轻烧高铝矾土制备超细粉料的工艺

轻烧高铝矾土制备超细粉料的工艺
轻烧高铝矾土制备超细粉料的工艺

轻烧高铝矾土制备超细粉料的工艺

李如椿

(河北理工学院,河北 唐山 063009)

摘要:在不同温度、不同保温时间对特级高铝矾土的轻烧过程进行了研究,基于强度与活性的最佳结合点,用机械粉碎的方法制备高活性陶瓷耐火材料用超细粉,并且对此法制得的轻烧料的易磨性和烧结性进行了检验。此方法最大优点是成本低、性能好,故其应用推广价值大。

关键词:高铝矾土;轻烧;超细粉

中图分类号:T F 123.7+2 文献标识码:A 文章编号:100026532(2001)022*******

1 引 言

目前超细粉料以其特殊的性能在陶瓷耐

火材料中的应用已越来越引起重视,超细粉的制备与处理已成为当前粉体科学的一个重要分支,成为高科技耐火材料的重要组成部分。

加入超细粉料生产出的耐火制品,不但密度和强度高,体积稳定性好,而且抗侵蚀性能也非常优异。但对高温氧化物而言,由于其晶格能较高、结构稳定性好,因此用普通机械粉碎的方法来制备超细粉是很困难的,而且粉碎效率很低。近年发展起来的化学方法制备微粉,如溶液法、气相法和固相法等[1],由

于成本较高而未能广泛用于工业生产。

根据海德华定律[2],工艺上可以通过多晶转变伴随的晶格重排来活化晶格,或是利

用热分解反应和脱水反应,使其形成具有较大比表面积和晶格缺陷的初生态或无定形物质。因此本研究通过轻烧高铝矾土使其脱去结构水及有害杂质,改变其晶格结构而提高易碎性,再用机械粉碎的方法实现低能耗低成本的超细粉制备工艺。

2 实验过程

2.1 原料制备

本实验选用山西阳泉特A 级高铝矾土,

生矾土呈灰白色,其化学组成见表1,主要矿物组成为:水铝石90%,高岭石10%。2.2 高铝矾土轻烧温度的确定

(1)将铝矾土加工成约5mm 颗粒,分别

在不同温度下以不同的保温时间煅烧,测其

表1 生高铝矾土的化学组成 %

Si O 2A l 2O 3Fe 2O 3T i O 2CaO M gO K 2O N a 2O 灼减

3.46

77.28

0.70

2.95

0.10

0.11

0.03

0.02

15.0

失重率,寻找失去结构水的最低温度及相应的保温时间。将煅烧料分别作差热分析,鉴定其矿物组成。

(2)将铝矾土加工成约30mm ×30mm ×30mm 的立方体,分别在不同温度下煅烧,测

其抗压强度。并利用此数据,作工业性大块料

收稿日期:2000204225

作者简介:李如椿(1953-),女,工程师,河北理工学院材料工程系无机非金属材料实验室工作,主要从事陶瓷耐火材料的研究

 第2期2001年4月 矿产综合利用M ultipurpose Utilization of M i neral Resources

No .2

Apr .2001

实验,将大块料(150mm ×150mm ×150mm )在确定的最佳轻烧温度下煅烧,再进行切割,测其强度分布。

2.3 高铝矾土烧结活性的实验

(1)高铝矾土做细磨性对比试验,将生料、死烧料和最佳温度点的轻烧料,用GJ -A X 型密封化验制料粉碎机粉磨,经200目、250目、320目筛筛分,测其筛余量。

(2)将生料、死烧料和最佳温度点的轻烧料粉磨成5~10Λm 的超细粉,用YE -30液压式试验机压块(40mm ×40mm ×160mm ),进行烧结性实验,煅烧温度分别为1250℃、1300℃、1400℃、1470℃、1600℃,测定各试样的收缩率、气孔率和抗折强度。

3 实验结果与讨论

3.1 颗粒状矾土的轻烧结果分析

不同温度、不同保温时间煅烧后的失重率曲线见图1

图1 不同煅烧温度下各保温时间

的失重率曲线 从图1可见,在500℃煅烧时,不论保温时间多长,其失重率小于10%,说明在500℃时水铝石并没有分解。在600℃煅烧保温时间大于1.5h ,其失重率大于14%,接近理论值。而在700℃×1h 和800℃×1h ,失重率便大于14%,趋于定值。

按理论计算山西阳泉特级高铝矾土的失重率:

Α

-A l 2O 3?H 2O 400~500℃Α-A l 2O 3+H 2O A l 2O 3?2Si O 2?2H 2O 450~600℃A l 2O 3?2Si O 2+2H 2O H 2O

-A l 2O 3H 2O

×90%+

2H 2O

A l 2O 3?2Si O 2?2H 2O

×10%=14.8%

由此可见:5mm 颗粒料在600℃×1.5h 后或700℃×1h 后开始接近理论失重率。

图2为600℃×1h 、600℃×1.5h 、700℃×1h 的煅烧料的矾土及典型水铝石和高铝矾土的差热曲线

图2 各原料及试样的差热曲线

对照分析:矾土生料在大约540℃时有一个大的吸热峰,说明其主要矿物是水铝石,经过600℃×1h 煅烧后的矾土试样的差热曲线中530~540℃的吸热峰较小,说明水铝石在此温度下只有一部分分解,500~600℃间的微小的吸热峰可能是少量的高岭石所致;而在600℃×1.5h 、700℃×1h 轻烧料的试

样的曲线图上,500~600℃之间没有吸热峰

出现,说明试样已完全脱去了结构水,水铝石和高岭石已完全分解。

3.2 块状矾土煅烧后的结果分析

在做失重实验的基础上选取完全脱水的温度煅烧试块(约30mm ×30mm ×30mm )做强度试验,结果见表2。

以上数据表明矾土在700℃×1h 条件下煅烧后失重为该铝矾土理论的失重量,相应于这一煅烧温度,铝矾土具有最低的抗压强度。颗粒料最大脱水率的温度与块状料最小强度所对应的温度之间的差异(即颗粒料在

?61?矿产综合利用2001年

表2 不同煅烧温度不同保温时间

试样实验结果

编号煅烧温度

保温时间

h 失重 %

抗压强度

M Pa 16001.513.9>16026002.013.9>16036002.513.9>16046003.014.0>16057001.014.33367002.014.350

78001.014.35088002.014.36099001.014.386109002.014.3111116501.014.0>130126502.014.010*******.014.36014750

2.0

14.3

70

600℃×1.

5h 脱水率近恒定值,而在700℃×

1h 温度的块料有最低的抗压强度)是试块的

尺寸效应所致。

3.3 大块料矾土煅烧结果分析

大块料矾土(150mm ×150mm ×150mm )在700℃×1h 下煅烧后将其切割成最外层、中间层和最内层三部分九块料。其特征为:最外层呈土红色,最内层呈浅蓝色,中间层的颜色逐渐过渡,这说明大块料脱水扩散均比小块试样的慢,而且不均匀,测定其抗压强度,结果见图3。

图3 大块矾土不同位置与抗压强度的关系 从图3可以看出,试样从内到外强度逐渐减小,近似线性变化。而且各部位的强度均

低于小试块的抗压强度,达到了预期的目的。3.4 轻烧高铝矾土粉磨性实验(见表3)

表3 轻烧高铝矾土粉磨性实验结果

试样种类粉磨时间 m in 过筛粒度 目筛余 %

轻烧料12502.3

轻烧料2250接近0轻烧料3320<1生 料125022.5生 料225018.5死烧料

5

200

100

粉磨后的轻烧料在读数显微镜下观察,粒度在3~5Λm 的颗粒达到80%以上。以上数据表明,轻烧料的易磨性非常好,这同抗压强度的试验结果是吻合的。物料经过轻烧,晶粒内部结构发生了变化,使高铝矾土中离子键和共价键的键强减弱,在粉碎的过程中冲击能量容易使物质的离子键切断,并使一次粒子进一步细化,从而降低了颗粒的强度和硬度。

3.5 各种原料的活性检验对比分析

对超细粉来说,活性是其能否应用和应用价值高低的重要判据。矾土粉碎后生成的新生表面富有活性,其原因之一是固体微粉的分散度增大,成为具有开放型孔隙的结构状态。比表面积的增大使活性显著增大,同时分散还产生晶格的不规则和晶格缺陷,从而引起化学反应平衡状态和活化能等变化[3]。

经700℃×1h 轻烧的高铝矾土细粉制成的试样与生料和死烧料试样经高温煅烧后的检测结果示于图4~5。

图4 三种原料烧结温度与收缩率和气孔

率的关系曲线

图中表明,在1470℃煅烧轻烧料的气孔率略大于生料而小于死烧料,同时其抗折强

?

71?第2期李如椿:轻烧高铝矾土制备超细粉料的工艺

图5 三种原料不同烧结温度与抗折强度 的关系

度已超过生料和死烧料。煅烧温度大于1500℃时轻烧料试样的抗折强度已远远大于生料和死烧料的制品,并且其气孔率已很低(<5%),烧结致密。由此看出,轻烧料具有很高的活性,且其制品的抗折强度很高。

4 结 论

1.小块铝矾土在600℃×1.5h 煅烧可完全脱去结构水,而工业应用大块矾土应在700℃×1h 下煅烧,方能达到相同的低强度易磨性效果。

2.轻烧脱水的矾土具有良好的易磨性和优良的烧结性,轻烧料磨制的超细粉活性大,且其制品的烧结强度高、致密性好。因此用轻烧铝矾土的方法制备超细粉料是非常有效的。这将为低成本制备高铝矾土超细粉探索出一条新的途径。

[参 考 文 献]

1 韩行禄主编.不定形耐火材料[M ].北京:冶金工

业出版社,1994

2 M .V 斯温.Structure and p roperties of ceram ics

[M ].北京:科学出版社,1998

3 天津大学材料学院无机非金属材料科学与工程

系编.特种陶瓷粉体及成型工艺[M ].天津:天津大学出版社,1997

A New Technology for Production of Superf i ne Powder M a ter i a ls

by L ightly Si n ter i ng of Te -baux ite

L I R u 2chun

(H ebei In stitu te of T echno logy ,T angshan ,H ebei ,Ch ina )

Abstract :A new techno logy fo r p roducti on of sup erfine pow der m aterials by ligh tly sin tering of T e 2baux ite w as described in th is pap er .T h is techno logy have the advan tage of low 2co st and excellen t p roduct p roperties ,therefo re ,it has i m po rtan t pop u larizing value .Key words :B aux ite ;L igh tly sin tering ;Superfine pow der

※ ※ ※ ※ ※ ※ ※

重 要 启 事

为适应我国信息化建设需要,扩大作者学术交流渠道,本刊已加入《中国学术期刊(光盘版)》、中国期刊网和万方数据库系统《科技期刊群》。作者著作权使用费与本刊稿酬一次性给付,如作者不同意将文章编入该数据库,请在来稿时声明,本刊将做适当处理。

《矿产综合利用》编辑部

?81?矿产综合利用2001年

铝矾土的煅烧

铝矾土的煅烧 关键字: 铝矾土; 分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矾土的烧结; 1.铝矾土的加热变化 中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。 铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1)分解阶段(400~1200。C) 400~1200。C温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400。C时开始脱水,至450~600。C反应激烈,700~800。C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉。高岭石脱水后形成偏高岭石,950。C以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为: 表3-7 耐火材料用铝土矿的技术条件

注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表3-8 耐火材料用铝矾土精矿的技术条件 α-Al2O3·H2O(水铝石)→(400~600。C)→α-Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600。C)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600。C)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400。C或1500。C) 在1200。C以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石:3Al2O3+2SiO2→(≥1200。C)→3Al2O3+2SiO2(二次莫来石)在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400。C

复合肥造粒工艺比较

复合肥生产工艺一般有以下几种: 喷浆造粒,氨化造粒,高塔造粒,缓控释肥 -------------------------------------------------------------------------------- 采用氨化、二次脱氯造粒生产工艺,原理是将氯化钾与硫酸加入反应槽加热并在一定条件下反应,逸出的HCL气体经水吸收后可制得一定浓度的盐酸,生成的硫酸氢钾与稀磷酸混合后形成混酸。将该混酸与合成氨按比例在管式反应器反应,生成复肥料浆直接喷入转鼓造粒机中生成氮、磷、钾一定比例的硫基复合肥。具有造粒均匀、色泽光亮、质量稳定、养分足、易溶解和被作物吸收等特点,非凡是作种肥对种子相对安全。适宜各类土壤和小麦、玉米、瓜果、花生、蔬菜、豆类、花卉、果树等多种农作物及经济作物,适用于基肥、种肥、追肥、种肥、冲施。 这个是氨化造粒的解释,可我感觉这是喷浆造粒的解释 -------------------------------------------------------------------------------- 氨酸法工艺流程: 将多种基础肥料及添加剂按工艺配方要求分批计量,经混料机搅拌均匀后与返料一起,由电子计量皮带输送入造粒机内。 浓度98%或93%的硫酸经槽车外购入硫酸储槽存放,经泵打入硫酸稀释储槽并计量后供造粒所需。液氨经蒸发为气氨由管道输送入造粒机内。氨和硫酸在造粒机内的管道中连续反应直接进入造粒机料层进行造粒工作。物料在70~80℃温度和蒸汽的调节下在造粒机内团聚成粒。成粒的湿物料在皮带运输机上冷却硬化后,再进入烘干机干燥脱水。 烘干后的物料由提升机输送到筛分机,筛分后的大颗粒经破碎后与筛下细料一道返回造粒机再造粒。合格的颗粒经防潮、防结块的包膜处理后经风冷进入成品再次筛分、计量包装。包装好的成品由转运车运入库房存放。 造粒机所产生的废气由通风机抽出并送入尾气水洗装置系统洗涤。干燥热风由热风炉经热风机提供。烘干后的尾气经高效旋风除尘器除尘后由尾气风机送洗涤塔洗涤并由烟囱排空。出洗涤塔的洗涤水循环使用,部分泵入硫酸稀释储槽做稀释补充水用。经洗涤后的尾气排入大气。 喷浆造粒工艺可以参考磷肥与复婚肥料书。 --------------------------------------------------------------------------------

铝矾土的煅烧

铝矶土的嘏烧 关键字: 铝矶土; 分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矶土的烧结; 1.铝矶土的加热变化 中国铝矶土主要是D-K型,某些二级铝矶土含有勃姆石,个别的还含有一些白云母:有些三级铝矶土含有一定数量的地开石。 铝矶土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1) 分解阶段(400?1200。C) 400?1200。C温度范围为铝矶土的分解阶段。在该阶段,铝矶土中的水铝石和高岭石在400。C时开始脱水,至450?600。C反应激烈,700?800。C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉。高岭石脱水后形成偏高岭石,950。C以上 时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石 英。其反应式为: 表3-7耐火材料用铝土矿的技术条件

注:①拣选分级后的某一级铝矶土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50?300mm,若允许有小于50mm者, 其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表3-8耐火材料用铝矶土精矿的技术条件 济-A12O3 - H2O(水铝石)—(400 ?600。 C)— a -Al2O3(刚玉假象)+H2O f A12O3 - 2SiO2 - 2H2O(高岭石)—(400?600。C)—A12O3 - 2SiO2(偏高岭石)+H2O f 3(A12O3 ?2SiO2)(偏高岭石)—(400?600。C)— 3A12O3 ?2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200?1400。C或1500。C)在1200。C以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石:3A12O3+2SiO2 —( > 1200。 C)— 3A12O3+2SiO2 (二次莫来石)在二次莫来石化时,发生约10%的体积膨胀。同时在1300?1400。C 以下时铝矶土中

复合肥主要工艺技术和生产方法介绍

复主要工艺技术和生产方法介绍 (2011-06-08 11:06:52) 标签: 杂谈 一、综合颗粒状复混肥料的生产方法主要有以下几种: 1.料浆法以磷酸、氨为原料,利用中和器、管式反应器将中和料浆在氨化粒化器中进行涂布造粒,在生产过程中添加部分氮素和钾素以及其他物质,再经干燥、筛分、冷却而得到NPK复产品,这是国外各大化肥公司和工厂大规模生产常采用的生产方法。磷酸可由硫酸分解磷矿制取,有条件时也可直接外购商品磷酸,以减少投资和简化生产环节。该法的优点是既可生产磷酸铵也可生产NPK肥料,同时也充分利用了酸、氨的中和热蒸发物料水份,降低造粒水含量和干燥负荷,减少能耗,此法的优点是:生产规模大,生产成本较低,产品质量好,产品强度较高。由于通常需配套建设磷酸装置及硫酸装置,建设不仅投资大,周期长,而且涉及磷、硫资源的供应和众多的环境保护问题(如磷石膏、氟、酸沫、酸泥等),一般较适用于在磷矿加工基地和较大规模生产、产品品数不多的情况。如以外购的商品磷酸为原料,则目前稳定的来源和运输问题及价格因素是不得不考虑的,近年来,由于我国磷酸工业技术和装备水平的提高,湿法磷酸作为商品进入市场有了良好的条件,在有资源和条件的地区建立磷酸基地,以商品磷酸满足其它地区发展高浓度磷复肥的需要,正在形成一种新的思路和途径,市场需求必将促进这一行业发展,也必将解决众多地区原料磷酸的需求问题。拥有该种生产技术的外国公司主要有挪威的norsk hydro、西班牙incro、espindsea、法国的AZF、KT、美国的Davy/TVA等。国的主要生产厂家有:中阿化肥、贵溪化肥厂、云峰化工公司、南化磷肥厂、化工厂、金昌化工公司、鹿寨磷肥厂等。拥有相近于该种生产技术的国企业主要有的红日集团、科技大学、化工研究院等。 2.固体团粒法以单体基础肥料如:尿素、硝铵、氯化铵、硫铵、磷铵(磷酸一铵、磷酸二铵、重钙、普钙)、氯化钾(硫酸钾)等为原料,经粉碎至一定细度后,物料在转鼓造粒机(或园盘造粒机)的滚动床通过增湿、加热进行团聚造粒,在成粒过程中,有条件的还可以在转鼓造粒机加入少量的磷酸和氨,以改善成粒条件。造粒物料经干燥、筛分、冷却即得到NPK复料产品,这也是国际广泛采用的方法之一,早期的美国及印度、日本、泰国等东南亚国家均采用此法生产。该法原料来源广泛易得,加工过程较为简单,投资少,生产成本低、上马快,生产灵活性大,产品的品位调整简单容易,通用性较强,采用的原料均为固体,对原材料的依托性不强,由于是基础肥料的二次加工过程,因此几乎不存在环境污染问题,由于我国目前的基础肥料大部分为粉粒状,因此,我国中小型规模的复厂大多采用此种方法。目前,该种生产技术在国已日趋成熟。国最早开发和拥有该项生产技术和成套装备知识产权的单位为化工研究院。 3.部分料浆法近年来,在TVA尿素、硝铵半料浆法及团粒法的基础上,国又发展了利用尿液或硝铵溶液的喷浆造粒工艺-即部分料浆法,该技术利用了尿素和硝铵在高温下能形成高浓度溶液的特性(?95%),由于尿液或硝铵溶液温度高,溶解度大,液相量大的特点,以尿液或硝铵浓溶液直接喷入造粒机床层中,利用尿液或硝铵溶液提供的液相与其它固体

铝矾土

铝矾土 aluminous soil;bauxite 铝矾土又称矾土或铝土矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种地质来源极不相同的含水氧化铝矿石的总称。如一水软铝石、一水硬铝石和三水铝石(Al2O3·3H2O);有的是水铝石和高岭石(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的铝土岩或高岭石质粘土。铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物等等。 铝土矿的定义名称还不够统一,这与各个国家的资源情况及工业需求有关。各个时期名称也不一致,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于2.5者(A/S≥2.5),其小于此数值者则称为粘土矿或铝土页岩或铝质岩”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 目前,已知赋存铝土矿的国家有49个。我国有丰富的铝矾土资源,约37亿吨,居世界前列,与几内亚、澳大利亚、巴西同属世界铝矾土资源大国。但生产供耐火材料用的高铝矾土的国家只有圭亚那和我国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。 我国铝土矿资源比较丰富,在全国18个省、自治区、直辖市已查明铝土矿产地205处,其中大型产地72处(不包括台湾)。主要分布在山西、山东、河北、河南、贵州、四川、广西、辽宁、湖南等地。 用途 (1)炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 (2)精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 (3)用于耐火制品。高铝矾土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 (4)硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 (5)以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。

复合肥生产工艺介绍

复合肥的生产工艺介绍 目前颗粒状复混肥料的生产方法主要有料浆法、固体团粒法、部分料浆法、融熔法等,下面对这几种典型的生产方法作以介绍。 1.料浆法 以磷酸、氨为原料,利用中和器、管式反应器将中和料浆,在氨化粒化器中进行涂布造粒,生产过程中添加部分氮素和钾素以及其他物质,再经干燥、筛分、冷却而得到NPK复合肥产品,这是国内外各大化肥公司和大规模生产常采用的生产方法。 磷酸可由硫酸分解磷矿制取,有条件时也可直接外购商品磷酸,以减少投资和简化生产环节。该法的优点是: 既可生产磷酸铵也可生产NPK复合肥,同时也充分利用了酸、氨的中和热,蒸发物料水份,降低造粒水含量和干燥负荷,减少能耗,生产规模大,生产成本较低,产品质量好,产品强度较高。 由于通常需配套建设磷酸装置及硫酸装置,建设不仅投资大,周期长,而且涉及磷、硫资源的供应和众多的环境保护问题(如磷石膏、氟、酸沫、酸泥等),一般较适用于在磷矿加工基地和较大规模生产、产品品数不多的情况。如以外购的商品磷酸为原料,则目前稳定的来源和运输问题及价格因素是不得不考虑的,近年来,由于我国磷酸工业技术和装备水平的提高,湿法磷酸作为商品进入市场有了良好的条件,在有资源和条件的地区建立磷酸基地,以商品磷酸满足其它地区发展高浓度磷复肥的需要,正在形成一种新的思路和途径,市场需求必将促进这一行业发展,也必将解决众多地区原料磷酸的需求问题。拥有该种生产技术的外国公司主要有挪威的norsk hydro、西班牙incro、espindsea、法国的AZ F、KT、美国的Davy/TVA等。国内的主要生产厂家有: 中阿化肥有限公司、江西贵溪化肥厂、云南云峰化工公司、南京南化磷肥厂、大连化工厂、金昌化工公司、广西鹿寨磷肥厂等。

铝矾土煅烧技术及设备

铝矾土煅烧技术及设备 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

铝矾土煅烧技术及设备 1.铝矾土的加热变化 中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1)分解阶段(400~1200℃) 400~1200℃温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400℃时开始脱水,至450~600℃反应激烈,700~800℃完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐转变为刚玉。高岭石脱水后形成偏高岭石,950℃以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为: 3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) 表1 耐火材料用铝矾土矿的技术条件 注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表2 耐火材料用铝矾土精矿的技术条件 α-Al2O3·H2O(水铝石)→(400~600℃)→α-Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600℃)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400℃或1500℃) 在1200℃以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石: 3Al2O3+2SiO2→(≥1200℃)→3Al2O3+2SiO2(二次莫来石) 在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400℃以下时铝矾土中的Fe2O3、TiO2和其它杂质与Al2O3、SiO2反应既可形成液相,Fe2O3、TiO2也可进入莫来石的晶格形成固溶体。液相的形成,有助于二次莫来石化的进行,同时也为重晶烧结阶段准备了条件。 (3)重晶烧结阶段(1400~1500℃)

目前国内复合肥几种生产工艺

目前国内复合肥几种生 产工艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

目前国内复合肥几种生产工艺 目前在我国复合(混)肥制造中有以下几种工艺: 1)料浆法生产工艺技术,2)高塔造粒生产尿基复合肥工艺技术,3)熔体造粒法生产工艺技术,4)干粉物理团粒法生产工艺技术,5)掺混法生产工艺技术。 1.掺混法生产工艺技术 这种工艺在我国是最简单的复混肥生产工艺。 这种工艺或方法制造的复混肥叫掺混肥或BB肥。其特点是工艺简单,配比灵活,原料肥料仍然保持原状,比较直观,养分比例易于调整。但是其缺点是:肥料在运输和施用过程易于产生氮磷钾肥的分离,肥料易于吸湿结块。目前市场上大多数BB肥配方均属高氮、高钾、高浓度型,缺乏中、微量元素。 2.干粉物理团粒法生产工艺技术 干粉物理团粒造粒工艺技术是,根据需要,选择几种肥料原料干粉进行计量和混合,以粘结剂为胶结物在造粒机内成粒。干粉混合料的 造粒需加热,并用加水或加蒸汽的方法增加液相量,然后在滚动情况 下在(圆盘)或转鼓中团聚成一定粒径的复混肥颗粒。目前,这类工 艺中通常采用加酸(特别是加磷酸)和氨来增加液相量,并借所发 生的化学反应来提供热量,磷酸和氨反应生成的磷酸铵就成为复合 肥料中的组分。造粒机内的物料应控制最佳的温度 (50~80℃)和最佳的含水量%~%),以达到合适的成粒条件。以这种工艺制造的复 混肥,从肥料的氮磷钾组成上将与上述的BB肥没有实质性的差别。

只是把原来更小的粒(粉末),将其团结成颗粒。所以也可以说这种工艺制造的复混肥是深加工BB肥。 3.料浆法生产工艺技术 料浆工艺是硫酸、硝酸、磷酸或一些混合酸与氨反应的产物(有时也用酸与磷矿粉反应的产物)为氮磷料浆。然后在料浆中加入钾盐或直接把钾盐加至造粒机内,再把氮磷料浆喷入造粒机内,再高温下与钾盐反应制得氮磷钾三元复合肥料。这种工艺制造的复合肥中养分非常均匀,大小颗粒化肥中的养分含量和比例完全一致。颗粒的物理化学性状一流。肥料中氮的形态包括铵态氮和硝态氮,因此肥效比单一的尿素态或单一铵态的等氮磷钾肥料好 4.高塔造粒生产尿基复合肥工艺技术 这一工艺是近几年在我国复合肥生产工艺中出现的一项新工艺,也就高塔尿基复合肥工艺。它实际上就是把尿素熔融,熔融尿液经计量后用熔融泵送入混合器中,再将加热后的粉状磷酸一铵、氯化钾和添加剂(辅料) 等计量后加入加热器中加热,预热后的物料送入混合器与熔融尿液混合反应,充分混合成溶解度大且具有一定流动性的加成化合物料浆。随后靠自身重力流入位于造塔顶的旋转喷头中再喷雾成液滴,液滴从高塔顶部下降过程与上升的冷空气逆向接触传热,在空气中结晶、固化、冷却成成品颗粒。筛分出的大颗粒经破碎机破碎后和细粉一起作为返料重新加入加热器后循环使用。 高塔尿基复合肥的优点是

铝矾土铝土矿

铝矾土 1. 性质:铝矾土(aluminous soil ;bauxite )又称矾土或铝土矿,主要成分是,系含有杂质的水合氧化铝,是一种土状。白色或灰白色,因含铁而呈褐黄或浅红色。~4g/cm3,1~3,不透明,质脆。极难熔化。不溶于水,能溶于、氢氧化钠溶液。主要用于炼铝,制。铝土矿是含铝矿物和赤铁矿、针铁矿、高岭石、锐铁矿、金红石、钛铁矿等矿物的混合矿,是现代电解法炼铝的原料。 2.主要成分: 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种来源极不相同的含水氧化铝的总称。如一水软铝 石、和(Al2O3·3H2O);有的是水铝石和(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的或高岭石质。铝土矿一般是或外生作用形成的,很少有纯,总是含有一些杂质矿物,或多或少含有、铁矿物、钛矿物及碎屑等等。 铝土矿的定义名称还不够统一,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于者(A/S≥,其小于此数值者则称为粘土矿或铝土页岩或”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 3.产地分布: 世界:目前,已知赋存铝土矿的国家有49个,澳大利亚是世界上拥有铝矾土资源最多的国家。但生产供耐火材料用的高铝矾土的国家只有和中国,其他国家的铝

矾土含铁量高,多用于炼铝和研磨材料。近年的越南也有丰富的铝土矿资源,估计储量在 80 亿吨左右。 国内:中国铝土矿资源较为丰富,铝土矿资源总量预计可达50亿t,铝土矿保有在世界上居第七位,储量在世界上居第八位,与、、同属世界铝矾土资源大国。我国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的%(山西%、贵州%、河南%、广西%)。其他分布地区还有山东、、辽宁、、四川、重庆、、云南、海南等地。 类型:世界铝土矿的主要类型是三水铝石型。我国铝土矿的特点高硅、高铝和低铁,为一水硬铝石型,矿石中铝硅比在4~7之间[m(Al2O3)/ m(SiO2)]。福建、河南和广西有少量的三水铝石型铝土矿。 4.用途: 铝土矿用于金属用途(85%)、非金属用途(10%)及非冶练铝矾土应用。

铝矾土的用途和成分有哪些 3分钟带你了解铝矾土

铝矾土的用途和成分有哪些 3分钟带你了解铝矾土 铝矾土又称矾土或铝土矿,是一种富含铝质矿物的化学或生物化学岩。主要矿物成分为一水硬铝石、一水软铝石、三水铝石。主要由铝硅酸盐类矿物受强热化学风化,带出溶解的氧化铝,搬运到海湖盆地沉积而成。是一种莫氏硬度在1到3之间的矿石,通常是冶炼铝和生产耐火材料的常用原矿石,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。密度3.9~4g/cm3,不透明,质脆,极难熔化,不溶于水,能溶于硫。那么铝矾土的用途有哪些呢?铝矾土的主要成分有哪些呢?下面千家信耐材的小编就给大家介绍一下关于铝矾土的介绍吧! 铝矾土的用途有哪些 1、炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 2、精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 3、用于耐火制品。高铝钒土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 4、硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 5、以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。 6、制造矾土水泥,研磨材料,陶瓷工业以及化学工业可制铝的各种化合物。 铝矾土成分有哪些? 铝矾土一般指煅烧过后的铝矾土熟料,是制作一系列耐火制品的主要原材料;铝矾土的煅烧过程中也是一种去杂质的过程,煅烧后用作耐火原料的矾土主要看的指标一般有以下几点: 1、铝(关系到耐火度的高低)

复合肥生产中注意的问题

复混肥生产中注意的问题 一、原料性质: 磷酸一铵 分子式:NH4H2PO4 结构式: 微溶于醇、不溶于丙酮,常温下稳定,无氧化还原性,遇高温、酸碱、氧化还原性物质不会燃烧、爆炸。 用途:农用化肥。 尿素 化学式:CO(NH2)2 CAS号:57-13-6 EINECS号:200-315-5 分子式:CH4N2O 分子量: 物化性质 性状:无色或白色针状或棒状结晶体,工业或农业品为白色略带微红色固体颗粒,无臭无味。含氮量约为%。 沸点:°C at760mmHg。 折射率:n20/D 。 闪点:°C。

密度:。 熔点:℃。 水溶性:1080 g/L (20℃)。 溶解性:溶于水、甲醇、甲醛、乙醇、液氨和醇[1],微溶于乙醚、氯仿、苯。弱碱性 对热不稳定,加热至150~160℃将脱氨成缩二脲。硫酸铜和缩二脲反应呈紫色,可用来鉴定尿素。若迅速加热将脱氨而三聚成六元环化合物三聚氰酸。(机理:先脱氨生成异氰酸(HN=C=O),再三聚。)氯化钾 中文别名:缓释钾;补达秀 CAS号:7447-40-7 分子式:KCl 分子量: 精确质量: 物理性质 外观与性状:白色晶体,味极咸,无臭无毒性。易溶于水、醚、甘油及碱类,微溶于乙醇,但不溶于无水乙醇,有吸湿性,易结块;在水中的溶解度随温度的升高而迅速地增加,与钠盐常起复分解作用而生成新的钾盐。 密度:at 25 °C(lit.) 熔点:770 °C(lit.) 沸点:1420°C

闪点:1500°C 折射率:n20/D 水溶解性:340 g/L (20 oC) 稳定性:稳定。与强氧化剂不相容,强酸。防潮。吸湿性。 储存条件:2-8oC 膨润土是以蒙脱石为主要矿物成分的非金属矿产,蒙脱石结构是由两个硅氧四面体夹一层铝氧八面体组成的2:1型晶体结构,由于蒙脱石晶胞形成的层状结构存在某些阳离子,如Cu、Mg、Na、K等,且这些阳离子与蒙脱石晶胞的作用很不稳定,易被其它阳离子交换,故具有较好的离子交换性。 主要化学成分是二氧化硅、三氧化二铝和水,还含有铁、镁、钙、钠、钾等元素,Na2O和CaO含量对膨润土的物理化学性质和工艺技术性能影响颇大,具有强的吸湿性和膨胀性,可吸附8~15倍于自身体积的水量,体积膨胀可达数倍至30倍;在水介质中能分散成胶凝状和悬浮状,这种介质溶液具有一定的黏滞性、触变性和润滑性;有较强的阳离子交换能力;对各种气体、液体、有机物质有一定的吸附能力,最大吸附量可达5倍于自身的重量;它与水、泥或细沙的掺和物具有可塑性和黏结性;具有表面活性的酸性漂白土(活性白土、天然漂白土-酸性白土)能吸附有色离子。 二、影响因素: 影响高浓度复合肥生产主要因素有以下几个方面:1)生产设备;2)工艺技术;3)原料的理化性状;4)生产配方以及添加的调理剂;

铝矾土的煅烧

铝矾土得煅烧 关键字: 铝矾土; 分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矾土得烧结; 1、铝矾土得加热变化 中国铝矾土主要就是D-K型,某些二级铝矾土含有勃姆石,个别得还含有一些白云母:有些三级铝矾土含有一定数量得地开石。 铝矾土得加热变化可分为三个阶段:分解阶段、二次莫来石化阶段与结晶烧结阶段。 (1)分解阶段(400~1200.C) 400~1200.C温度范围为铝矾土得分解阶段。在该阶段,铝矾土中得水铝石与高岭石在400。C时开始脱水,至450~600。C反应激烈,700~800.C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石得外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉.高岭石脱水后形成偏高岭石,950。C以上时偏高岭石转变为莫来石与非晶态SiO2,后者在高温下转变为方石英。其反应式为: 表3-7 耐火材料用铝土矿得技术条件

注:①拣选分级后得某一级铝矾土矿石中,其它级别矿石得混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量得10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显得块状或片状石灰石 表3-8 耐火材料用铝矾土精矿得技术条件 α-Al2O3·H2O(水铝石)→(400~600。C)→α—Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600。C)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600。C)→3Al2O 3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400。C或1500。C) 在1200。C以上,从水铝石脱水形成得刚玉与高岭石分解出来得

复合肥主要工艺技术和生产方法介绍

复合肥主要工艺技术和生产方法介绍 (2011-06-08 11:06:52) 标签: 杂谈 一、综合颗粒状复混肥料的生产方法主要有以下几种: 1.料浆法以磷酸、氨为原料,利用中和器、管式反应器将中和料浆在氨化粒化器中进行涂布造粒,在生产过程中添加部分氮素和钾素以及其他物质,再经干燥、筛分、冷却而得到NPK 复合肥产品,这是国内外各大化肥公司和工厂大规模生产常采用的生产方法。磷酸可由硫酸分解磷矿制取,有条件时也可直接外购商品磷酸,以减少投资和简化生产环节。该法的优点是既可生产磷酸铵也可生产NPK肥料,同时也充分利用了酸、氨的中和热蒸发物料水份,降低造粒水含量和干燥负荷,减少能耗,此法的优点是:生产规模大,生产成本较低,产品质量好,产品强度较高。由于通常需配套建设磷酸装置及硫酸装置,建设不仅投资大,周期长,而且涉及磷、硫资源的供应和众多的环境保护问题(如磷石膏、氟、酸沫、酸泥等),一般较适用于在磷矿加工基地和较大规模生产、产品品数不多的情况。如以外购的商品磷酸为原料,则目前稳定的来源和运输问题及价格因素是不得不考虑的,近年来,由于我国磷酸工业技术和装备水平的提高,湿法磷酸作为商品进入市场有了良好的条件,在有资源和条件的地区建立磷酸基地,以商品磷酸满足其它地区发展高浓度磷复肥的需要,正在形成一种新的思路和途径,市场需求必将促进这一行业发展,也必将解决众多地区原料磷酸的需求问题。拥有该种生产技术的外国公司主要有挪威的norsk hydro、西班牙incro、espindsea、法国的AZF、KT、美国的Davy/TVA等。国内的主要生产厂家有:中阿化肥有限公司、江西贵溪化肥厂、云南云峰化工公司、南京南化磷肥厂、大连化工厂、金昌化工公司、广西鹿寨磷肥厂等。拥有相近于该种生产技术的国内企业主要有山东的红日集团、四川成都科技大学、上海化工研究院等。 2.固体团粒法以单体基础肥料如:尿素、硝铵、氯化铵、硫铵、磷铵(磷酸一铵、磷酸二铵、重钙、普钙)、氯化钾(硫酸钾)等为原料,经粉碎至一定细度后,物料在转鼓造粒机(或园盘造粒机)的滚动床内通过增湿、加热进行团聚造粒,在成粒过程中,有条件的还可以在转鼓造粒机加入少量的磷酸和氨,以改善成粒条件。造粒物料经干燥、筛分、冷却即得到NPK复合肥料产品,这也是国际广泛采用的方法之一,早期的美国及印度、日本、泰国等东南亚国家均采用此法生产。该法原料来源广泛易得,加工过程较为简单,投资少,生产成本低、上马快,生产灵活性大,产品的品位调整简单容易,通用性较强,采用的原料均为固体,对原材料的依托性不强,由于是基础肥料的二次加工过程,因此几乎不存在环境污染问题,由于我国目前的基础肥料大部分为粉粒状,因此,我国中小型规模的复合肥厂大多采用此种方法。目前,该种生产技术在国内已日趋成熟。国内最早开发和拥有该项生产技术和成套装备知识产权的单位为上海化工研究院。 3.部分料浆法近年来,在TVA尿素、硝铵半料浆法及团粒法的基础上,国内又发展了利用尿液或硝铵溶液的喷浆造粒工艺-即部分料浆法,该技术利用了尿素和硝铵在高温下能形成高浓度溶液的特性(?95%),由于尿液或硝铵溶液温度高,溶解度大,液相量大的特点,

铝矾土煅烧技术及设备

铝矾土煅烧技术及设备 1.铝矾土的加热变化 中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1)分解阶段(400~1200℃) 400~1200℃温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400℃时开始脱水,至450~600℃反应激烈,700~800℃完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐转变为刚玉。高岭石脱水后形成偏高岭石,950℃以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为:3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) 表1耐火材料用铝矾土矿的技术条件 注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表2耐火材料用铝矾土精矿的技术条件 α-Al2O3·H2O(水铝石)→(400~600℃)→α-Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600℃)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400℃或1500℃) 在1200℃以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石: 3Al2O3+2SiO2→(≥1200℃)→3Al2O3+2SiO2(二次莫来石) 在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400℃以下时铝矾土中的Fe2O3、TiO2和

复合肥几种生产工艺的区别

复合肥几种生产工艺的区别 复合肥生产工艺一般有以下几种: 喷浆造粒,氨化造粒,高塔造粒,缓控释肥 另外氨化造粒和喷浆造粒之间有什么区别? 采用氨化、二次脱氯造粒生产工艺,原理是将氯化钾与硫酸加入反应槽加热并在一定条件下反应,逸出的HCL气体经水吸收后可制得一定浓度的盐酸,生成的硫酸氢钾与稀磷酸混合后形成混酸。将该混酸与合成氨按比例在管式反应器反应,生成复肥料浆直接喷入转鼓造粒机中生成氮、磷、钾一定比例的硫基复合肥。具有造粒均匀、色泽光亮、质量稳定、养分足、易溶解和被作物吸收等特点,特别是作种肥对种子相对安全。适宜各类土壤和小麦、玉米、瓜果、花生、蔬菜、豆类、花卉、果树等多种农作物及经济作物,适用于基肥、种肥、追肥、种肥、冲施。 氨酸法工艺流程:将多种基础肥料及添加剂按工艺配方要求分批计量,经混料机搅拌均匀后与返料一起,由电子计量皮带输送入造粒机内。 浓度98%或93%的硫酸经槽车外购入硫酸储槽存放,经泵打入硫酸稀释储槽并计量后供造粒所需。液氨经蒸发为气氨由管道输送入造粒机内。氨和硫酸在造粒机内的管道中连续反应直接进入造粒机料层进行造粒工作。物料在70~80℃温度和蒸汽的调节下在造粒机内团聚成粒。成粒的湿物料在皮带运输机上冷却硬化后,再进入烘干机干燥脱水。 烘干后的物料由提升机输送到筛分机,筛分后的大颗粒经破碎后与筛下细料一道返回造粒机再造粒。合格的颗粒经防潮、防结块的包膜处理后经风冷进入成品再次筛分、计量包装。包装好的成品由转运车运入库房存放。 造粒机所产生的废气由通风机抽出并送入尾气水洗装置系统洗涤。干燥热风由热风炉经热风机提供。烘干后的尾气经高效旋风除尘器除尘后由尾气风机送洗涤塔洗涤并由烟囱排空。出洗涤塔的洗涤水循环使用,部分泵入硫酸稀释储槽做稀释补充水用。经洗涤后的尾气排入大气。 喷浆造粒工艺可以参考磷肥与复婚肥料书。 高塔熔体造粒原理及工艺流程 高塔熔体造粒工艺技术是利用熔融尿素和磷酸一铵、氯化钾可以形成低共熔点化合物的特点,将粉状磷酸一铵、氯化钾、添加剂等各自加热后,加入熔融尿素中,通过反应生成流动性良好的NPK共熔体,再通过专用喷头喷入复合肥造粒塔,在空气中冷却固化成颗粒,获得养分分布均匀,颗粒性状较好的复合肥料。产品规格有:24-12-12,23-11-11, 24-0-24等。 生产流程主要分为三个部分:原料处理、造粒、冷却处理。见下图示。 高塔造粒技术主要利用了熔体造粒法技术。该技术最早应用于磷酸一铵(MAP)、硝酸磷酸铵(APN),尿素磷酸铵(UAP),在这些生产方法中,可以加入钾盐或其它固体物料生产颗粒状氮磷钾复合肥产品。按造粒方式的不同,熔体造粒法制复合肥工艺主要可分为:造粒塔喷淋造粒工艺,油冷造粒工艺,双轴造粒工艺,转鼓造粒工艺,喷浆造粒工艺,盘式造粒工艺,钢带造粒工艺等。造粒塔喷淋造粒工艺应用最早、最广泛的是单一氮肥(如尿素、硝酸铵等)的造粒,现已扩大到氮磷及氮磷钾复合肥料的造粒。荷兰斯塔米卡本公司曾用造粒塔喷淋造粒工艺生产硝酸磷酸铵钾;挪威海德鲁用造粒塔喷淋造粒制尿素磷酸铵及尿素磷酸铵

铝矾土贸易分析报告

铝土矿资源贸易 二〇一五年

目录 一、我国铝土矿产利用现状 (1) 二、国际铝土矿产资源供求状况 (1) (一)全球铝消费的增长拉动了铝土矿和氧化铝的需求 (1) (二)全球铝土矿供应情况 (2) 三、中国铝土矿国际贸易概况 (3) (一)中国铝土矿贸易格局的变化 (3) (二)铝土矿资源对外贸易状况 (6) 四、2015年国内铝业市场 (8) (一)产量屡创新高,供应压力加大 (8) (二)产业布局趋于合理,能源结构优化 (8) (三)价格震荡下行,回升动力不足 (9) (四)铝冶炼实现扭亏为盈,铝加工持续盈利 (9) (五)进出口贸易结构符合产业发展之基 (9) 五、铝土矿贸易市场前景分析 (10)

一、我国铝土矿产利用现状 铝土矿(铝矾土的学名)根据其所含的主要含铝矿物分为三水铝石、一水软铝石和一水硬铝石三种类型,铝土矿主要用于生产氧化铝。铝土矿是铝氧、陶瓷、耐火工业的天然原料,我国已探明储量25亿吨,占世界总储量2.4%,每年开采量占世界总开采量8%。铝土矿是可用尽且不可再生的宝贵资源,我国耐火材料约有65%属于Al2O3-SiO2系(实用耐火材料)产品,其中的65%左右产品都以铝土矿为原料,尤其近年来随着氧化铝生产的高速发展,过度地开采和生产加工致使我国铝土矿资源日趋匮乏,资源保有储量快速下降,高铝富矿供给矛盾更是严重突出。 二、国际铝土矿产资源供求状况 (一)全球铝消费的增长拉动了铝土矿和氧化铝的需求 铝土矿和氧化铝产业是紧密相连的,氧化铝价格随LME铝价变动,由运输及其他应用拉动的行业需求持续强劲增长,结构性变化在铝行业中继续存在。2004-2012年全球铝年增长率为6%,2009-2015预估将高达7.5%。预计到2020年,全球对铝的需求将超过7000万吨。 表1 全球冶金级氧化铝产量变化: 数据来源:国际铝业协会 表2 未来氧化铝供需格局

铝矾土生产应用工艺技术

1、以高铝矾土为主原料制作刚玉陶瓷制品的方法及其制品 2、铝矾土复合型阻燃发泡剂 3、铝矾土阻燃发泡剂 4、粉状铝矾土发泡剂 5、天然铝矾土矿用于制备精细氧化铝陶瓷的方法 6、利用低品位铝矾土制备陶粒支撑剂的生产工艺 7、一种不沾铝高铝矾土及其制备方法 8、一种适用于棕刚玉冶炼的均质铝矾土的制备方法 9、一种机械激活铝矾土制备自增韧陶瓷的方法 10、用铝土矿生产高铝矾土熟精粉的方法 11、一种纳米铝矾土改性的氯磺化聚乙烯橡胶密封垫及其制备方法 12、一种用废弃的铝矾土、硅藻土、油页岩渣制备白炭黑的方法 13、优质耐火用高铝矾土浮选分级生产技术 14、利用中低品位铝矾土矿生产均质耐火原料的方法 15、一种利用贫铝矾土制备页岩气专用压裂支撑剂的方法 16、一种含铝矾土的型砂及其制备方法 17、粉煤灰页岩铝矾土综合利用的新方法 18、壳聚糖包覆铝矾土印染废水絮凝剂及其制备方法 19、甲基硅油在铝矾土湿法球磨工艺中的应用 20、一种用吹氧法生产低碳铝矾土基电熔刚玉的方法 21、一种含有改性铝矾土的电容器薄膜及其制备方法 22、铝矾土复合型发泡剂 23、一种煅烧铝矾土改性的复合吸音材料及其制备方法 24、用铝矾土制取铝酸盐溶液的装置 25、铝矾土高强度支撑剂的制造方法 26、铸造用磷酸盐铝矾土涂料 27、用铝矾土进行脱硫的方法 28、铝矾土环保吸音板 29、一种建筑隔墙用轻质条板铝矾土粘结剂 30、一种高抗冲击的含有纳米铝矾土的皮碗橡胶材料 31、铝矾土竖窑燃烧装置 32、铝矾土尾矿压缩营养土的生产方法 33、一种耐热老化聚氨酯电缆料用改性铝矾土及其制备方法 34、一种变截面隧道窑煅烧高铝矾土的方法 35、酸化后的铝矾土 36、免烧铝矾土发泡吸音板 37、一种汽车塑料件用耐温纳米铝矾土改性聚苯硫醚材料 38、一种用中低品位铝矾土合成莫来石质轻质耐火材料的方法 39、一种综合利用造纸白泥、铝矾土和脱硫石膏制备硫铝酸盐水泥熟料的方法 40、铝矾土网状凝胶泡沫泥浆防灭火剂 41、一种耐高温高压胶管材料用改性铝矾土及其制备方法 42、一种熔模铸造用铝矾土型壳材料 43、一种铝矾土基致密均化料的原料配比及生产方法 44、铝矾土烧结窑除尘净化装置

铝矾土专业知识以及检测标准

铝矾土的化验标准 铝矾土,又名铝土矿,铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物其组成成分非常复杂。所以我们在使用时就需要对铝矾土进行质量化验。 铝矾土的化验标准: 2、根据铝土矿其他质量指标,分为不同类型:

3、用作高铝水泥的铝土矿石,其中含Fe2O3<2.5%,TiO2<1.0%,MgO<1.0%。 4、用作刚玉型研磨材料的铝土矿石,其中含FeO3<5.0%,Al2O3/SiO2>=15,TiO2<5.0%,CaO+MgO<=1.0%。 5、铝土矿石块度不得大于400mm。用作刚玉型研磨材料时,其块度为20-300mm。 6、铝土矿石中不得混入粘土、石灰岩等外来杂物。 铝矾土的生产都需要依据铝矾土的化验标准,这样才能保证铝矾土的质量,从而保证我国铝行业健康有序的发展。

铝矾土专业知识以及检测标准 1.概述 矾土矿学名铝土矿、。其组成成分异常复杂,是多种地质来源极不相同的含水矿石的总称。如一水软铝石、一水硬铝石和三水铝石(Al2O3·3H2O);有的是水铝石和高岭石(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的铝土岩或高岭石质粘土。铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物等等。 铝土矿的定义名称还不够统一,这与各个国家的资源情况及工业需求有关。各个时期名称也不一致,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上) ,铝硅比值大于2.5者(A/S≥2.5),其小于此数值者则称为粘土矿或铝土页岩或铝质岩”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 目前,已知赋存铝土矿的国家有49个。我国有丰富的铝矾土资源,约37亿吨,居世界前列,与几内亚、澳大利亚、巴西同属世界铝矾土资源大国。但生产供耐火材料用的高铝矾土的国家只有圭亚那和我国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。 2.产地 我国铝土矿资源比较丰富,在全国18个省、自治区、直辖市已查明铝土矿产地205处,其中大型产地72处(不包括台湾)。主要分布在山西、山东、河北、河南、贵州、四川、广西、辽宁、湖南等地。 3.用途 (1)炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 (2)精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。

相关文档
最新文档