数学建模飞机运输问题要点

数学建模飞机运输问题要点
数学建模飞机运输问题要点

多变量有约束最优化问题

摘要

本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。

对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。

问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。

关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

一、提出问题

一个运输公司每天有100吨的航空运输能力。公司每吨收空运费250美元。除了重量的限制外,由于飞机货场容积有限,公司每天只能运50000立方英尺的货物。每天要运送的货物数量如下:

(1)求使得利润最大的每天航空运输的各种货物的吨数。

(2)计算每个约束的影子价格,解释它们的含义。

(3)公司有能力对它的一些旧的飞机进行改装来增大货运区域的空间。每架飞机的改造要花费200000美元,可以增加2000立方

英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。在这种情况下,是否值

得改装?有多少架飞机时才值得改装?

二、提出假设

假设1:飞机每天最多只能运输50000立方英尺的货物。假设2:飞机每天最多只能运:100吨货物。

假设3:货物1每天都有30吨要运。

假设4:货物2每天都有40吨要运。

假设5:货物3每天都有50吨要运。

四、符号说明

五、模型的建立与求解

第一部分

5.1问题一的模型的建立。

5.1.1问题一的分析。

结合题意,计算航空公司获得的利润,必须将运输航空公司里的飞机的燃料费用及修理维护费用忽略不计,还有每吨货物的运费始终保持不变。在这种情况下,3种货物总运输吨数不超过100吨,容积不超过50000立方英尺,且3种货物有各自运输上限,建立目标函数和约束条件。

5.1.2问题一模型的建立。

通过对原问题的分析,我们可以建立如下的数学线性规划模型:Max W=250x1+250x2+250x3

550x1+1800x2+400x3<=50000

x1+x2+x3<=100

x1<=30

x2<=40

x3<=50

5.1.3模型的求解

将编写的程序输入到mathematica软件中得到结果

5.1.4结果的分析

由结果可以得到当运输航空公司每天运输x1货物30吨、x2货物7.5吨、

x3货物50,每年得到的利润最大w=21875美元。即当x1为30吨、x2为8吨、x3为50吨的时候,货物体积超出了飞机的运载体积50000立方英尺。所以公司应按照以上的x1为30吨,x2为7.5吨,x3为50吨的运输安排运输货物。

第二部分

5.2问题二的模型的建立

5.2.1问题二的分析与建立

Max W=250x1+250x2+250x3

550x1+1800x2+400x3<=50000

x1+x2+x3<=100

x1<=30

x2<=40

x3<=50求解见附录二。

5.2.2 模型的求解

将应用程序输入到Lindo软件中,得到的部分结果为:

最优解下资源增加1“单位”时“效益”的增量:

飞机运载空间每增加1立方英尺时,利润增加0.138889美元,飞机运载能力的增加对利润不影响,

X1种货物每增运1吨时,利润增加173.611115美元,

X2种货物的增运对利润不影响,

X3种货物每增运1吨时,利润增加194.444443美元。

5.2.3结果的分析

部分输出结果(灵敏度分析)(输入程序见附录2)

最优解不变时目标函数系数允许的变化范围(约束条件不变):x1的系数变化范围(173.61,250)

x2的系数变化范围(0,818.2)

x3的系数变化范围(55.6,250)

飞机的运输货物体积最多增加222500立方英尺,

x1货物最多每增运18吨

x3货物最多每增运16吨

第三部分

5.3问题三的模型建立与分析

5.3.1问题的分析

由2问知道每增加1立方英尺,利润就增加0.138889;当增加2000立方英尺时每天增加利润=277.778美元;每架飞机增加的利润=347225美元

因为一架飞机改装后所能获得的利润大于改装费,且能赚147225美元;所以有一架飞机就可以改装了。

5.3.2模型的建立

通过对问题的分析,我们建的数学模型为:

5.3.3模型的求解

输出部分结果为(输入的程序见附录3):

所以由于对结果的检验航空运输公司应该值得改装,应该改装1架飞

机。

六、模型的评价与推广

6.1模型评价

在运输货物领域中,人们常会遇到这样的问题,例如:如何从一切可能的方案中选择最好的、最优的方案。在我们数学上把这类问题称为最优化问题,如何解决这类问题,在当今商品经济的环境下,是关系到企业生存以及国计民生的问题。

在解决上述如何空运货物能使公司利润最高的问题上,我们采用的是线性规划的方法。线性规划的理论和方法都比较成熟,并且是一个有广泛应用价值的统筹学分支,如果一个问题的限制条件可以写出某些决策变量的线性方程组或线性不等式组,那我们就可以应用lingo软件将该线性规划方程解出来得到最优解。

应用数学知识中的线性规划在解决这类最优化问题上既简单又精确,在最优解的求解过程中是个很好的选择。对于我们提出的5个假设,我们都做了灵敏性分析,数据的改变对于最优的结果没有太大的影响。但是我们的模型还是存在一些缺点,比如我们认定运输每种货物的难易程度是一样的,不会增加其成本。

6.2模型推广

以上建立的模型,在解决最优化问题上方便简单快捷,不仅适用于货物的运输问题上,也适用于钢管的下料问题,接力队的选拔问题,奶产品的生产与销售等一系列问题等。编程运用LINDO软件,节约计算时间。

七、参考文献

八、附录

附录1:求解问题一的Mathematica程序附录2:求解问题二的LINDO程序

附录3:求解问题三的LINDO程序解法一:

Max 250x1+250x2+250x3

st

550x1+1800x2+400x3<=52000

x1+x2+x3<=100

x1<=30 x2<=40 x3<=50 end

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

数学建模大赛货物运输问题

数学建模大赛货物运输 问题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题 提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的 最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了 较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。 耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方 案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所 以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆 时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6 吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货 车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方 案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司 所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的 双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输 车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分 别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车, 另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度

数学建模专题方法总结

最短路问题、公路连接问题、指派问题、中国邮递员问题、推销员问题、旅行商问题、运输问题 上述问题有两个共同的特点: 一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优安排或方案,数学上把这种问题称为最优化或优化问题; 二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络。 与图和网络相关的最优化问题就是网络最优化或称网络优化问题。所以上面例子中介绍的问题都是网络优化问题。

离散数据的处理可用插值、拟合。 插值:已知某些离散点的函数值,构造一个简单的函数通过所有离散点,可求离散点区域内其他中间点的值。若要求所求曲线(面)通过所给所有数据点,就是插值问题。 拟合:不要求通过所有数据点,可预测以前的值。若不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者在数学方法上是完全不同的。

元法建模3用模拟近似法建模。 微分方程数值解求近似解。 有限差分法--------偏微分方程的一种数值解法

非线性------曲线线性-------直线

预测方法总结:1回归拟合预测------最小二乘法(数据较多、不能太多也不能太少、适合中 等数据量的问题) 2灰色预测(小样本的预测,数据量少)需做数据预处理 3模糊数学预测

模糊数学是研究和揭示模糊现象的定量处理方法。 分类、识别、评判、预测、控制、排序、选择 模糊聚类分析--------对所研究的事物按一定标准进行分类。对客观事物按一定的标准进行分类的数学方法称为聚类分析,它是多元统计的一种分类方法。 模糊模式识别------已知某类事物的若干标准模型,给出一个具体的对象,确定把它归于哪一类模型。 模糊综合评判------从某一事物的多个方面进行综合评价 模糊线性规划-----将线性规划的约束条件或目标函数模糊化,引入隶属函数,从而导出一个新的线性规划问题, 其最优解称为原问题的模糊最优解。

#蔬菜运输问题--数学建模

蔬菜运输问题 2012年8月22日 摘要 本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。 关键词 最短路问题 floyd算法运输问题 一、问题重述 光明市是一个人口不到15万人的小城市。根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①L⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m). ①7 ② 5 4 8 3 7 A 7 ⑼ 6 B ⑥ 6 8 5 5 4 7 11 7 ⑾ 4 ③ 7 5 6 6 ⑤ 3 ⑿ 5 ④ ⑽ 8 6 6 10 C 10 ⑧ 5 11 ⑦图1 表1 菜市场每天需求(100 kg)短缺损失(元/100kg) ①75 10 ②60 8 ③80 5 ④70 10 ⑤100 10 ⑥55 8 ⑦90 5 ⑧80 8 (a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预

期的短缺损失为最小; (b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案 (c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增 产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。 二、问题分析 求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费和距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。 第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。 第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。 三、模型假设 1、各个菜市场、中转点以及收购点都可以作为中转点; 2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨; 3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用; 4、假设运输的蔬菜路途中没有损耗; 5、忽略从种菜场地到收购点的运输费用。 四、符号说明 A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。 五、模型的建立和求解 按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。 Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。i到j的最短距离不外乎存在经过i和j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)和d(i,k)+d(k,j)的值;在此d(i,k)和d(k,j)分别是目前为止所知道的i到k和k到j的最短距离。因此d(i,k)+d(k,j)就是i到j经过k的最短距离。所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为

数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需

求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j=位置上的数表示(其中∞表示两个客户之间无直接的 i j(,1,,10) 路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让 他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车 一次能装满10个客户所需要的全部货物,请问货车从提货点出发给

数学建模城市垃圾运输问题概论

货运公司运输问题 数信学院14级信计班魏琮 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面根据车载重相对最大化思 想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.3333小时,费用为4864.0元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.3小时,费用为4487.2元。 针对问题三的第一小问,知道货车有4吨、6吨和8吨三种型号。经过简单的论证,排除了4吨货车的使用。题目没有规定车

子不能变向,所以认为车辆可以掉头。然后仍旧采取①~④公司 顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需 求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次 满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6 吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6833小时,费用为4403.2元。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

数学建模——水塔流量问题

实验十四 水塔流量问题 【实验目的】 1.了解有关数据处理的基本概念和原理。 2.初步了解处理数据插值与拟合的基本方法,如样条插值、分段插值等。 3.学习掌握用MATLAB 命令处理数据插值与拟合问题。 【实验内容】 某居民区有一供居民用水的圆形水塔,一般可以通过测量其水位来估计水的流量。但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间是无法测量水塔的水位和水泵的供水量。通常水泵每天供水一两次,每次约两小时。水塔是一个高米、直径米的正圆柱。按照设计,水塔水位降到约米时,水泵自动启动,水位升到约米时水泵停止工作。 某一天的水位测量记录如表1所示,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。 表1 水位测量启示录( 0101001111012012)(2x L )(2ξL )(ξf y )(x f n 0x 1x n x 0y 1y n y n n )(x L n )(x L n m x a 011-m x a x a m 1-m a n )(k n x L k y k n )(ξn L )(ξf )(x L n )(x f n m n )(x L n )(x f x )(x L n )(x f a 0x 1x n x b ) (x P 11----i i i i y x x x x i i i i y x x x x 1 1 ----1-i x x i x i n 0x 0y 1x 1y n x n y a b )(x S k )(x S k )(x S i i y )(x S a b k n i x i y i n i x y )(x f )(x f )(x f )(11x r a )(22x r a )(x r a m m )(x r k k a k m m n k a Q ∑=-n i i x f 1 2 i ) y )((

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

数学建模--运输问题

数学建模--运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第 一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题

数学建模 飞机的登机顺序安排问题

飞机的登机顺序安排问题 摘要 美国航空机场服务规划副总裁马克.都彭的话来说:“登机就好比是跟在一辆慢吞吞的卡车后行驶,又不能超车。”长期以来,航空公司为了使飞机按时出发费尽了心思。有的公司安排从后排开始登机,有的公司从靠窗座位开始,还有些公司设计出两者的组合方案。但实际情况却没有如航空公司所愿。 近年来随着民用航空业飞速发展,无论是航空公司还是旅客都希望缩短登机时间,这样航空公司可以赢得更多时间用于飞行获得丰厚利润,旅客也可以缩短旅途时间。然而随着乘坐飞机的旅客越来越多以及飞机的容量不断增加,使得登机时间却在不断加长。如何缩短登机时间这一问题亟待解决。 针对客机登机顺序问题,文章将登机过程类比于总线型局域网的数据传输过程,建立了总线状态模型,在此基础上建立了蒙特卡洛随机模拟模型。 总线状态模型的主要思想是:利用总线型局域网拓扑结构的原理,将客机登机所需时间转化为拓扑结构中总线从空载状态到负载状态再到空载状态所经过的时间。通过查阅相关资料文献,我们筛选出六种比较具有代表性的登机方案---Back to Front、Rotating Zone、Random、Reverse Pyramid、Outside in、block。对选择的不同机型进行模型求解,对模拟结果进行分析,得出不同飞机设计登机方案的原则。在此原则的基础上,提出新的方案,并对新方案进行模拟求解,最后从已有方案的六种方案和新提出的方案中提出适合各型飞机最优的登机方案。 关键词:客机、登机、总线状态模型、蒙特卡洛随机模拟模型 一.问题重述 航空公司可以自由的安排等待登机的旅客的登机顺序,首先安排有特殊需要的乘客登机就座已经成为惯例. 按照常规有特殊需要的轮椅旅客首先登机,紧跟着是头等舱的乘客(他们坐在飞机的前部). 然后是安排经济舱和商务舱的乘客按行排队登机,从飞机后排的乘客依次往前安排登机。从航空公司的角度来看,除了考虑到乘客的等待时间外,时间就是金钱,所以登机时间最好应该减小到最少. 只有飞机载客飞行,航空公司才能赚钱,而过长的登机时间将会限制飞机在一天内的飞行次数. 发展大型飞机,诸如空客A380-800客机(载客800人) 这样的最小化登机(离机)时间的问题就更显得重要了。 (1)针对不同的小型(85-210座)、中型(210-330座)和大型(450-800座)客机,设计制订并比较不同乘客人数的登机或离机程序.

数学建模大赛-货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.5007小时,费用为4685.6元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.063小时,费用为4374.4元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为 19.6844小时,费用为4403.2。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

水塔流量问题

本科生课程设计报告 实习课程数值分析 学院名称管理科学学院 专业名称 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年六月二〇一六年六月? 估计水塔的水流量 摘要

水塔流量的估计是一个较为经典的数学建模问题,本问题最大的困难在于不知泵启动时水位的变化和向外水流的速度.解决该问题,先确定近似流速,利用中点数值求导公式计算出每个时间点出的流速,再利用插值与拟合计算出流速与时间的函数,对0到24小时积分可得总用水量,这是第一种方法.第二种方法,水泵没有开动时利用高度差计算用水量,水泵开动时利用积分,这样计算出的结果较为准确,2种方法比较,可得出误差. 关键词:中点数值求导;插值与拟合;积分 ? 目录 第1章前言?错误!未定义书签。 1.1 内容及要求?错误!未定义书签。 1。2 研究思路及结构安排................................. 错误!未定义书签。第2章模型建立与求解?错误!未定义书签。 2.1模型假设............................................ 错误!未定义书签。 2。2确定近似流速?错误!未定义书签。 2.3 确定水泵启动时的流量及总流量曲线?错误!未定义书签。 2。4确定总用水量....................................... 错误!未定义书签。第3章算法步骤?错误!未定义书签。 3.1中点数值求导函数步骤及流程图?错误!未定义书签。 3。2 三次样条插值函数步骤及流程图....................... 错误!未定义书签。第4章算法实现.............................................. 错误!未定义书签。 4。1 程序总体结构?错误!未定义书签。 4.2 源程序清单......................................... 错误!未定义书签。 4.3程序运行............................................ 错误!未定义书签。第5章误差分析?错误!未定义书签。 第6章模型的评价和改进...................................... 错误!未定义书签。 6。1 优点................................................ 错误!未定义书签。 6。2 缺点?错误!未定义书签。 6.3 模型的改进方向....................................... 错误!未定义书签。参考文献..................................................... 错误!未定义书签。

数学建模运输问题

华东交通大学数学建模 2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

数学建模运输问题

华东交通大学数学建模2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求 解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型 1:学号: 2:学号: 3:学号: 专业: 班级: 指导教师: 2011年12 月29 日

(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示 (1)求最优调拨方案; (2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。 一论文摘要 一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。 针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型 Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x min x+3031x+3532x+4033x+5534x+2535x +30 25 Z= 并用管理运筹学软件软件得出最优解为: min

关键词:运输模型最优化线性规划 二.问题的重述和分析 A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地 i s和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i 将物品从产地运往销地的最优调拨方案。 A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道, 1 B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2 A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。把产地 1 B,2B,3B,4B,5B,正好满足这三个销地的需要。先将安排的部分配给销地 1 运输量列如下表中:

垃圾运输问题

B题:垃圾运输问题 某城区有36个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。现有一种载重 6吨的运输车。每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作 4小时。运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴。请你给出满意的运输调度方案以及计算程序。 问题: 1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用) 2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用) 3. 如果有载重量为4吨、6吨、8吨三种运输车,又如何调度?

垃圾运输问题的模型及其求解 摘要:本文通过垃圾运输问题的模型建立与求解,总结出这类问题的一般性解法,即根据实际问题构造恰当的有向或无向赋权图,把问题转化成图论中的TSP问题,通过解决这类TSP问题,从而使原问题获得满意的解答. 关键词:垃圾运输问题; TSP问题 图论是一支应用性很强的学科分支,它对自然科学、工程技术、经济管理和社会现象等诸多问题,能够提供很好的数学模型加以解决,所以,在国内外大学生数学建模竞赛中,常会出现用图论模型去解决的实例,如垃圾运输问题,统筹问题等. 1有关概念 定义1[ 1 ] 设G = (V, E) 是连通无向图, (1) 经过G的每一个顶点正好一次的路,称为G的一条哈密顿路或H路; (2) 经过G的每一个顶点正好一次的圈,称为G的一条哈密顿圈或H圈; (3) 含H圈的图称为哈密顿图或H图. 定义2[ 1 ] 设D = (V, A ) 是连通有向图, (1) 经过D的每一个顶点正好一次的圈,称为D的生成圈; (2) 含生成圈的图称为哈密顿图或H图. 定义3[ 1 ] 设G是完全(有向或无向) 赋权图,在G中寻找权最小闭迹的问题称为TSP问题(即Trave ling Salesman Problem) . 若此闭迹是H圈,则称此闭迹为最佳H圈. 容易证明:在满足条件w ( vi vj ) +w ( vj vk ) 下, TSP问题可转化为寻找最佳H圈的问题,这可通过构造一个完全图来实现. 2垃圾运输问题 例1某城区有若干个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回. 假定运输 图1运输车线路图 车的线路已确定下来共10条(如图1所示). 为了节省费用, 运输车在每条线路上总是先从远离处理厂的垃圾集中点开始运送垃圾. 现有6辆载重6吨的运输车及装垃圾用的铲车, 它们的平均速度为40 km /h (夜里运输,不考虑塞车现象) ,每个垃圾点需要用10 min的时间装车,每台运输车每日平均工作4 h. 运输车重载运费1. 8元/吨km;运输车和装垃圾用的铲车空载费用0. 4元

MATLAB--水塔流量的估计

MATLAB--水塔流量的估计

水塔水流量的估计 摘要:数学建模方法是处理科学理论的一种经典方法,也是解决各类实际问题的常用方法。本文采用曲线拟合的方法,并利用数学软件MATLAB对水塔流量进行计算,计算结果与实际记录基本吻合。 关键词:建模,流量,拟合,MATLAB 1.问题重述 美国某州的各用水管理机构要求各社区提供用水率(以每小时多少加仑计,英制单位下,1加仑=4.54596dm3,美制单位下,1加仑=3.78533dm3)以及每天所用的总用水量,但许多社区并没有测量流入或流出当地水塔的水量的设备,而只能以每小时测量水塔的水位代替,其精度在0.5%以内。更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。因此,在水泵正在工作时,不容易建立水塔中水位与水泵工作时用水量之间的关系。水泵每天向水塔充水一次或两次,每次大约2小时。试估计在任何时候,甚至包括水泵正在工作的时间内从水塔流出的流量() f t,并估计一天的总用水量。水塔是一个垂直圆柱体,高为40英尺,直径为57英尺。 下表给出了某个小镇某一天的真实数据: 表1 某小镇某天的水塔水位(1m=3.281英尺) 时间(秒)水位 (英 尺) 时间 (秒) 水位 (英 尺) 时间 (秒) 水位 (英 尺) 0 31.75 35932 水泵工作68535 28.42 3316 31.10 39332 水泵工作71854 27.67 6635 30.54 39435 35.50 75021 26.97 10619 29.94 43318 34.45 79154 水泵工作13937 29.55 46636 33.50 82649 水泵工作17921 28.92 49953 32.67 85968 34.75 21240 28.50 53936 31.56 89953 33.89

相关文档
最新文档