算术编码与译码原理

算术编码与译码原理
算术编码与译码原理

算术编码与译码原理:

1、编码过程

算术编码方法是将被编码的一则消息或符号串(序列)表示成0和1之间的一个间隔(Interval),即对一串符号直接编码成[0,1]区间上的一个浮点小数。符号序列越长,编码表示它的间隔越小,表示这一间隔所需的位数就越多。信源中的符号序列仍然要根据某种模式生成概率的大小来减少间隔。可能出现的符号概率要比不太可能出现的符号减少范围小,因此,只正加较少的比特位。

在传输任何符号串之前,0符号串的完整范围设为[0,1]。当一个符号被处理时,这一范围就依据分配给这一符号的那一范围变窄。算术编码的过程,实际上就是依据信源符号的发生概率对码区间分割的过程。

举例说明如下:

假设一则消息“static_tree”具有如下的概率分布:

字符概率

---------------------------------------------------------------

_(space) 0.1

a 0.1

e 0.3

r 0.1

s 0.1

t 0.3

下面用算术编码方法给该消息编码。

一旦字符的概率已知,就沿着“概率线”为每一个单独的符号设定一个范围,哪一个被设定到哪一段范围并不重要,只要编码和解码都以同样方式进行就可以,这里所用的6个字符被分配的范围(range)如下:

字符概率范围

_(space) 0.1 0≤r<0.1

a 0.1 0.1≤r<0.2

e 0.3 0.2≤r<0.5

r 0.1 0.5≤r<0.6

s 0.1 0.6≤r<0.7

t 0.3 0.7≤r<1.0

----------------------------------------------------------------

对“state_tree”的算术编码过程为:

(1)初始化时,被分割的范围range=high-low=[0,1),下一个范围的低、高端分别由下式计算:

Low=low+range×range low

High=low+range×range high

其中等号右边的low为上一个被编码字符的范围低;range low和range high分别为被编码符号已给定的字符出现概率范围的low和high。

(2)对消息第一字符s编码:s的range low=0.6, s的range high=0.7因此,下一个区间的low和high为:

Low=low+range×range low=0+1×0.6=0.6

High=low+range×range high=0+1×0.7=0.7

Range=high-low=0.7-0.6=0.1

S将区间[0,1)=>[0.6,0.7)

(3)对第二个字符t编码,使用的新生范围为[0.6,0.7),因为t的range

low=0.7,range high=1.0,因此下一个low,high分别为

Low=0.6+0.1×0.7=0.67

High=0.6+0.1×1.0=0.70

Range=0.7-0.67=0.03

t将[0.6,0.7)=>[0.67,0.70)

(4)对第三个字符a编码,在新生成的[0.67,0.70)中进行分割,因为a的range low=0.10,range high=0.2,因此下一个low,high分别为

Low=0.67+0.03×0.1=0.673

High=0.67+0.03×0.2=0.676

Range=0.676-0.673=0.003

a将[0.67,0.70)=>[0.673,0.676)

(5)对第四个字符t编码,在新生成的[0.673,0.676)上进行分割。因为t的range low=0.70,range high=1.0,则下一个low,high分别为

Low=0.673+0.003×0.7=0.6751

High=0.673+0.003×1.0=0.676

Range=0.0009

t将[0.673,0.676)=>[0.6751,0.676)

同理得到下面各字符e,_,s,t,r,e,e编码所得到的范围分别为

[0.67528,0.67555),[0.67528,0.675307),[0.675 298 9,0.675 307),[0.675 302 95,0.675 303 76),[0.675 303 112,0.675 303 355),[0.675 303 160 6,0.675 303 233 5)将编码后的区间范围综合如下:

上述编码过程可以用下面的区间分割过程表示:

2、解码过程

解码是编码的逆过程,了解了编码过程后,理解解码过程的操作就相对容易了。通过编码,最后的下界值0.675 303 160 6就是消息“state_tree”的唯一编码。然后解码时,通过判断哪一个符号能拥有我们已编码的消息落在的空间来找出消息中的第一个符号。由于0.675 303 160 6落在[0.6,0.7)之间,因此可解得第一个符号是s。

在解出s后,由于我们知道s的范围的上界和下界,利用编码的逆作用,首先去掉s的下界值0.6,得0.075 303 160 6,然后用s的范围range=0.1去除所得到的0.075 303 160 6,即得到0.753 031 606,接着找出它所在的区间,就是t的原来范围[0.7,1.0)。去掉t的下界值0.7,得0.053 031 606,然后用t的range=0.3除该数得出0.176 772 02,该值所属范围就是字符a……如此操作下去便得到消息的准确译码。

综述,可以得到解码公式为:

(Number-range low)/range=>number

其中,number为字符串的编码。

matlab 程序:

%I=imread('001.bmp')

%imshow(I);

clear

I=[3 3 1 1 3 3 1 2;2 3 3 1 3 2 3 2;1 2 3 3 3 3 1 2];

%I=[1 1 1 1 0 0 1 0 1 1 1 0];

[m,n]=size(I);

% 第一列为灰度值,第二列为个数,第三列为概率百分数,应该也可以用imhist

table = tabulate(I(); % 注意的是,tabulate要求I的元素必须为非负整数

% 否则,以采用如下方法求解

% 如[1 2 3;1 2 2],则统计出结果1是2个,2是3个,3是1个

%

sortM=sort(M();

%

uniqueM=([diff(sortM);1]>0); % count = [sortM(uniqueM) diff(find([1;uniqueM]))]

% 即color,p如下所示

color = table(:,1)';

p = table(:,3)'/100;

% 计算上下限

csump = cumsum(table(:,3)');

allLow =[0,csump(1:end-1)/100];

allHigh = csump/100;

numberlow = 0;

numberhigh = 1;

for k = 1:m

for kk = 1:n

data = I(k,kk);

low = allLow(data==color);

high = allHigh(data==color);

range = numberhigh-numberlow;

tmp = numberlow;

numberlow = tmp+range*low;

numberhigh = tmp+range*high;

end

end

% the result range

fprintf('算术编码范围下限为%16.15f\n\n',numberlow); fprintf('算术编码范围上限为%16.15f\n\n',numberhigh);

% decoding

Mat = zeros(m,n);

for k = 1:m

for kk = 1:n

indx = numberlow

indx = [indx 1];

ind = diff(indx);

ind = logical(ind);

Mat(k,kk) = color(ind);

low = allLow(ind);

high = allHigh(ind);

range = high - low;

numberlow = numberlow-low;

numberlow = numberlow/range;

end

end

fprintf('原矩阵为:\n') disp(I);

fprintf('\n');

fprintf('解码矩阵:\n'); disp(Mat);

编码器和译码器的应用

编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 2、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 1、什么是编码: 教材说:用文字、符号、或者数字表示特定对象的过程称为编码 具体说:编码的逻辑功能是把输入的每个高、低电平信号编成对应的二进制代码 2、编码器74LS147的特点及引脚排列图: 74LS147是优先编码器,当输入端有两个或两个以上为低电平,它将对优先级别相对较高的优先编码。其引脚排列图: 3、什么是译码:译码是编码的逆过程,把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出,译码器广泛用于代码转换、终端的数字显示、数据分配、组合控制信号等。 译码器按照功能的不同,一般分为三类:二进制译码器、二—十进制译码器、显示译码器。 (1)变量译码器(用以表示输入变量的状态) 74LS138的特点及其引脚排列图:反码输出。 ABC是地址输入端,Y0—Y7是输出端,G1、G2A’、G2B’为 使能端,只有当G1=G2A’=G2B’=1时,译码器才工作。 (2)码制变换译码器:用于同一个数据的不同代码之间的相互转换,代表是4—10线译码器 译码器74LS42的特点及其引脚排列图: 译码器74LS42的功能是将8421BCD码译成10个对象 其原理与74LS138类同,只不过它有四个输入端, 十个输出端,4位输入代码0000—1111十六种状态组合

其中有1010—1111六个没有与其对应的输出端, 这六组代码叫做伪码,十个输出端均为无效状态。 (3)数码显示与七段译码驱动器:将数字、文字、符号的代码译成数字、文字、符号的电路 a、七段发光二极管数码显示管的特点:(共阴极) b、七段译码驱动器: 4、在本数字电路实验装置上已完成了译码器74LS48和数码管之间的连接图。 三四五脚接高电频,数码管的单独端接低电频。

算术编码

实现算术编码及其译码 一、实验内容 借助C++编程来实现对算术编码的编码及其译码算法的实现 二、实验环境 1.计算机 2.VC++6.0 三、实验目的 1.进一步熟悉算术编码的原理,及其基本的算法; 2.通过编译,充分对于算术编码有进一步的了解和掌握; 3.掌握C++语言编程(尤其是数值的进制转换,数值与字符串之间的转换 等) 四、实验原理 算术编码 算术编码的基本原理是将编码的消息表示成实数0和1之间的一个间隔,消息越长,编码表示它的间隔就越小,表示这一间隔所需的二进制位就越多。 算术编码用到两个基本的参数:符号的概率和它的编码间隔。信源符号的概率决定压缩编码的效率,也决定编码过程中信源符号的间隔,而这些间隔包含在0到1之间。编码过程中的间隔决定了符号压缩后的输出。 给定事件序列的算术编码步骤如下: (1)编码器在开始时将“当前间隔”设置为[0,1)。 (2)对每一事件,编码器按步骤(a)和(b)进行处理 (a)编码器将“当前间隔”分为子间隔,每一个事件一个。 (b)一个子间隔的大小与下一个将出现的事件的概率成比例,编码器选择子间隔对应于下一个确切发生的事件相对应,并使它成为新的“当前间 隔”。 (3)最后输出的“当前间隔”的下边界就是该给定事件序列的算术编码。 编码过程 假设信源符号为{A, B, C, D},这些符号的概率分别为{ 0.1, 0.4, 0.2,0.3 },根据这些概率可把间隔[0, 1]分成4个子间隔:[0, 0.1], [0.1, 0.5],

[0.5, 0.7], [0.7, 1],其中[x,y]表示半开放间隔,即包含x不包含y。上面的信息可综合在表03-04-1中。 下表为信源符号,概率和初始编码间隔 如果二进制消息序列的输入为:C A D A C D B。编码时首先输入的符号是C,找到它的编码范围是[0.5,0.7]。由于消息中第二个符号A的编码范围是[0,0.1],因此它的间隔就取[0.5, 0.7]的第一个十分之一作为新间隔[0.5,0.52]。依此类推,编码第3个符号D时取新间隔为[0.514, 0.52],编码第4个符号A 时,取新间隔为[0.514, 0.5146],…。消息的编码输出可以是最后一个间隔中的任意数。整个编码过程如图03-04-1所示。 编码和译码的全过程分别表示在下表。 编码过程

编码器知识详解

光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90。的两路脉冲信号。 编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器的应用 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计米器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 光电旋转编码器在工业控制中的应用 -------------------------------------------------------------------------------- 1.概述 在工业控制领域,编码器以其高精度、高分辨率和高可靠性而被广泛用于各种位移测量。 目前,应用最广泛的是利用光电转换原理构成的非接触式光电编码器。光电编码器是一种集光、机、电为一体的数字检测装置。作为一次光电传感检测元件的光电编码器,具有精度高、响应快、抗干

算术编码工作原理

算术编码工作原理 在给定符号集和符号概率的情况下,算术编码可以给出接近最优的编码结果。使用算术编码的压缩算法通常先要对输入符号的概率进行估计,然后再编码。这个估计越准,编码结果就越接近最优的结果。 例: 对一个简单的信号源进行观察,得到的统计模型如下: ?60% 的机会出现符号中性 ?20% 的机会出现符号阳性 ?10% 的机会出现符号阴性 ?10% 的机会出现符号数据结束符. (出现这个符号的意思是该信号源'内部中止',在进行数据压缩时这样的情况是很常见的。当第一次也是唯一的一次看到这个符号时,解码器就知道整个信号流都被解码完成了。) 算术编码可以处理的例子不止是这种只有四种符号的情况,更复杂的情况也可以处理,包括高阶的情况。所谓高阶的情况是指当前符号出现的概率受之前出现符号的影响,这时候之前出现的符号,也被称为上下文。比如在英文文档编码的时候,例如,在字母Q 或者q出现之后,字母u出现的概率就大大提高了。这种模型还可以进行自适应的变化,即在某种上下文下出现的概率分布的估计随着每次这种上下文出现时的符号而自适应 更新,从而更加符合实际的概率分布。不管编码器使用怎样的模型,解码器也必须使用同样的模型。 一个简单的例子以下用一个符号串行怎样被编码来作一个例子:假如有一个以A、B、C三个出现机会均等的符号组成的串行。若以简单的分组编码会十分浪费地用2 bits 来表示一个符号:其中一个符号是可以不用传的(下面可以见到符号B正是如此)。为此,这个串行可以三进制的0和2之间的有理数表示,而且每位数表示一个符号。例如,“ABBCAB”这个串行可以变成0.011201(base3)(即0为A, 1为B, 2为C)。用一个定点二进制数字去对这个数编码使之在恢复符号表示时有足够的精度,譬如 0.001011001(base2) –只用了9个bit,比起简单的分组编码少(1 – 9/12)x100% = 25%。这对于长串行是可行的因为有高效的、适当的算法去精确地转换任意进制的数字。 编码过程的每一步,除了最后一步,都是相同的。编码器通常需要考虑下面三种数据: ?下一个要编码的符号 ?当前的区间(在编第一个符号之前,这个区间是[0,1), 但是之后每次编码区间都会变化) ?模型中在这一步可能出现的各个符号的概率分布(像前面提到的一样,高阶或者自适应的模型中,每一步的概率并不必须一样) 编码其将当前的区间分成若干子区间,每个子区间的长度与当前上下文下可能出现的对应符号的概率成正比。当前要编码的符号对应的子区间成为在下一步编码中的初始区间。

译码器和编码器实验

实验三译码器和编码器 一实验目的 1.掌握译码器、编码器的工作原理和特点。 2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。 二、实验原理和电路 按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。通常,组合逻辑电路由门电路组成。 组合逻辑电路的分析方法:根据逻辑图进行二步工作: a.根据逻辑图,逐级写出函数表达式。 b.进行化简:用公式法、图形法或真值表进行化简、归纳。 组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。一般分四步进行。 a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。 b.列真值表。 c.进行化简:变量比较少时,用图形法。变量多时,可用公式化简。 d.画逻辑图:按函数要求画逻辑图。 进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。 值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。 1.译码器 译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。译码器分成三类: a.二进制译码器:如中规模2—4线译码器74LS139。,3—8线译码器74LS138等。 b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。 c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。 2.编码器 编码器也是组合电路的一部分。编码器就是实现编码操作的电路,编码实际上是译码相反的过程。按照被编码信号的不同特点和要求,编码器也分成三类: a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。 b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。 c.优先编码器:如8—3线优先编码器74LS148等。 三、实验内容及步骤 1.译码器实验 (1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC 空插座中。 按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。

绝对值编码器的工作原理

******************************************************************************* 从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 *******************************************************************************

简单短序列的算术编码的MATLAB实现

简单短序列的算术编码的MATLAB实现 正确实现的算术编码算法压缩能力Shannond定理描述的理论极限,是目前已知的压缩能力最强的无损压缩算法。 不过,由于算术编码算法的实现比较复杂,使用它作为默认压缩算法的应用程序还相当少。在Unix平台上非常流行的bzip2(这个工具有命令行模式的Windows版本)使用的就是经过修改的算术编码算法。 目前为止还没有使用算术编码作为默认压缩算法的Windows应用程序,WinRAR和WinIMP能够支持bzip2的解压。除此之外,在最新的JPEG标准中也用到了经过修改的算术编码压缩算法,但JPEG所用的那种算法受专利保护,因此使用时必须获得授权。 在之后的文章会很好的研究这个算法的实现: 现在给出一个简单的实例:

运行过程如下:

%I=imread('001.bmp') %imshow(I); clear I=[3 3 1 1 3 3 1 2;2 3 3 1 3 2 3 2;1 2 3 3 3 3 1 2]; %I=[1 1 1 1 0 0 1 0 1 1 1 0]; [m,n]=size(I); % 第一列为灰度值,第二列为个数,第三列为概率百分数,应该也可以用imhist table = tabulate(I(); % 注意的是,tabulate要求I的元素必须为非负整数 % 否则,以采用如下方法求解 % 如[1 2 3;1 2 2],则统计出结果1是2个,2是3个,3是1个 % sortM=sort(M(); % uniqueM=([diff(sortM);1]>0); % count = [sortM(uniqueM) diff(find([1;uniqueM]))] % 即color,p如下所示 color = table(:,1)'; p = table(:,3)'/100; % 计算上下限 csump = cumsum(table(:,3)'); allLow =[0,csump(1:end-1)/100]; allHigh = csump/100; numberlow = 0; numberhigh = 1; for k = 1:m for kk = 1:n data = I(k,kk); low = allLow(data==color); high = allHigh(data==color); range = numberhigh-numberlow; tmp = numberlow; numberlow = tmp+range*low; numberhigh = tmp+range*high; end

编码器工作原理汇总

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,

编码器工作原理及作用

编码器工作原理及作用-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

编码器工作原理及作用 工作原理 德国siko编码器 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 作用 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信

算术编码与解码

算术编码与解码 1、编码过程 算术编码方法是将被编码的一则消息或符号串(序列)表示成0和1之间的一个间隔(Interval),即对一串符号直接编码成[0,1]区间上的一个浮点小数。符号序列越长,编码表示它的间隔越小,表示这一间隔所需的位数就越多。信源中的符号序列仍然要根据某种模式生成概率的大小来减少间隔。可能出现的符号概率要比不太可能出现的符号减少范围小,因此,只正加较少的比特位。 在传输任何符号串之前,0符号串的完整范围设为[0,1]。当一个符号被处理时,这一范围就依据分配给这一符号的那一范围变窄。算术编码的过程,实际上就是依据信源符号的发生概率对码区间分割的过程。 输入:一个字符串 输出:一个小数 考虑某条信息中可能出现的字符仅有a b c 三种,要压缩保存的信息为bccb。 假设对a b c 三者在信息中的出现概率一无所知(采用自适应模型),暂时认为三者的出现概率相等,也就是都为1/3,将0 - 1 区间按照概率的比例分配给三个字符,即a 从0.0000 到0.3333,b 从0.3333 到0.6667,c 从0.6667 到 1.0000。用图形表示就是: +-- 1.0000 | Pc = 1/3 | | +-- 0.6667 | Pb = 1/3 | | +-- 0.3333 | Pa = 1/3 | | +-- 0.0000 对于第一个字符b,选择b 对应的区间0.3333 - 0.6667。这时由于多了字符b,三个字符的概率分布变成:Pa = 1/4,Pb = 2/4,Pc = 1/4。再按照新的概率分布比例划分0.3333 - 0.6667 这一区间,划分的结果可以用图形表示为: +-- 0.6667 Pc = 1/4 | +-- 0.5834 | | Pb = 2/4 | | | +-- 0.4167 Pa = 1/4 | +-- 0.3333 接着字符c,上一步中得到的 c 的区间0.5834 - 0.6667。新添了c 以后,三个字符的概率分布变成Pa = 1/5,Pb = 2/5,Pc = 2/5。用这个概率分布划分区间0.5834 - 0.6667: +-- 0.6667 | Pc = 2/5 | | +-- 0.6334 | Pb = 2/5 | | +-- 0.6001 Pa = 1/5 | +-- 0.5834 现在输入下一个字符c,三个字符的概率分布为:Pa = 1/6,Pb = 2/6,Pc = 3/6。划分c 的区间0.6334 - 0.6667: +-- 0.6667 | | Pc = 3/6 | | | +-- 0.6501 | Pb = 2/6 | | +-- 0.6390 Pa = 1/6 | +-- 0.6334 输入最后一个字符b,因为是最后一个字符,不用再做进一步的划分了,上一步中得到的 b 的区间为0.6390 - 0.6501,好,让我们在这个区间内随便选择一个容易变成二进制的数,例如0.64,将它变成二进制0.1010001111,去掉前面没有太多意义的0 和小数点,我们可以输出1010001111,这就是信息被压缩后的结果,我们完成了一次最简单的算术压缩过程。我的代码: publicstaticvoidBianMa(String info,StringDeal sd){ int i = 0, j = 0; //定义上下限 double low = 0, high = 1; double count = sd.getCount(); //定义初始各字符频率 double[] zifu = new double[(int)(count)]; for(i = 0;i < zifu.length;i++){ zifu[i] = 1;

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

编码器和译码器实验报告

译码器、编码器及其应用 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验内容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出??接数字实验箱LED 管,地址输入接实验箱开关,使能端接固定电平(或GND)。电路图如Figure 1所示: Figure 2 ??????????????时,任意拨动开关,观察LED显示状态,记录观察结果。 ??????????????时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。 用Multisim进行仿真,电路如Figure 3所示。将结果与上面实验结果对照。

Figure 4 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: ?? 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: ?? ?? A ? ??????????? ???? 按Figure 5所示的电路连接。并用Multisim进行仿真,将结果对比。 Figure 6

(3) 用两片74LS138组成4-16线译码器。 因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。 而输入端只有 A、、三个,故要另用使能端进行片选使两片138译码器 进行分时工作。而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试?,在各端子上移动即可。在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED): Figure 8 四、实验结果 (1) 74LS138译码器逻辑功能的测试。 当输入 A时,应该是输出低电平,故应该第一个小灯亮。实际用实验台测试时,LE0灯显示如Figure 9所示。当输入 A时,应该是输出低电平,故理论上应该第二个小灯亮。实际用实验台测试时,LE0灯显示如Figure 6所示。 Figure 10

编码器工作原理

编码器工作原理 Prepared on 22 November 2020

的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器、等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,也能得到一个速度信号,这个信号要反馈给器,从而调节的输出数据。故障现象: 1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电路来处理。编码器pg接线与参数与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或型输出,德国生产的绝对型编码器串行输出最常用的是SSI (同步串行输出)。

数字图像处理和算术编码

数字图像处理课程设计 题目:数字图像处理及算术编码 (或D C T压缩编码)仿真实现学生姓名: 学院:信息工程学院 系别:电子信息工程系 专业:电子信息工程 班级:电子09-2班 指导教师:韩建峰辛莉 2012 年 12月 17 日 数字图像处理课程设计 1、课程设计目的 通过本课程设计使学生了解数字图像的基本概念,掌握数字图像处理的基本内容,如图像点运算、几何变换、增强处理、图像复原、边缘检测以及图像压缩等的基本原理和Matlab实现方法。 通过本次课程设计,让学生掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养学生的综合设计能力。 2、课程设计内容 2.1 图像处理基本功能 1)数字图像的变换:普通傅里叶变换(ft)与逆变换(ift)、快速傅里叶变 换(fft)与逆变换(ifft)、离散余弦变换(DCT),小波变换。

2) 数字图像直方图的统计及绘制等; 2.2 图像处理综合功能 1)图像平滑算法程序设计: 2)DCT压缩(保留不同系数),要求显示原图像、压缩后图像的文件大小、压缩比或算术编码压缩 3、课程设计的一般步骤 1)选题与搜集资料:选择课题,进行系统调查,搜集资料。 2)分析与设计:根据搜集的资料,进行功能分析,并对系统功能与模块划分等设计。 3)程序设计:运用掌握的语言,编写程序,实现所设计的功能。 4)调试与测试:自行调试程序,同学之间交叉测试程序,并记录测试情况。 5)验收与评分:指导教师对每个成员开发的程序进行综合验收,结合设计报告,根据课程设计成绩的评定方法,评出成绩。 4、要求 4.1总体要求 1、要充分认识课程设计对培养自己的重要性,认真做好设计前的各项准 备工作。尤其是对编程软件的使用有基本的认识。 2、既要虚心接受老师的指导,又要充分发挥主观能动性。结合课题, 独立思考,努力钻研,勤于实践,勇于创新。 3、独立按时完成规定的工作任务,不得弄虚作假,不准抄袭他人内容, 否则成绩以不及格计。 4、在设计过程中,要严格要求自己,树立严肃、严密、严谨的科学态 度,必须按时、按质、按量完成课程设计。 4.2 课程设计报告的内容及要求 在完成课题验收后,学生应在规定的时间内完成课程设计报告一份,报告的内容和要求如下: 1.目的与要求 这部分主要说明本课程设计的目的、任务和要求; 2.设计的内容 根据指导书的讲述,介绍系统中所设计的主要功能和原理方法; 3.各个功能的实现程序及结果 附各个功能的实现程序,需要在程序中做适当的注释,附处理前后效果图。 5.测试和调试 按课程设计要求,选用多幅图像(自己的照片)对程序进行测试,并提供系统的主要功能实现的效果图。并在调试中发现的问题做说明。 6.课程设计总结与体会

编码器的工作原理及分类

编码器的工作原理及分类 编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。 故障现象:旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”。。。联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用

编码器、译码器及应用电路设计

实验六编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 1、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 编码是用文字、符号或者数字表示特定对象的过程,在数字电路中是用二进制数进行编码的,相应的二进制数叫二进制代码。编码器就是实现编码操作的电路。本实验使用的是优先编码器74LS147,当输入端有两个或两个以上为低电平时,将对输入信号级别相对高的优先编码,其引脚排列如图6—1所示。 图6—1 74LS147引脚排列图图6—2 74LS138引脚排列图译码是编码的逆过程,是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配和组合控制信号等。不同的功能可选用不同种类的译码器。 译码器按照功能的不同,一般分为三类: 1、变量译码器(二进制译码器):用以表示输入变量的状态,如2—4线、3—8线、4—16线译码器。以3—8线译码器74LS138为例介绍: 图6—2为74LS138的引脚图,其中,A2A1A0为地址输入端,为译码器输出端,为使能端(只有当时,才能进行译码)。 图6—3 74LS42引脚排列图图6—5为CC4511引脚排列图 2、码制变换译码器:用于同一个数据的不同代码之间的相互变换。这种译码器的代表是4—10线译码器,它的功能是将8421BCD码译为十个对象,如74LS42等。它的原理与 74LS138译码器类同,只不过它有四个输入端,十个输出端。4位输入代码共有0000—1111

算术编码与哈夫曼编码

安徽大学 本科毕业论文(设计、创作)题目:哈夫曼编码与算术编码压缩效率比较 学生姓名:李伟学号:E20714134 院(系):计算机科学与技术专业:软件工程 入学时间:2007年9月 导师姓名:韩莉职称/学位:讲师/硕士 导师所在单位:安徽大学计算机科学与技术学院 完成时间:2011年5月

哈夫曼编码与算术编码压缩效率比较 摘要 算术编码和哈夫曼编码都利用信源符号的概率分布特性进行编码,使平均码长逼近信息熵是压缩编码算法的第一要求,算术编码比哈夫曼编码逼近信息熵的能力要强,但是编码效率和实现往往是一对矛盾,编码效率的提高,往往要在实现上付出代价,所以,选择压缩算要权衡这两点。本论文开篇先引入了信息论的一些概念,因为编码理论发源于信息论,是各种编码算法的数学基础。然后在第2章分析了算术编码原理,并从无限精度的算术编码原理过渡到在计算机上能够实现的二进制编码原理。在第3章紧接着介绍了哈夫曼编码原理,并讨论了怎样把信源符号映射为对应的码字,过程中用到的哈夫曼编码表是编码与解码的关键。在第4章对两者的编码效率作了比较,主要是结合信息论中的一些概念从微观上对两者逼近信息熵的能力作了比较,并在这章最后对两者在文本文件的压缩效果的表现上给出了一些实验结果。最后,在5章,主要是对前面内容做了些补充和总结。 关键词:信息熵;算术编码;哈夫曼编码;编码效率

The comparison of Huffman Coding and Arithmetic Coding in File Compression Abstract Full use of the probability distribution of source symbols is the feature of the arithmetic encoding and Huffman encoding. Approaching the average code length to the information entropy come first when designing a compression algorithm. To the capacity of closing to information entropy, arithmetic encoding is stronger than Huffman encoding. However, the coding efficiency and implementation is often a contradiction: to improve coding efficiency, which means the algorithm implementation process needs to pay a higher price. Therefore, you need to weigh both when choosing a compression algorithm. In the beginning of this thesis, it first introduced some of the concepts of information theory. Because encoding algorithms are derived from information theory and information theory is the mathematical foundation of various coding algorithms. Then in Chapter 2, it introduces the principle of arithmetic coding. For better to understand the binary arithmetic coding principle, it first introduces the unlimited precision arithmetic coding. In Chapter 3, it describes the Huffman coding theory, and discusses how to map source symbol to the corresponding code word, among which Huffman coding and decoding table is the key. In Chapter 4, the coding efficiency of the two algorithms is compared. Mainly compare the capacities to approximate information entropy with some of the concepts in information theory. And the final part in this chapter, some experimental results are given to show the compression effect to compress a text file. Finally, in Chapter 5, it gives some additions and summary. Keywords:Information Entropy; Arithmetic Coding; Huffman Coding;Coding Efficiency

相关文档
最新文档