分。

7、设定分析类型

菜单命令:Solution>Analysis Type>New Analysis,选择Steady-state。

8、设置初始条件以及载荷

执行菜单命令:Solution>Define Loads>Apply>Thermal,下一级菜单中就包含了热分析相关的温度、热流密度、对流换热系数、生热率、辐射率等参数的设置。

其中,对流换热系数的设置对话框9。

在coefficient项填写对流换热

系数,在Bulk temperature项填写

流体(空气或者水)的温度。

对话框9

9、稳态求解

GUI:Solution>Current LS

10、后处理

(1)、查看温度分布图。

GUI: General Postprocess>Plot Results>Nodal Solu,选择DOF Solution对应的Temperature TEMP,得到温度场分布图。

非均匀温度分布图:有些情况下,需要将某一温度范围(如350~380K)内的温度值细化,以使温度分布图中的这一温度范围的颜色层次更明显。这时候需要进行非均匀温度设置。方法是点击ANSYS上方菜单中的PlotCtros选项,下拉列表中选择Style,接着依次选择Contours>Non-Uniform Contours,出现对话框10,在对话框10中将350~380的数值细化后填入对话框,点击Replot。

对话框10

(2)、查看保存节点数据。

GUI:General Postprocess>List Results>Sorted Listing>Sort Nodes,出现对话框11。

对话框11

在对话框11中的List sorted nodes for后的下拉列表中选择Results/Coords。将出现两个数据文件,一是节点温度数据,一是节点坐标数据。将这两个文件保存,以便进一步分析。

二、瞬态热分析

温度场随时间发生变化的传热过程称为非稳态传热。实际生产生活中,绝大部分的传热过程都是非稳态传热,稳态传热只是一个近似的假定。对于非周期性传热过程,物体的温度不断升高和降低,并在经历相当长的时间后逐渐趋于平衡(不再改变),这类传热过程即为瞬态传热。

瞬态传热的分析步骤和稳态大体相似,下面在稳态分析的基础上将瞬态分析需要在那几个步骤上做一些额外的设置简单介绍下。

1、对应稳态分析的第4步:定义材料属性,对于瞬态分析必须要定义

材料的密度和比热容。

2、对应稳态分析的第7步:设定分析类型

菜单命令:Solution>Analysis Type>New Analysis,瞬态分析选择Transient。

3、较多的不同主要体现在第8步,设置初始条件以及载荷。

首先,瞬态分析过程,一般都要给予一个初始状态,对于热分析通常是要给整个模型施加一个初始温度场,设置命令为:

Solution>Define Loads>Settings>Uniform Temp,在出现的对话框中填写初始温度,如300K。

其次,施加载荷的不同,瞬态分析的载荷都是与时间相关的。下面以施加随时间变化的生热率为例介绍瞬态载荷的施加过程。

GUI:Solution>Define Loads>Apply>Thermal>Heat Generate>On V olumes,然后选择要施加载荷的体,出现施加生热率的对话框12.

对话框12

在对话框12中,Apply HGEN on volume后的下拉菜单中选择New table,接着在弹出的对话框中输入新建表格的名称,将出现表格设置对话框13。

在对话框13中,I,J,K分别代表数值的维数,I为行,J为列。K一般用不着,设为0。取I=4、J=1、K=0,I变量命名为TIME,J变量命名为HGEN,点击OK,出现新建的列表14。表14实际是5行2列,其中第0列是时间值,第0行是载荷编号。表中设置为0-1秒时间内生热率数值为1000,1-2秒生热率数值为0,因为要求第0列和第0行数据都是递增的,所以第四行中的时间值填写的是1.000…1。设置完毕后,File>Apply/Quit。

对话框13

列表14

4、瞬态分析要比稳态分析多一些必须的设置。菜单命令为:

Solution>Load Step Opts

在下一级菜单Output Ctrls>DB/Results File中,选择将Every substep 的结果都记录下来,以便分析每一时间载荷步的数据结果。

下一级菜单Time/Frequence>Time-Time Step对话框15中,Time at end of load step后填写施加载荷的时间长度。Time step size中选择时间步长,例如把2秒的时间分成10等份,时间步长就是0.2秒。时间步长越小,载荷步越多,计算精度越高,同时所需的时间也越长。如果载荷在载荷步中是恒定的,就设为阶跃载荷(Stepped),如果载荷随时间线性变化就设为渐进载荷(Ramped)。自动时间步长根据需要选择打开或者关闭,其中最小时间步长应小于前面设置的时间步长。

瞬态分析中,必须打开时间积分效果,菜单Time/Frequence>Time Integration>Amplitude Decay,在出现的对话框中ON前面打对钩。

对话框15

5、后处理的不同,对于瞬态分析,需要用POST1和POST26两种方式进行结果处理。其中POST1用于对整个模型在某一载荷步(时间点)的结果进行后处理,POST26用于对模型中特定点在所有载荷步(整个瞬态传热过程)的结果进行后处理。

查看不同时间点的结果,命令为:General Postprocess>Read Results>By Time/Freq,在出现的对话框中填写想要查看的时间点,点击OK。

查看特定点的结果,需要POST26处理器。下面以查看峰值温度点在整个瞬态加热过程中的变化为例来说明。

选择TimeHist Postpro,进入POST26后处理器,对话框16。在对话框

16中,点击左上角按钮,出现对话框17,在对话框17中选择温度,然后命名变量名为“结温”。选择OK后,出现选择节点对话框,在对话框中填写结温所在节点的节点序号(这个需要在温度分布数据中查看最高温度对应的节点号)。然后点击这个按钮,就出现了结温在整个加热过程中的变

化曲线了。List data按钮可以列出结温随时间的变化数据,并保存。

对话框16

对话框17

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大电路的基本信号,图1表示一个阶跃电压,它表示为 放大电路的阶跃响应主要由上升时间t r 和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。 分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和平顶阶段并按其特点对电路进行简化。 图1 图 2

阶跃电压中上 升较快的部分,与 稳态分析中的高频 区相对应,可用RC 低通电路来模拟, 如图 2(a)所示。 由图可知 式中V S是阶跃 信号平顶部分电压 值。与时间 的关系如图2(b)所示。 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0 时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 由图2(b)经推导可得 已知可得 或 可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。 单级放大电路的瞬态响应的平顶降落 阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

ANSYS热分析详解

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

ANSYS热分析

第一章 简 介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 项目 国际单位 英制单位 ANSYS 代号 长度 m ft 时间 s s 质量 Kg lbm 温度 ℃ o F 力 N lbf 能量(热量) J BTU 功率(热流率) W BTU/sec 热流密度 W/m 2 BTU/sec-ft 2 生热速率 W/m 3 BTU/sec-ft 3 导热系数 W/m-℃ BTU/sec-ft-o F KXX 对流系数 W/m 2-℃ BTU/sec-ft 2-o F HF 密度 Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃ BTU/lbm-o F C 焓 J/m 3 BTU/ft 3 ENTH 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: z 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q Δ+Δ+Δ=? 式中: Q —— 热量; W —— 作功; ΔU ——系统内能; ΔKE ——系统动能; ΔPE ——系统势能; z 对于大多数工程传热问题:0==PE KE ΔΔ; z 通常考虑没有做功:0=W , 则:U Q Δ=; z 对于稳态热分析:0=Δ=U Q ,即流入系统的热量等于流出的热量; z 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温

最新放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 1 2 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。3 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电 路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放4 5 大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定 6 放大电路的波形失真。 7 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输 8 出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法 9 常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地 10 判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 11 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 12 13 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大 14 图1 15 电路的基本信号,图1表示一个阶跃电压,它表示 16 为 17 18 放大电路的阶跃响应主要由上升时间t r和平顶 降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中19 参数相联系。 20

分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压 21 22 可分为上升阶段和平顶阶段并按其特点对电路进行简化。 23 阶跃电压中上升 图 2 24 较快的部分,与稳 25 态分析中的高频区 26 相对应,可用RC低 通电路来模拟,如 27 图 2(a)所示。由 28 29 图可知 30 式中V S是阶跃信 31 号平顶部分电压值。与时间的关系如图2(b)所示。 32 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0时33 是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间, 34 35 才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 36 由图2(b)经推导可得 37 38 已知可得 39 40 或

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换

基于ANSYSWORKBENCH的保温桶的稳态热分析

【问题描述】 一个保温桶,由4层组成。从外到内依次是:钢,铝,复合材料,铝。桶内是热水,而桶外是空气。需要确定桶壁的温度场分布。已知:桶内半径是0.1米,桶长度为0.1米,从内到外,4层厚度分别是0.01米,0.02米,0.01米,0.005米,钢,复合材料,铝的导热系数分别是60.5(瓦/米度),0.055(瓦/米度),236(瓦/米度),水温80摄氏度,空气温度为摄氏度,空气对流系数是12.5(瓦/平方米度). (《注》该例子来自于许京荆编著的《ANSYS 13.0 WORKBENCH数值模拟技术》,2012年) 【建模分析】 1.这是一个稳态热分析问题,需要使用steady-state thermal模块。 2. 这是一个轴对称问题,只需要分析其一个径向截面,然后用2D分析的轴对称进行处理。 3.几何建模。在DM中创建四个草图,然后分别形成四个面体,再形成一个多体构件。 4.边界条件。对里层使用温度边界条件,对外层设置对流换热边界条件。 【求解过程】 1. 打开ANSYS WORKBNCH14.5。 2. 创建稳态热分析系统。

3. 设置三种材料的导热系数。 双击engineering data,打开工程数据,新创建三种材料,分别是STEEL,AL,compound,并分别设置其导热系数。 钢材的导热系数 铝的导热系数 复合材料的导热系数 创建完毕,退回到项目中。 4.创建几何模型。 双击geometry,进入到DM中。选择长度的单位是米。 在XOY面内创建四个草图。 这四个草图是四个相邻的矩形,其位置及尺寸如下图。

分别由这4个草图生成4个面。 其图形如下 将上述四个物体生成一个多体构件。

CFD中稳态与瞬态的区别

闲谈CFD <3>——稳态与瞬态 稳态与瞬态的概念其实比较容易理解。这里之所以拿出来单独作为一个话题,主要是因为在实际工程应用中,用稳态还是瞬态常常很难选择。有一些情况,可以使用稳态计算,用瞬态计算似乎也可以。那么稳态计算与瞬态计算到底有什么区别,以及何时该用稳态计算何时该用瞬态计算呢? 稳态与瞬态的区别主要体现在控制方程是否存在时间项上。换句话说,其区别在于计算 结果是否是与时间相关。但是我们观察现实生活,似乎找不到什么现象是与时间无关的。于是我们可以这样理解:稳态是一种近似。还是不太好理解,我们来举个例子。假设雨滴从高空落下,其阻力与运动速度的平方成正比,比例系数为1。雨滴质量为1,重力加速度为g,假设 雨滴运动初速度为0,则依据牛顿定律很容易得出当阻力与重力平衡时,该雨滴将获得最大速度。学过物理的人都知道在0.32s时雨滴达到最大速度3.13m/s,阻力9.8与重力平衡后其将保持匀速运动。好了,我们可以将运动状态分为两部分,以t=0.32s为界,在此之前,运动速度与时间有关,在此之后,运动速度与时间无关。因此若要了解前0.32s内的运动速度变化规律,则必须使用瞬态,而要知道0.32s之后的状态,则利用稳态或瞬态均可。 上面的例子当然很简陋,现实中的问题很复杂,很多时候没办法估计稳定状态的临界时间,而且有一些问题是根本没办法达到稳定的。但是这个例子至少说明了一点:稳态其实是一种特殊的瞬态。也就是说,稳态计算完全可以用瞬态计算来替代。那么为什么还会存在稳态计算呢?主要原因在于存在一些从数学上分析一定能够达到稳定状态的模型(如密闭空间中的扩散过程、稳定入口的管流等等),再加上稳态模拟开销要小于瞬态计算。 稳态计算与初始值无关,很多CFD软件在稳态计算时要求进行初始化,这只是用于迭代计算,理论上是不会影响到最终的结果,但是不好的初始会值会影响到收敛过程。而瞬态计算则不同,其计算结果与初始状态紧密相关。还是上面的例子,若雨滴的初始速度不是0的话,则稳定时间会发生改变,稳定之前的速度值也会不同。所以在瞬态计算时,初始条件与边界条件一样重要,会影响计算结果的正确性。在瞬态计算的时候,常常使用稳态计算结果作初始值。

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

三阶系统的瞬态响应及稳定性分析

实验四 三阶系统的瞬态响应及稳定性分析 一、实验目的 (1)熟悉三阶系统的模拟电路图。 (2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。 (3)研究时间常数T 对三阶系统稳定性的影响。 图8-16 三阶系统原理框图 图8-17 三阶系统模拟电路 图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为: T 1T 2T 3S3+T 3(T 1+T 2)S2+T 3S+K=0 其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。 若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为 用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。 除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下: 令系统的剪切频率为 ωc ,则在该频率时的开环频率特性的相位为: ?(ωc )= - 90? - tg -1T 1ωc – tg -1T 2ωc 相位裕量γ=180?+?(ωc )=90?- tg -1T 1ωc- tg -1T 2ωc K )S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 23Κ

由上式可见,时间常数T 1和T 2的增大都会使γ减小。 四、思考题 (1)为使系统能稳定地工作,开环增益应适当取小还是取大? (2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么? (3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡? (4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零? (5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数? 五、实验方法 图8-16所示的三阶系统开环传递函数为: (1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。 (2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。 (3)令T 1=0.2S , T 2=0.1S , T 3=0.5S ,用示波器观察并记录K 分别为5、7.5和10三种情况下的单位阶跃响应曲线。 (4)令K=10,T 1=0.2S ,T 3=0.5S ,用示波器观察并记录T 2分别为0.1S 和0.5S 时的单位阶跃响应曲线。 六实验报告 (1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K 的变化对系统动态性能和稳定性的影响。 (2)作出K=10,T1=0.2S ,T3=0.5S ,T 2分别为0.1S 和0.5S 时的单位阶跃响应波形图,并分析时间常数T 2的变化对系统稳定性的影响。 (3)写出本实验的心得与体会。 )1)(1()(213++=S T S T S T K S G

放大电路的瞬态分析与稳态分析教学提纲

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大 电路的基本信号,图1表示一个阶跃电压,它表 示为 放大电路的阶跃响应主要由上升时间t r和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。 分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和平顶阶段并按其特点对电路进行简化。 图1 图 2

阶跃电压中上 升较快的部分,与 稳态分析中的高频 区相对应,可用 RC低通电路来模 拟,如图 2(a)所 示。由图可知 式中V S是阶跃 信号平顶部分电压 值。与时间的关系如图2(b)所示。 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 由图2(b)经推导可得 已知可得 或 可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。 单级放大电路的瞬态响应的平顶降落 阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

最新ANSYS热分析指南——ANSYS稳态热分析

A N S Y S热分析指南——A N S Y S稳态热分析

ANSYS热分析指南(第三章) 第三章稳态热分析 3.1稳态传热的定义 ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和 ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。 稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括: 对流 辐射 热流率 热流密度(单位面积热流) 热生成率(单位体积热流) 固定温度的边界条件

稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。 3.2热分析的单元 ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下: 表3-1二维实体单元 表3-2三维实体单元 表3-3辐射连接单元

表3-4传导杆单元 表3-5对流连接单元 表3-6壳单元 表3-7耦合场单元 表3-8特殊单元

电力系统稳态瞬态分析-答案一

电力系统分析(电力系统稳态与瞬态分析) 练习一答案 一、填空 1、10.5242;10.5254.1 2、230 kV 115 kV 37 kV 10.5 kV 0.4 kV 3、5%;-5%;10% 4. 三一不间断三短时中断 (双/多电源)(单电源)5. 单回路放射式单回路干线式单回路树状网络 二、单选题 1、B 2、A 3、D 4、B 5、B 6、B 7、B 8、B 9、A 10、C 三、简要回答下列问题 1. 发电机、变压器、电力线路、用电负荷设备等四种 1)发电机:利用电磁感应原理将机械能转化为电能的设备。 2)变压器:将一种电压和电流转化成另一种同频率的电压电流。 3)电力线路:电能输送。 4)用电设备:电能使用。 2. 电力系统运行的特点集中体现在下述3方面: 1)同时性:发电,输电,用电同时完成,电能不能大量储存; 2)瞬时性:电能以光速传输,任何运行状态的变化传播极快(“瞬时的”); 3)密切性:电力系统的安全稳定经济运行和可靠供电对国民经济、人们生活、 社会稳定影响极大,关系极为密切; 3、220kV线路因电压等级、从而运行电压高,要考虑对地充电功率影响,采用π等值电路;10kV线路因电压等级、从而运行电压低,对地充电功率影响可以忽略不计,因此其等值电路可以用简化的串联阻抗支路等效。 4、对电力系统的运行要求主要体现在如下四个方面:

1)供电可靠。其保障措施包括:a )严格运行操作,减少人为事故率;b )加强网络结构(包括用环网代替辐射网等);c )保证设备处于良好运行状态,减小设备故障率;d )负荷分级保电(一级负荷、二级负荷、三级负荷);e )实用安全自动装置。 2)运行灵活。其保障措施包括:a )合理地结线方式;b )充裕的电源保障和合理地电源布局等。 3)电能质量。电能质量包括波形质量、电压质量和频率质量,电压质量主要取决于电网的无功平衡,电压质量主要取决于电网的有功平衡,只要通过合理的调压、调频和无功补偿措施即可得到合格的电压质量和频率质量。波形可以通过相应的滤波等措施滤去谐波等干扰信号,保证良好的波形质量。 4)保证系统运行的经济性。优化设计方案,节约一次投资;优化运行调度,减小发电成本和网损;优化运行和生产管理,降低管理成本。 5)减少排放,保护环境。 四、计算题 1、计算同步发电机、变压器和线路的实际有名参数 发电机G : 125 156.25cos 0.8 N GN P S ?= == MV A 22 92.510.5 %0.65268 100156.25 GN G G GN U X X S =?=?=Ω 变压器T : 2 2 4.1 1000K N T N P U R S ==Ω 2 %68.325 100K N T N U U X S ==Ω 6 02 1.7101000T N P G S U -= =? 5 02 % 2.5610100N T N I S B S U -= =? 线路l : 640.10822023.760.4222092.42.6610220 5.85210l l l R X B S --=?=Ω =?=Ω =??=?

ANSYS稳态和瞬态分析步骤简述

ANSYS 稳态和瞬态热模拟基本步骤 基于ANSYS 9.0 一、 稳态分析 从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量: =0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。 基本步骤:(为简单起见,按照软件的菜单逐级介绍) 1、 选择分析类型 点击Preferences 菜单,出现对话框1。 对话框1 我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。 2、 定义单元类型 GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框 2 对话框2 (3-1)

点击Add,出现对话框3 对话框3 在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。 3、选择温度单位 默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units 选择需要的温度单位。 4、定义材料属性 对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。 GUI: Preprocessor>Material Props> Material Models 出现对话框4 对话框4 一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5. 对话框5

瞬态热分析

第5 章瞬态分析

何为瞬态分析? 如果需要知道系统受随时间变化(或不变)的载荷和边界条件时的响应,就需要进行瞬态分析。 时变载荷时变响应 热能存储效应在稳态分析中忽略,在此要考虑进去。时间,在稳态分析中只用于计数,现在有了确定的物理含义。 涉及到相变的分析总是瞬态分析。这种比较特殊的瞬态分析在第9章中讨论。This special type of transient analysis is discussed in Chapter 9.

瞬态分析前处理考虑因素 除了导热系数(k), 密度(r) 和比热(c ) ,材料特性应包含实体传递和存储热能*的项目。可以定义热焓(H) (在相变分析中需要输入)。 这些材料特性用于计算每个单元的热存储性质并叠加到比热矩阵[C]中。如果模型中有热质量交换,这些特性用于确定热传导矩阵[K]的修正项。 * MASS71热质量单元比较特殊 ,它能够存贮热能单不能传递热 能。因此,本单元不需要热传导 系数。

瞬态分析前处理考虑因素(续) 象稳态分析一样,瞬态分析也可以是线性或非线性的。如果是非线性的,前处理与稳态非线性分析有同样的要求。 稳态分析和瞬态分析对明显的区别在于加载和求解过程。 在瞬态热分析数值方法的一个简单介绍以后,我们将集中解释这些过程。

控制方程 回忆线性系统热分析的控制方程矩阵形式。热存储项的计入将静态系统转变为瞬态系统: 在瞬态分析中,载荷随时间变化. . . . . . 或,对于非线性瞬态分析, 时间和温度: []{}[]{}{}Q T K T C =+ []{}[]{}(){}t Q T K T C =+ ()[]{}()[]{}(){} t T Q T T K T T C ,=+ 热存储项= (比热矩阵) x (时间对温度的微分)

稳态热分析报告案例(ANSYS15.0版)

本例题的主要部分为一个圆筒形罐,其上沿径向有一材料一样的接管(如图????所所示),罐内流动着450°F(232°C)的高温流体,接管内流动着100°F(38 °C)的低温流体,两个流体区域由薄壁管隔离。罐的对流换热系数为250Btu/hr-ft2-o F(1420watts/m2-°K),接管的对流换热系数随管壁温度而变,它的热物理性能如表???所示。要求计算罐与接管的温度分布。 表???? 6.5.1 预处理 Step 1: 确定分析标题 起动ANSYS后,开始一个分析,需要输入一个标题,按下面方法进行操作: 1.选择Utility Menu> File> Change Title,弹出相应对话框 2.输入Steady-state thermal analysis of pipe junction。 3.点击OK。 Step 2: 设置分析单位系统 You need to specify units of measurement for the analysis. For this pipe junction example, measurements use the U. S. Customary system of units

(based on inches). To specify this, type the command /UNITS,BIN in the ANSYS Input window and press ENTER.在分析之前,需要为分析系统设定单位系统, Step 3: Define the Element Type The example analysis uses a thermal solid element. To define it, do the following: 1.Choose Main Menu> Preprocessor> Element Type> Add/Edit/Delete. The Element Types dialog box appears. 2.Click on Add. The Library of Element Types dialog box appears. 3.In the list on the left, scroll down and pick (highlight) "Thermal Solid." In the list on the right, pick "Brick20node 90." 4.Click on OK. 5.Click on Close to close the Element Types dialog box. Step 4: Define Material Properties To define material properties for the analysis, perform these steps: 1.Choose Main Menu> Preprocessor> Material Props> Material Models. The Define Material Model Behavior dialog box appears. 2.In the Material Models Available window, double-click on the following options: Thermal, Density. A dialog box appears. 3.Enter .285 for DENS (Density), and click on OK. Material Model Number 1 appears in the Material Models Defined window on the left. 4.In the Material Models Available window, double-click on the following options: Conductivity, Isotropic. A dialog box appears. 5.Click on the Add Temperature button four times. Four columns are added. 6.In the T1 through T5 fields, enter the following temperature values: 70, 200, 300, 400, and 500. Select the row of temperatures by dragging the cursor across the text fields. Then copy the temperatures by pressing Ctrl-c. 7.In the KXX (Thermal Conductivity) fields, enter the following values, in order, for each of the temperatures, then click on OK. Note that to keep the units consistent, each of the given values of KXX must be divided by 12. You can just input the fractions and have ANSYS perform the calculations. 8.35/12 8.90/12 9.35/12 9.80/12

SolidWorks_热分析

白皮书热分析 inspiration 摘要 在本白皮书中,我们针对产品设计有关的热分析概念进行了定义和概要 阐述。我们以实际产品为例,对传导、对流和辐射的原理进行了讨论。我 们还将阐释开展热分析的方式和方法,特别介绍如何使用设计验证软件 来模拟热力环境。同时,我们还将列出热力设计验证软件所需具备的功 能,并通过实例展示如何使用SolidWorks 产品来解决设计难题。

热分析简介 20 世纪90 年代,为了降低产品开发所需的成本和时间,传统的原型制造和测试在很大程度上已被模拟驱动的设计流程所取代。有了这一流程,工程师对昂贵而又耗时的物理原型的需求大大减少,只需使用易于修改的计算机模型即可成功预测产品的性能(图1)。 设计流程的变化 传统的产品模拟驱动的产品 设计流程设计流程 设计CAD 模拟 多次只需一次! 原型制造原型制造 多次只需一次! 测试测试 生产生产 图1: 传统产品设计流程与模拟驱动的产品设计流程 在研究缺陷、变形、应力或自然频率等结构问题时,设计验证工具的价值是不可估量的。但是,新产品的结构性能仅仅是设计工程师所面临的诸多难题之一。还有许多其他常见问题是与热力相关的,其中包括过热、缺乏尺寸稳定性、过高的热应力,以及与产品的热流和热力特征相关的其他难题。热力问题在电子产品中普遍存在。在设计冷却扇和散热器时,必须权衡小体积与足够的散热能力这两方面的需求。同时,紧凑的组装还必须确保空气的充分流动,以防印刷电路板在过高的热应力下变形或断裂(图2)。 图2: 要进行电子封装,需要对如何排出电子零部件所产生的热量进行仔细分析。

在传统的机器设计中,也大量存在热力问题。有很多产品必须进行温度、散热 和热应力分析,其中一些十分明显的示例包括:引擎、液压缸、电机或电动泵。 简而言之,任何消耗能量来执行某种实用工作的机器都不例外。或许材料加工 机器不太需要进行热分析,但这些机器的机械能转化成热能,不仅影响机器零 件还影响机器本身。这种情况不仅存在于精密的机器设备中,还存在于破碎机 等大功率机器中。在精密机器设备中,热膨胀可能影响切割工具的尺寸稳定性; 在大功率的机器中,零部件可能因高温和热应力而受到损坏(图3)。 图4: 种植牙必须不影响周围组织的热力状况, 而且必须能够承受热应力。 图3: 在设计工业破碎机的传动和载荷时,潜在过热问题是一个十分重要的考虑因素。 这里涉及到的第三个示例,是为了说明大多数医疗设备应该进行热力性能分 析。给药系统必须确保所给药物的温度合适,而手术设备必须确保组织免遭过 度热冲击。同样,体移植物不得干扰体内的热流,而种植牙也必须承受剧烈 的外部机械载荷与热载荷(图4)。 最后,所有的家用电器产品,例如电热炉、电冰箱、搅拌器、电熨斗和咖啡机 (任何需要靠电力才能运行的设备),都应进行热力性能分析以避免过热现象。 这不仅适用于使用交流电源的消费类产品,还适用于由电池供电的设备,例如 遥控玩具和无线电动工具(图5)。 图5: 要对无线工具上的高容量电池进行充分 冷却,就需要对热力状况有所了解。

典型系统瞬态响应和稳定性分析

典型系统瞬态响应和稳定性分析 一、实验目的 1. 二阶系统的特征参量(ξ,n ω)对过渡过程的影响。 2. 二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3. Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、实验基本原理及电路 1. 典型的二阶系统稳定性分析。 (1)结构框图 (2)对应的模拟电路图 图2-2 (3)理论分析 系统开环传递函数为: G (S )= ) 11(+S T S K = ) 11.0(1+S S K 其中K=01T K =K1=开环增益 2. 典型的三阶系统稳定性分析 (1)结构框图 图2-3 (2)模拟电路图

图2-4 (3)理论分析 系统开环传函为: G(S)H(S)= ) 151.0)(11.0(510++S S S R (其中K=R 510) 系统的特征方程为: 1+G(S)H(S)=0,?06.196.1996.1123=+++K S S S 三、实验内容及步骤 1. 典型二阶系统瞬态性能指标的测试 A 、先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性。应与理论分析基本吻合。在此实验中,T 0=1s,T 1=0.1s,K 1=100/R ,闭环传函: W (S )= 22 2 2n n n S S ω ξωω++其中n ω= 011T T K ξ= 2 1110/T K T B 、步骤: 准备:将“信号源单元(U 1 SG )的ST 插针和+5V 插针用“短路块”短接, 使运算放大器反馈网络上的场效应管3DJ6夹断。 ○ 1 按图2-2接线,R=10K ○ 2 用示波器观察系统阶跃响应C(t),测量并记录超调量M p ,峰值时间t p 和调节时间t s 。记录在表2-1中。 ○ 3 分别改变R 值从而改变系统开环增益,观察相应的阶跃响应C(t),测量并记录性能指标M p 、t p 、t s 及系统的稳定性。将测量值和计算值(实验前必须按公式计算出)进行比较。 2. 典型三阶系统的性能 A 、实验内容 实验前由Routh 判据 042.6K Ω 系统稳定 得 K=11.96?R=42.6 K Ω 系统临界稳定 K>11.96?R<42.6 K Ω 系统不稳定 B 、步骤 ① 按图2-4接线,R=30K 。 ② 观察系统的阶跃响应,并记录波形。 ③ 减小开环增益(R=42.6K ;100K ),观察系统的阶跃响应。

相关文档
最新文档