机械原理连杆机构设计和分析5

机械原理连杆机构设计和分析5
机械原理连杆机构设计和分析5

部讲义,请勿流传

第五讲 平面连杆机构及其设计

连杆机构的传动特点:

1.因为其运动副一般为低副,为面接触,故相同载荷下,两元素压强小,故可承受较大载荷;低副元素便于润滑,不易磨损;低副元素几何形状简单,便于制造。2.当原动件以同样的运动规律运动时,若改变各构件的相对长度,可使从动件得到不同的运动规律。3.利用连杆曲线满足不同的规矩要求。4.增力、扩大行程、实现远距离的传动(主要指多杆机构)。

缺点:

1.较长的运动链,使各构件的尺寸误差和运动副中的间隙产生较大的积累误差,同时机械效率也降低。2.会产生系统惯性力,一般的平衡方法难以消除,会增加机构动载荷,不适于高速传动。

平面四杆机构的类型和应用

一、平面四杆机构的基本型式

1.曲柄摇杆机构2.双曲柄机构 3.双摇杆机构

二、平面四杆机构的演化型式

1.改变构件的形状和运动尺寸

曲柄摇杆机构 -----曲柄滑块机构 2.改变运动副的尺寸

偏心轮机构可认为是将曲柄滑块机构中的转动副的半径扩大,使之超过曲柄的长度演化而成的。 3.选用不同的构件为机架

(a ) 曲柄滑块机构 (b )ABBC 为摆动导杆机构) (c )曲柄摇块机构(d )直动滑杆机构(定块机构)

平面四杆机构的基本知识

一、平面四杆机构有曲柄的条件

1.铰链四杆机构中曲柄存在的条件 (1)存在周转副的条件是:

①其余两杆长度之和最长杆长度最短杆长度

≤+,此条件称为杆长条件。

②组成该周转副的两杆中必有一杆为最短杆。(意即:连架杆和机架中必有一杆是最短杆) 2满足杆长条件下,不同构件为机架时形成不同的机构

①以最短构件的相邻两构件中任一构件为机架时,则最短杆为曲柄,而与机架相连的另一构件为摇杆,即该机构为曲柄摇杆机构。

②以最短构件为机架,则其相邻两构件为曲柄,即该机构为双曲柄机构。

③以最短构件的对边为机架,则无曲柄存在,即该机构为双摇杆机构。

3.不满足杆长条件的机构为双摇杆机构。

注:曲柄滑块机构有曲柄的条件:a + e ≤ b

导杆机构:a < b时,转动导杆机构;

a > b时,摆动导杆机构。

例题:

矿)

(山科)

6. 图示导杆机构中,已知LAB=40mm,偏距e=10mm,试问:

的最小值为多少;

1)欲使其为曲柄摆导杆机构,L

AC

不变,而e=0,欲使其为曲柄摆动导杆机构,L AC的2)若L

AB

最小值为多少;

为原动件,试比较在e> 0和e=0两种情况下,曲柄3)若L

AB

摆动导杆机构的传动角,哪个是常数,哪个是变数,哪种传力效果好?

解答:

1)mm e L L AB AC 50)1040(=+=+≥,即L AC 的最小值为50mm 。

2)当e=0时,该机构成为曲柄摆动导杆机构,必有L AC 0时的摆动导杆机构,其导杆上任何点的速度方向不垂直于导杆,且随曲柄的转动而变化,而滑块作用于导杆的力总是垂直于导杆,故压力角α不为零,而传动角?

二、急回运动和行程速比系数

1.极位与极位夹角

(1)极位:机构的极限位置(即摇杆两极限位置,曲柄与连杆两次共线位置)。 (2)极位夹角:摇杆处于两极限位置时,曲柄与连杆两次共线位置之间的夹角。(会作图求极位夹角) (3)摆角:摇杆两极限位置之间的夹角。 2.急回运动

在一周中,曲柄等速转动,但摇杆是不等速的:21v v 空回行程工作行程<,摇杆的这种运动性质称为急回运动。

3.行程速比系数K :衡量急回运动的程度。

θ

θαα-+=

=== 180180212112t t v v K

11180+-=K K

θ

4.结论:

(1)1>K ,即12v v >,即机构有急回特性。可通过此判定曲柄的转向。

(2)当曲柄摇杆机构在运动过程中出现极位夹角θ时,机构便具有急回运动特性。(注:对心曲柄滑块机构:无急回特性; b :偏心曲柄滑块机构:有急回特性。) (3)↑↑K ,θ,机构急回运动也越显著。所以可通过分析θ及θ的大小,判断机构是否有急回运动及急回运动的程度。雷达天线的俯仰传动的曲柄摇杆机构无急回特性。

(4)急回运动的作用:在一些机械中可以用来节省动力和提高劳动生产率。

三、四杆机构的传动角与死点1.压力角和传动角(会作图)

(1)压力角α:从动杆件受力方向和受力作用点速度方向之间所夹的锐角。

(2)传动角γ:压力角的余角,

αγ-=

90。实际就是连杆与从动杆件之间所夹的锐角。 (3)结论:α越小,机构的传力性能越好。可见α是判断机构传力性能是否良好的标志。相应有γ越大,机构的传力性能越好。

最小传动角出现的位置

bc a d c b 2)(arccos

2

221--+=γ 或:bc a d c b 2)

(arccos

2222+-+=γ

或:bc a d c b 2)(arccos

1802

222--+-=

γ。

1γ和2γ中小者为min γ

即min γ出现在主动曲柄与机架共线的两位置之一。 注:

①导杆机构的传动角: 传动角 90=γ,且恒等于 90

②曲柄滑块机构的min γ

2.死点

在曲柄摇杆机构中,摇杆CD 为主动件,连杆与从动曲柄共线时,曲柄AB 不能转动而出现顶死的现象。这个位置称为死点。

(1)原因:连杆作用曲柄的力通过回转中心A ,对A 点无矩,不能驱使其转动。传动角0=γ (2)改善方法:目的:使机构能够顺利通过死点而正常运转。1.错列2.装飞轮加大惯性

已知图示六杆机构,原动件AB 作等速回转。试用作图法确定: (1)滑块5的冲程 H ;

(2)滑块5往返行程的平均速度是否相同?行程速度变化系数K 值; (3)滑块处的最小传动角

min γ(保留作图线)

。(北交2008年)

解: (1)

12()0.002170.034l H F F μ==?=m

(2)不相等。

18018042 1.61

18018042K θθ?+?+?

=

=≈?-?-?

(3)

min 69γ=?

题8-5图解

用作图法设计四杆机构

1.按连杆预定的位置设计四杆机构 (1)已知活动铰链中心的位置

当四杆机构的四个铰链中心确定后,其各杆长度也就相应确定了,所以根据设计要求确定各杆的长度,可以通过确定四个铰链中心的位置来确定。

例:要求连杆占据三个位置11C B ,22C B ,

33C B ,求所对应的四杆机构。

分析:该机构设计的主要问题是确定两固定铰链A ,D 点的位置。由于B ,C 两点的运动轨迹是圆,该圆的中心就是固定铰链的位置。

解:连?21,B B 中垂线12b 连?3

2,B B 中垂线23b ------------- A

连?21,C C 中垂线12c 连?32,C C 中垂线23c ------------ D

就可得四杆机构。

(2)已知固定铰链中心位置

(工业)

2.按给定的行程速比系数K 设计四杆机构:原理:

θθ-+=

180180K ,

11180

+-=∴K K θ,已知K ,则等于已知θ,那么,利用机构在极位时的几何关系,再结合其它辅助条件即可进行设计。

(1)曲柄摇杆机构:

(中矿2011)

例题:图示为一用于雷达天线俯仰传动的曲柄摇杆机构。已知天线俯仰的围为30°,l CD=525mm,lAD=800mm。

试求:

(1)曲柄和连杆的长度lAB和lBC ;

(2)校验传动角是否大于等于40度(北交2007)

解:

(1)由于雷达天线俯仰传动时不应有急回作用,故有:

(2)选取比例尺μl=1mm/mm

,并利用已知条件作图如下:

1,0

==

四、(20分)图4所示,现欲设计一铰链四杆机构,设已知摇杆CD 的长度为75CD l mm =,行程速度变化

系数 1.5K =,机架AD 的长度为100AD l mm =,摇杆的一个极限位置与机架间的夹角为45??

=。试求

曲柄的长度AB l 和连杆的长度BC l 。

B

D

(2)曲柄滑块机构

已知: K ,H ,e

要求:设计一曲柄滑块机构。

分析:关键求θ;认识到H 相当于曲柄摇杆机构中的?。

设计一曲柄滑块机构,已知曲柄长度

15AB l =mm ,偏距10e =mm ,要求最小传动角min 60γ=?。

(1)确定连杆的长度

BC l ;

(2)画出滑块的极限位置; (3)标出极位夹角θ及行程H; (4)确定行程速比系数K 。

题8-10图

三、(20分)在图示插床机构中,滑块5的移动导路ee 通过铰链中心C ,且垂直于AC 。B 、C 、D 三点共线。导杆机构ABC 的两连架杆可作整周转动,AB 为原动件,以ω1等速转动。

(1)在机构简图上绘出滑块上E 点的二极限位置E1、E2,并作出曲柄的对应转角?1、?2;

(2)若要求滑块的行程s =154 mm ,行程速比系数K =15

.,B 点轨迹与导路ee 的交点B 1、B 2之间距

BB s 122=。试计算AB ,AC 的长度;

(3)若压力角αmax =10

,试计算连杆DE 的长度。

(1)曲柄滑块机构CDE 中,当C 、D 、E 共线时,滑块处在极限位置,即AB 转至AB1时,则CD 转至CD1,此时滑块处于右边极限位置E1。

当AB 继续转至AB2时,则CD 逆时针转至CD2,此时滑块处于左边极限E2。 曲柄AB 对应转角?1、?2如图所示。(6分) (2)对心曲柄滑块CDE 中:

22

77l s l s

CD CD ==

= mm

极位夹角

θ=

-+?=K K 1118036

∴=-=?θ1180144

tg mm mm

l CB l l AC AB AC

=

==

=1

72

500472

162

.cos (7分)

(3)在对心曲柄滑块机构CDE 中,当曲柄与导路ee 垂直时,出现αmax ,

sin sin sin .max max αα=

===l l l l CD DE DE CD mm 77

104434 (7分)

(3)导杆机构 已知:d ,K 。

θψ

=

练习题:

matlab(四连杆优化设计)

机械优化设计在matlab中的应用 东南大学机械工程学院** 一优化设计目的: 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 二优化设计步骤: 1.机械优化设计的全过程一般可以分为如下几个步骤: 1)建立优化设计的数学模型; ' 2)选择适当的优化方法; 3)编写计算机程序; 4)准备必要的初始数据并伤及计算; 5)对计算机求得的结果进行必要的分析。 其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。 2.建立数学模型的基本原则与步骤 ①设计变量的确定; 设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示: - x=。 ②目标函数的建立; 选择目标函数是整个优化设计过程中最重要的决策之一。当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。 目标函数的一般表达式为: f(x)=,要根据实际的设计要求来设计目标函数。 ③约束条件的确定。 一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。 由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为 …

平面连杆机构及其设计与分析

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构(全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作(机械手) (5)能起增力作用(压力机) 缺点: (1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 (2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。 AD-机架 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆

2.三种基本型式 (1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:?、β0~360°, δ、ψ<360° 应用:鳄式破碎机缝纫机踏板机构揉面机 (2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构(P35),天平 反平行四边形机构(P45) 绘图机构 (3)双摇杆机构 定义:两连架杆均作往复摆动的铰链四杆机构。 由来:将曲柄摇杆机构中摇杆固定为机架而得。 应用:翻台机构,夹具,手动冲床 飞机起落架,鹤式起重机 二.铰链四杆机构具有整转副和曲柄存在的条件 上述机构中,有些机构有曲柄,有些没有曲柄。机构有无曲柄,不是唯一地由取哪个构件为机架决定,机构有曲柄的首要条件是:机构中各构件长度间应满足一定的尺寸关系,该条件是首要条件。 然后,再看以哪个构件作为机架。

平面连杆机构优化设计

平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路

四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MATLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。 1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=?(2)

平面连杆机构及其设计答案

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

平面连杆机构的优化设计教案

平面连杆机构的优化设计 【教学目标】 1.了解连杆机构优化设计的一般步骤 2.掌握连杆机构优化设计的方法 【教学重点】 1.掌握连杆机构优化设计的方法 【教学难点】 1.掌握连杆机构优化设计的方法 【教学准备】 多媒体课件、直尺、圆规。 【教学过程】 一、以工程实际案例引入课题 实例1:飞机起落架(结合最近美国波音飞机频繁失事的新闻) 实例2:汽车雨刮器 说明:平面连杆机构的实用在生产生活中随处可见,是机械设计当中常见的一种机构。 二、定义回顾 【提问】平面四杆机构的基本形式有哪些? 【预设】机械原理是本科第四学期的课程,学生可能记不全,要引导性地带大家回忆。 【答案】曲柄摇杆机构、双曲柄机构、双摇杆机构 三、回顾以前所学习的连杆机构设计方法,对比引入优化设计。 新课教授 一、曲柄摇杆机构再现已知运动规律的优化设计

1.设计变量的确定 决定机构尺寸的各杆长度,以及当摇杆按已知运动规律开始运动时,曲柄所处的位置角φ0 为设计变量。 [][] 1234512340T T x x x x x x l l l l ?== 考虑到机构的杆长按比例变化时,不会改变其运动规律,因此在计算时常l 1=1 , 而其他杆长按比例取为l 1 的倍数。 ()()22212430124arccos 2l l l l l l l ???++-=??+???? ()221243034arccos 2l l l l l l ψ??+--=?????? 经分析后,只有三个变量为独立的: [][] 123234T T x x x x l l l == 2.目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

哈工大机械原理考研-第2章 连杆机构分析与设计(理论部分)

第2章连杆机构分析和设计 2.1内容要求 1.掌握平面四杆机构的基本型式、特点及其演化方法。 2.熟练掌握和推导铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型; 掌握曲柄滑块机构及导杆机构等其他四杆机构的曲柄存在条件的推导过程。 3.掌握平面四杆机构的压力角、传动角、急回运动、极位夹角、行程速比系数、等基本概 念;掌握连杆机构最小传动角出现的位置及计算方法;掌握极位夹角与行程速比系数的关系式;掌握掌握死点在什么情况下出现及死点位置在机构中的应用。 4.掌握速度瞬心的概念及如何确定机构中速度瞬心的数目;掌握“三心定理”并应用“三 心定理”确定机构中速度瞬心的位置及对机构进行速度分析。 5.了解建立Ⅰ级机构、RRR杆组、RRP杆组、RPR杆组、PRP杆组、RPP杆组的运动分 析数学模型;掌握相对运动图解法及杆组法机构运动分析的方法。 6.掌握移动副、转动副中摩擦力的计算和自锁问题的讨论;掌握计及摩擦时平面连杆机构 受力分析的方法;掌握计算机械效率的几种方法;掌握从机械效率的观点研究机械自锁条件的方法和思想。 7.掌握平面四杆机构的运动特征及其设计的基本问题;了解“函数机构”、“轨迹机构”、 “导引机构”的设计思想、方法;掌握按给定行程速比系数设计四杆机构的方法。 2.2内容提要 一、本章重点 本章重点是铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型;连杆机构最小传动角出现的位置及计算方法;速度瞬心法对机构进行速度分析;计及摩擦时平面连杆机构受力分析的方法;按给定行程速比系数设计四杆机构的方法。 1.平面四杆机构的基本型式及其演化型式 平面四杆机构的基本型式是平面铰链四杆机构。在此机构中,与机架相联的构件称为连架杆;能作整周回转的连架杆称为曲柄,而不能作整周回转的连架杆称为摇杆;与机架不相连的中间构件称为连杆。能使两构件作整周相对转动的转动副称为周转副;而不能作整周相对转动的转动副称为摆转副。平面铰链四杆机构又根据两连架杆运动形式不同分为曲柄摇杆机构、双曲柄机构及双摇杆机构。 平面四杆机构的演化型式是在平面铰链四杆机构的基础上,通过一些演化方法演化而成其他型式的四杆机构。平面四杆机构的演化方法有: (1)改变构件的形状及运动尺寸; (2)改变运动副尺寸; (3)取不同构件为机架。

03平面连杆机构优化设计

案例3 平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路 四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MA TLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。

1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=? (2) 4 32 32 422102)(cos arc l l l l l l --+=ψ (3) 因此,设计变量缩减为3个独立变量,即 T 432T 321)()(l l l x x x ==X (4) 2.目标函数的建立 以机构预定的运动规律观测量ψE i 与实际运动规律观测量ψi 之间的偏差平方和最小为指标来建立目标函数,即 min )()(1 2E →-=∑=m i i i f ψψX (5) 式中,m 为输入角的等分数;ψE i 为预期输出角,ψE i=ψE (φi );ψi 为实际输出角。由图2可知: ? ? ?<≤+-<≤--=)π2π(π) π0(πi i i i i i i ?βα?βαψ (6) 32 22322arccos l l l i i i ρρα-+= (7) 42 12422arccos l l l i i i ρρβ-+= (8) i i l l l l ?ρcos 2412421-+= (9)

平面连杆机构及其设计

第4章平面连杆机构及其设计 教学目标: 平面连杆机构是由一些简称“杆”的构件通过平面低副相互连接而成,故又称平面低副机构。平面连杆机构被广泛地应用,近年来,随着电子计算机应用的普及,设计方法的不断改进,平面连杆机构的应用范围还在进一步扩大。本章的教学将使读者了解平面连杆机构的基本形式及其演化过程;对平面四杆机构的一些基本知识(包括曲柄存在的条件、急回运动及行程速比系数、传动角及死点、运动的连续性等)有明确的概念;能按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆机构。 教学重点和难点: ●平面四杆机构的一些基本知识; ●按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆 机构。 案例导入: 我们知道,用三根木条钉成的木框是稳定的,即使把钉子换成转动副(铰链),三角形也不会运动。而用四根木条钉成的木框是不稳固的,如果把钉子换成铰链,四边形即可以运动了。依此类推,五边形等也都是可以运动的(图4-1)。因此我们说:三角形是不能运动的最基本图形,而四边形是能运动的最基本图形。把四边形各顶点装上铰链,把一边作为机架,即构成平面四杆机构。因此,四杆机构是最基本的连杆机构。复杂的多杆机构(多边形)也可由其组成。通过本章的学习,读者将了解这种最基本机构的特性,认识这类机构千变万化的应用并掌握其设计方法。 图4-1 三角形和四杆机构 4.1铰链四杆机构的基本形式及应用 连杆机构的优点是运动副为面接触,压强较小、磨损较轻、便于润滑,故可承受较大载荷;低副几何形状简单,加工方便;能实现轨迹较复杂的运动,因此,平面连杆机构在各种机器及仪器中得到广泛应用。其缺点是运动副的制造误差会使误差累积较大,致使惯

机械原理四连杆门座式起重机

机械原理2013—2014学年 大作业 设计题目:四连杆式门座起重机 工作机构设计 姓名:瑞 学号: 20116447 专业班级: 11级铁道车辆一班 指导教师:何俊 2013/11/10

题目介绍、要求以及数据 设计题目:四连杆式门座起重机工作机构设计 一、设计题目简介 四连杆门座起重机 是通用式门座起重机, 广泛应用于港口装卸、 修造船厂、钢铁公司,主 要由钢结构、起升机构、 变幅机构、回转机构、 大车运行机构、吊具装 置(抓斗、简易集装箱 吊具、吊钩)、电气设备 及其它必要的安全和辅助设备组成。通过四连杆控制在吊臂前后运动的时候)起吊节点保持水平高度不变。 二、设计数据与要求 题号起重量 t 工作幅度(米)起升高度(米)工作速度m/min 装机容量 KW L2 L1 H1 H2 起升变幅回转运行 C 10 25 8 15 9 50 50 1.5 25 330 三、设计任务 1、依据设计参数绘出机构运动简图,并进行运动分析,确定实现起 吊点轨迹的机构类型 2、依据提供的设计数据对四连杆起吊机构进行尺度综合,确定满足 使用要求的构件尺寸和运动副位置; 3、用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构 进行运动仿真,并画出输出机构的位移、速度、和加速度线图。 4、编写说明书,其中应包括设计思路、计算及运动模型建立过程 以及效果分析等。

5、在机械基础实验室应用机构综合实验装置验证设计方案的可行性。 第一章、四连杆式门座起重机的介绍 第一节、四连杆式门座起重机的概述 门座起重机是起重机的一种,是随着港口事业发展起来的。第一次在港口上运用门座式起重机是在1890年将幅度不可变的固定式可旋转臂架型起重机横跨在窄型码头上,这是门座起重机的第一次运用。在第二次世界大战之后港用门座起重机迅速发展,在发展的过程中门座起重机还逐渐应用到作业条件与港口相近的船台和水电站等工作地点。 图1-1 M10-30门座起重机总图 ⒈电缆卷筒;2.转柱;3.门座;4.转台;5.机器房;6.起重量限制器;7. 变幅机构;8.臂架系统;9.防转装置;10.吊钩装置;11.抓斗稳定器;12. 抓斗;13.司机室;14.回转机构;15.起升机构;16.运行机构

机械原理课程设计-连杆机构b完美版.

机械原理课程设计 任务书 题目:连杆机构设计B4 姓名:戴新吉 班级:机械设计制造及其自动化2011级3班 设计参数 设计要求: 1.用解析法按计算间隔进行设计计算; 2.绘制3号图纸1张,包括: (1)机构运动简图; (2)期望函数与机构实现函数在计算点处的对比表; (3)根据对比表绘制期望函数与机构实现函数的位移对比图;

3.设计说明书一份; 4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。 目录 第1节平面四杆机构设计............................................ 1.1连杆机构设计的基本问题........................................... 1.2作图法设计四杆机构 (3) 1.3作图法设计四杆机构的特点 (3) 1.4解析法设计四杆机构 (3) 1.5解析法设计四杆机构的特点 (3) 第2节设计介绍.................................................... 2.1按预定的两连架杆对应位置设计原理 ................................ 2.2 按期望函数设计.................................................. 第3节连杆机构设计................................................ 3.1连杆机构设计..................................................... 3.2变量和函数与转角之间的比例尺 (8) 3.3确定结点值 (8)

机械原理连杆机构设计和分析5

部讲义,请勿流传 第五讲 平面连杆机构及其设计 连杆机构的传动特点: 1.因为其运动副一般为低副,为面接触,故相同载荷下,两元素压强小,故可承受较大载荷;低副元素便于润滑,不易磨损;低副元素几何形状简单,便于制造。2.当原动件以同样的运动规律运动时,若改变各构件的相对长度,可使从动件得到不同的运动规律。3.利用连杆曲线满足不同的规矩要求。4.增力、扩大行程、实现远距离的传动(主要指多杆机构)。 缺点: 1.较长的运动链,使各构件的尺寸误差和运动副中的间隙产生较大的积累误差,同时机械效率也降低。2.会产生系统惯性力,一般的平衡方法难以消除,会增加机构动载荷,不适于高速传动。 平面四杆机构的类型和应用 一、平面四杆机构的基本型式 1.曲柄摇杆机构2.双曲柄机构 3.双摇杆机构 二、平面四杆机构的演化型式 1.改变构件的形状和运动尺寸 曲柄摇杆机构 -----曲柄滑块机构 2.改变运动副的尺寸 偏心轮机构可认为是将曲柄滑块机构中的转动副的半径扩大,使之超过曲柄的长度演化而成的。 3.选用不同的构件为机架 (a ) 曲柄滑块机构 (b )ABBC 为摆动导杆机构) (c )曲柄摇块机构(d )直动滑杆机构(定块机构) 平面四杆机构的基本知识 一、平面四杆机构有曲柄的条件 1.铰链四杆机构中曲柄存在的条件 (1)存在周转副的条件是: ①其余两杆长度之和最长杆长度最短杆长度 ≤+,此条件称为杆长条件。 ②组成该周转副的两杆中必有一杆为最短杆。(意即:连架杆和机架中必有一杆是最短杆) 2满足杆长条件下,不同构件为机架时形成不同的机构

①以最短构件的相邻两构件中任一构件为机架时,则最短杆为曲柄,而与机架相连的另一构件为摇杆,即该机构为曲柄摇杆机构。 ②以最短构件为机架,则其相邻两构件为曲柄,即该机构为双曲柄机构。 ③以最短构件的对边为机架,则无曲柄存在,即该机构为双摇杆机构。 3.不满足杆长条件的机构为双摇杆机构。 注:曲柄滑块机构有曲柄的条件:a + e ≤ b 导杆机构:a < b时,转动导杆机构; a > b时,摆动导杆机构。 例题:

机械原理第八章-平面连杆机构及其设计

第八章 平面连杆机构及其设计 题8-1 试画出图示两种机构的机构运动简图,并说明他们各为何种机构。在图a 中偏心盘1绕固定轴O 转动,迫使滑块2在圆盘3的槽中来回滑动,而圆盘3又相对于机架4转动;在图b 中偏心盘1绕固定轴O 转动,通过构件2,使滑块3相对于机架4往复移动。 (图a 的机构运动简图可有两种表达方式,绘出其中之一即可) A B (a) O 12 34 A B O 123导杆机构 或 O 曲柄摇块机构 题8-1 (b) 题8-2如图所示,设已知四杆机构各构件的长度a=240mm ,b=600mm ,c=400mm ,d=500mm ,试回答下列问题: 1)当取杆4为机架时,是否有曲柄存在?__________若有曲柄,则杆a 为曲柄,此时该机构为__________机构。 2)要使机构成为双曲柄机构,则应取杆_________为机架。

3) 要使此机构成为双摇杆机构,则应取杆_______为机架,且其长度的允许变动范围为_______________. 4) 如将杆4的长度改为d=400mm,而其他各杆的长度不变,则当分别以1、2、3杆为机架时,所获得的机构为___________机构。 解:1)因900500400600240=+=+≤+=+d c b a 且最短杆1为连架杆,故当取杆4为机架时,有曲柄存在。此时该机构为曲柄摇杆机构。 2)要使此机构成为双曲柄机构,则应取最短杆1为机架。 3)要使此机构成为双摇杆机构,则取最杆3为机架,其长度的允许变动范围为: (1)因最短杆1为连杆,即使满足杆长条件,此机构也不能成为双摇杆机构 (2)不满足杆长条件时,b 为最长杆,c 为最短杆,d a c b +>+ 140>c c 为最长杆,但不可能大于三杆长度之和 d b a c ++< 故1340

连杆的优化设计

1 前言 随着汽车工业制造技术的发展,对于汽车发动机的动力性能及可靠性要求越来越高,而连杆的强度、刚度对提高发动机的动力性及可靠性至关重要。因此,国内外各大汽车公司对发动机连杆的材料及制造技术的研究都非常重视。“小体积、大功率、低油耗”的高性能发动机对连杆提出更新、更高的要求: (1)作为高速运动件重量要轻,减小惯性力,降低能耗和噪声; (2)强度、刚度要高,并且要有较高的韧性; 这就意味着对连杆的设计和加工有着更高的要求。其一,杆身有足够的刚度可以预防工作时发生弯曲变形;其二,连杆的大端和连杆盖有足够的刚度,以防大端变形时连杆螺栓承受附加的弯曲应力和大端失圆,使轴承润滑破坏。同时,还要求连杆组具有足够的疲劳强度和冲击韧性。[3]

连杆的优化设计 2 连杆机构 2.1 连杆机构的特点 连杆机构具有以下传送特点: 1.连杆机构中的运动副一般均为低副(故又称其为低副机构,lower pair mechanism)。其运动副元素为面接触,压力较小,承载能力较大,润滑好,磨损小,加工制造容易,且连杆机构中的低副一般是几何封闭,对保证工作的可靠性有利。 2.在连杆机构中,在原动件的运动规律不变的条件下,可用改变各构件的相对长度来使从动件得到不同的运动规律。 3.在连杆机构中,连杆上的各点的轨迹是各种不同形状的曲线(称为连杆曲线,coupler-pointcurve),其形状随着各构件相对长度的改变而改变,故连杆曲线的形式多样,可用来满足一些特定工作的需要。 利用连杆机构还可很方便地达到改变运动的传递方向、扩大行程、实现增力和远距离传动等目的。 连杆机构也存在如下一些缺点: 1.由于连杆机构的运动必须经过中间构件进行传递,因而传动路线较长,易产生较大的误差累计,同时也使机械效率降低。 2.在连杆机构运动中,连杆及滑块所产生的惯性力难以用一般平衡方法加以消除,因而连杆机构不宜用于高速运动。 此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计十分繁难,且一般只能近似地满足。[5]

山东理工大学机械原理考试原题目——四杆机构的设计

第三章 平面连杆机构及其设计 1、如图示的铰链四杆机构中,AD 为机架,AB a ==35 mm ,CD c ==50 mm ,30==d AD mm ,问BC b =在什么范围内该机构为双摇杆机构;该机构是否有可能成为双曲柄机构? 2、试画出图示机构的传动角γ和压力角α,并判断哪些机构在图示位置正处于“死点”? (1) (2) (3) (4) 5、在图示铰链四杆机构中,已知各构件的长度25=AB l mm ,55=BC l mm ,40=CD l mm , 50=AD l mm 。 (1)问该机构是否有曲柄,如有,指明哪个构件是曲柄; (2)该机构是否有摇杆,如有,用作图法求出摇杆的摆角范围; (3)以AB 杆为主动件时,该机构有无急回性?用作图法求出其极位夹角θ,并计算行程速度变化系数K ; (4)以AB 杆为主动件,确定机构的αmax 和γmin 。 6、图示为开关的分合闸机构。已知150=AB l mm ,200=BC l mm ,200=CD l mm , 400=AD l mm 。试回答:

(1)该机构属于何种类型的机构; (2)AB 为主动件时,标出机构在虚线位置时的压力角α 和传动角γ; (3)分析机构在实线位置(合闸)时,在触头接合力Q 作用下机构会不会打开,为什么? 7、试设计一曲柄摇杆机构。设摇杆两极限位置分别为4090,15021===CD l ; ??mm ,50=AD l mm 。求AB l 、BC l 及行程速比系数K 和最小传动角γmin 。 (用图解法求解用图解法求解,简述作图步骤,并保留作图过程) 8、现需设计一铰链四杆机构,已知摇杆CD 的长度l CD =150mm ,摇杆的两极限位置与机架AD 所成的角度 903021==??,,机 构的行程速比系数K =1,试确定曲柄AB 和连杆BC 的长度。 10、设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数K =1.5,滑块的行程10021=C C l mm ,导路的偏距20=e mm 。 (1)用作图法确定曲柄长度l AB 和连杆长度l BC ; (2)若滑块从点C 1至C 2为工作行程方向,试确定曲柄的合理转向; (3)用作图法确定滑块工作行程和空回行程时的最大压力角。

连杆机构分析和设计

第三章连杆机构分析和设计 1、在条件下,曲柄滑块机构具有急回特性。 2、平面连杆机构是由许多刚性构件用联接而形成的机构。 3、在图示导杆机构中,AB为主动件时,该机构传动角的值为。 4、铰链四杆机构具有急回特性时其极位夹角θ值,对心曲柄滑块机构的θ值,所以它急回特性,摆动导杆机构急回特性。 5、对心曲柄滑块机构曲柄长为a,连杆长为b,则最小传动角γmin等于 ,它出现在位置。 6、在四连杆机构中,能实现急回运动的机构有(1),(2),(3)。 7、铰链四杆机构有曲柄的条件是,双摇杆机构存在的条件是。(用文字说明) 8、图示运动链,当选择杆为机架时为双曲柄机构;选择杆为机架时为双摇杆机构;选择杆为机架时则为曲柄摇杆机构。 9、当四杆机构的压力角α=90?时,传动角等于,该机构处于位置。 10、在曲柄摇杆机构中,最小传动角发生的位置在 。 11、通常压力角α是指 间所夹锐角。 12、一对心式曲柄滑块机构,若以滑块为机架,则将演化成机构。 13、铰链四杆机构连杆点轨迹的形状和位置取决于个机构参数;用铰链四杆机构能精确再现个给定的连杆平面位置。

14、铰链四杆机构演化成其它型式的四杆机构 (1) , (2) , (3)等三种方法。 15、图示为一偏置曲柄滑块机构。试问:AB 杆成为曲柄的条件是:。若以曲柄为主动件,机构的最大压力角 = ,发生在。 max 16、3 个彼此作平面平行运动的构件间共有个速度瞬心,这几个瞬心必定位于上。含有6 个构件的平面机构,其速度瞬心共有个,其中有个是绝对瞬心,有个是相对瞬心。 17、相对瞬心与绝对瞬心的相同点是,不同点是。 18、当两构件组成转动副时,其速度瞬心在处;组成移动副时,其速度瞬心在处;组成兼有相对滚动和滑动的平面高副时,其速度瞬心在上。 19、速度瞬心是两刚体上为零的重合点。 20、铰链四杆机构共有个速度瞬心,其中个是绝对瞬心,个是相对瞬心。 21、画出图示机构的全部瞬心。

机械原理 平面连杆机构及其设计讲义

第五讲 平面连杆机构及其设计 连杆机构的传动特点: 1.因为其运动副一般为低副,为面接触,故相同载荷下,两元素压强小,故可承受较大载荷;低副元素便于润滑,不易磨损;低副元素几何形状简单,便于制造。2.当原动件以同样的运动规律运动时,若改变各构件的相对长度,可使从动件得到不同的运动规律。3.利用连杆曲线满足不同的规矩要求。4.增力、扩大行程、实现远距离的传动(主要指多杆机构)。 缺点: 1.较长的运动链,使各构件的尺寸误差和运动副中的间隙产生较大的积累误差,同时机械效率也降低。2.会产生系统惯性力,一般的平衡方法难以消除,会增加机构动载荷,不适于高速传动。 平面四杆机构的类型和应用 一、平面四杆机构的基本型式 1.曲柄摇杆机构2.双曲柄机构 3.双摇杆机构 二、平面四杆机构的演化型式 1.改变构件的形状和运动尺寸 曲柄摇杆机构 -----曲柄滑块机构 2.改变运动副的尺寸 偏心轮机构可认为是将曲柄滑块机构中的转动副的半径扩大,使之超过曲柄的长度演化而成的。 3.选用不同的构件为机架 (a ) 曲柄滑块机构 (b )ABBC 为摆动导杆机构) (c )曲柄摇块机构(d )直动滑杆机构(定块机构) 平面四杆机构的基本知识 一、平面四杆机构有曲柄的条件 1.铰链四杆机构中曲柄存在的条件 (1)存在周转副的条件是: ①其余两杆长度之和最长杆长度最短杆长度 ≤+,此条件称为杆长条件。 ②组成该周转副的两杆中必有一杆为最短杆。(意即:连架杆和机架中必有一杆是最短杆) 2满足杆长条件下,不同构件为机架时形成不同的机构 ①以最短构件的相邻两构件中任一构件为机架时,则最短杆为曲柄,而与机架相连的另一构件为摇杆,即该机构为曲柄摇杆机构。 ②以最短构件为机架,则其相邻两构件为曲柄,即该机构为双曲柄机构。 ③以最短构件的对边为机架,则无曲柄存在,即该机构为双摇杆机构。 3.不满足杆长条件的机构为双摇杆机构。 注:1)曲柄滑块机构有曲柄的条件:a + e ≤ b 2)导杆机构:a < b 时,转动导杆机构; a > b 时,摆动导杆机构。 例题:

机械原理课后习题集 第二章 连杆机构

第二章连杆机构 2.1试绘制出图(1)所示机构的运动简图,并说明它们各为何种机构。 图(1) 2.2图(2)所示四铰链运动链中,已知各杆件长度l AB=55mm,l BC=40mm,l CD=50mm,l AD=25mm。(1)该运动链中是否具有双整转副构件? (2)如果具有双整转副构件,则固定哪个构件可获得曲柄摇杆机构? (3)固定哪个构件可获得双曲柄机构? (4)固定哪个构件可获得双摇杆机构? 图(2) 2.3在图(3)所示的铰链四杆机构中,各杆件长度分别为l AB=28mm, l AD=52mm,l CD=50mm, l AD=72mm。 (1)若取AD为机架,求该机构的极位夹角θ,杆CD的最大摆角φ和最小传动角γmin ;(2)若取AB为机架,该机构将演化为何种类型的机构?为什么?请说明这时C、D两个转动副是整转副还是摆动副? 图(3)

2.4对于一偏置曲柄滑块机构,试求: (1)当曲柄为源动件时机构传动角的表达式; (2)试说明曲柄r,连杆l和偏距e对传动角的影响; (3)说明出现最小传动角时的机构位置; (4)若令e=0(即对心曲柄滑块机构),其传动角在何处最大?何处最小? 2.5图(5)所示为六杆机构。已知l AB=200mm, l AC=585mm, l CD=300mm, l DE=700mm,A C⊥EC,ω1为常数。试求: (1)机构的行程速度变化系数; (2)机构5的冲程H; (3)机构最大压力角αmax发生的位置及大小; (4)在其它尺寸不变的情况下,欲使冲程为原冲程的2倍,问曲柄长度应为多少? 图(5) 2.6试求图(6)所示连杆机构中构件4与构件2的角速度比ω4/ω2。 图(6) 2.7在图(7)所示的机构中,已知曲柄2顺时针方向匀速转动,角速度ω2=100rad/s,试求在图示位置导杆4的角速度ω4的大小和方向。

相关文档
最新文档