挖掘机的基本构造及工作原理

挖掘机的基本构造及工作原理
挖掘机的基本构造及工作原理

第二章挖掘机的基本构造及工作原理

第一节概述

一、单斗液压挖掘机的总体结构

单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和

驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成

工作装置、上部转台和行走机构等三部分。

工作装置——①动臂、②斗杆、③铲斗、④液

压油缸、⑤连杆、⑥销轴、⑦管路

上部转台——①发动机、②

减震器主泵、③主阀、④驾

驶室、⑤回转机构、⑥回转

支承、⑦回转接头、⑧转台、

行走机构——①履带架、②

履带、③引导轮、④支重轮、

⑤托轮、⑥终传动、⑦张紧

挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液

压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达+

减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回转

运动、整机的行走运动。

二、挖掘机动力系统

1、挖掘机动力传输路线如下

1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀

——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履

带——实现行走

2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转

3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——动臂油缸(液压能转化为机械能)——实现动臂运动

4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——斗杆油缸(液压能转化为机械能)——实现斗杆运动

5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——铲斗油缸(液压能转化为机械能)——实现铲斗运动

1、引导轮

2、中心回转接头

3、控制阀

4、终传动

5、行走马达

6、液压泵

7、发动机

8、行走速度电磁阀 9、回转制动电磁阀 10、回转马达 11、回转机构 12、回转支承

2、动力装置

单斗液压挖掘机的动力装置,多采用直立多缸式、水冷、一小时功率标定的柴油机。

3、传动系统

单斗液压挖掘机传动系统将柴油机的输出动力传递给工作装置、回转装置和行走机构等。单斗液压挖掘机用液压传动系统的类型很多,习惯上按主泵的数量、功率的调节方式和回路的数量来分类。有单泵或双泵单回路定量系统、双泵双回路定量系统、多泵多回路定量系统、双泵双回路分功率调节变量系统、双泵双回路全功率调节变量系统、多泵多回路定量或变量混合系统等六种。按油液循环方式分为开式系统和闭式系统。按供油方式分为串联系统和并联系统。

1、驱动盘

2、螺旋弹簧

3、止动销

4、摩擦片

5、减震器总成

6、消音器

7、发动机后部安装座

8、发动机前部安装座

凡主泵输出的流量是定值的液压系统为定量液压系统;反之,主泵的流量可以通过调节系统进行改变的则称为变量系统。在定量系统中各执行元件在无溢流情况下是按油泵供给的固定流量工作,油泵的功率按固定流量和最大工作压力确定;在变量系统中,最常见的是双泵双回路恒功率变量系统,有分功率变量与全功率变量之分。分功率变量调节系统是在系统的每个回路上分别装一台恒功率变量泵和恒功率调节器,发动机的功率平均分配给各油泵;

全功率调节系统是有一个恒功率调节器同时控制着系统中的所有油泵的流量变化,从而达到同步变量。

开式系统中执行元件的回油直接流回油箱,其特点是系统简单、散热效果好。但油箱容量大,低压油路与空气接触机会多,空气易渗入管路造成振动。单斗液压挖掘机的作业主要是油缸工作,而油缸大、小有腔的差异较大、工作频繁、发热量大,因此绝大多数单斗液压挖掘机采用开式系统;闭式回路中的执行元件的回油路是不直接回油箱的,其特点式结构紧凑,油箱容积小,进回油路中有一定的压力,空气不易进入管路,运转比较平稳,避免了换向时的冲击。但系统较复杂,散热条件差‘单斗液压挖掘机的回转装置等局部系统中,又采用闭式回路的液压系统的。为补充因液压马达正反转的油液漏损,在闭式系统中往往还设有补油泵。

4、回转机构

回转机构使工作装置及上部转台向左或向右回转,以便进行挖掘和卸料。单斗液压挖掘机的回转装置必须能把转台支撑在机架上,不能倾斜并使回转轻便灵活。为此单斗液压挖掘机都设有回转支撑装置和回转传动装置,它们被称为回转装置。

1、制动器

2、液压马达

3、行星齿轮减速器

4、回转齿圈

5、润滑油杯、

6、中央回转接头

全回转液压挖掘机回转装置的传动形式有直接传动和间接传动两种。

1)直接传动。在低速大扭矩液压马达的输出轴上安装驱动小齿轮,与会转齿轮啮合。

2)间接传动。由高速液压马达经齿轮减速器带动回转齿圈的间接传动结构形式。他结构紧凑,具有较大的传动比,且齿轮的受力情况较好。轴向柱塞液压马达与同类型的液压油泵结构基本相同,许多零件可以通用,便于制造及维修,从而降低了成本。但必须设制动器,以便吸收较大的回转惯性力矩,缩短挖掘机作业循环时间,提高生产效率。

5、行走机构

行走机构支撑挖掘机的整机质量并完成行走任务,多采用履带式和轮胎式。

6、履带行走机构

单斗液压挖掘机的履带式行走机构的基本结构与其他履带式机构大致相同,但他多采用两个液压马达各自驱动一个履带。与回转装置的传动相似可用高速小扭矩马达或低速大扭矩马达。两个液压马达同方向旋转式挖掘机将直线行驶;若只向一个液压马达供油,并将另一个液压马达制动,挖掘机将绕制动一侧的履带转向,若是左右两个液压马达反向旋转,挖

掘即将进行原地转向。

行走机构的各零部件都安装在整体式实行走架上。液压泵输入的压力油竟多路换向阀和中央回转接头进入行走液压马达,该马达将液压能转变为输出扭矩后,通过齿轮减速器传给驱动轮,最终卷绕履带以实现挖掘机的行走。

单斗液压挖掘机大都采用组合式结构履带和平板型履带——没有明显履刺,虽附着性能差,但坚固耐用,对路面破坏性小适用于坚硬岩石地面作业,或经常转场的作业。也有采用三履刺型履带,接地面积较大履刺切入土壤深度较浅,适宜于挖掘机采石作业。实行标准化后规定挖掘机采用质量轻、强度高、结构简单、价格较低的轧制履带板。专用于沼泽地的三角形履带板可降低接地比压,提高挖掘机在松土地面上的通过能力。

1、引导轮

2、履带架

3、托链轮

4、终传动

5、支重轮

6、履带板

7、中心护板

8、张紧弹簧

9、前护板

单斗液压挖掘机的驱动轮均采用整体铸件,能与履带正确啮合、传动平稳。挖掘机行走时驱动轮应位于后部,式履带的张紧段较短,减少履带的摩擦磨损和功率损耗。

每条履带都设有张紧装置,以调整履带的张紧度减少振动噪声摩擦磨损和功率损失。目前单斗液压挖掘机都采用液压张紧结构。其液压缸置与缓冲弹簧内部减小了结构尺寸。7、轮胎式行走机构

轮胎式挖掘机的行走机构由机械传动和液压传动两种。其中的液压传动的轮胎式挖掘机的行走机构主要由车架、前桥、后桥、传动轴和液压马达等组成。

行走液压马达安装在固定与机架的变速箱上,动力经变速箱、传动轴传给前后驱动桥,有的挖掘机经轮边减速器驱动车轮。采用液压马达的高速传动方式使用可靠,省掉了机械传动中的上下传动箱垂直动轴,结构简单布置方便。

1、车架

2、回转支撑

3、中央回转接头

4、支腿

5、后桥

6、传动轴

7、液压马达及变速箱

8、前桥

第二节挖掘机的工作装置

液压挖掘机工作装置的种类繁多(可达100余种),目前工程建设中,目前工程建设中应用最多的是反铲和破碎器。

1 、反铲结构

铰接式反铲式单斗液压挖掘机最常用的结构形式,动臂、斗杆和铲斗等主要部件彼此铰接,在液压缸的作用下各部件绕铰接点摆动,完成挖掘提升和卸土等动作。

图5-25 反铲工作装置

1-斗杆油缸;2-动臂;3-液压管路;4-动臂油缸;5-铲斗;6-斗齿;7-侧齿;

8-连杆;9-摇杆;10-铲斗油缸;11-斗杆

动臂

动臂是反铲的主要部件,其结构由整体式和组合式两种。

整体式动臂

整体式动臂的优点是结构简单,质量轻而刚度大。其缺点是更换的工作装置少,通用性较差,多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和弯曲动臂两种。其中的直动臂结构简单质量轻制造方便,主要用于悬挂式挖掘机,但它不能式挖掘机获得较大的挖掘深度不适用于通用挖掘机;弯动臂是目前是目前应用最广泛的结构形式,与同厂都得直动臂相比可以使挖掘机有较大的挖掘深度,但降低了卸土高度,这正符合挖掘机反铲作业的要求。

组合式动臂

组合式动臂有辅助连杆(或液压缸)或螺栓连接而成。上下动臂之间的夹角可用辅助连杆或液压缸来调节,虽然结构操作复杂化但在挖掘机作业中可随时大幅度调整上下动臂者间的夹角,从而提高挖掘机的作业性能,尤其是用反铲或抓斗挖掘窄而深得基坑时,容易得到较大距离的垂直挖掘轨迹,提高挖掘质量和生产率。组合式动臂的优点是,可以根据作业条件随意调整挖掘机的作业尺寸和挖掘能力,且调整时间短。此外他的互换工作装置多,可以满足各种作业的需要,装车运输方便。其缺点是质量大,制造成本高,用于中小型挖掘机上。

组合式动臂

(a)连杆下置(b)连杆上置

1、下动臂

2、上动臂

3、连杆或液压缸

2、铲斗

基本要求

1)铲斗的纵向剖面应适应挖掘过程各种物料的在斗中运动规律有利于物料的流动,使装土阻力最小,有利于将铲斗充满。

2)装设斗齿,以增大铲斗对挖掘物料的线压比,斗持及斗形参数具有较小单位切削阻力,便于切入及破碎土壤。斗齿应耐磨、易更换。

3)为式装载铲斗的物料不易掉出,斗款与直径之比应大于4∶1.

4)物料易于卸净,缩短卸载时间,并提高铲斗的容积效率。

结构反铲用的铲斗形状尺寸与其作业对象有很大关系。为了满足各种挖掘机作业的需要,在同一台挖掘机上可以配置多种形式的铲斗,图2-3、图2-4分别为反用铲斗的基本形式和常用形式铲斗的斗齿采用装配式,其形式有橡胶卡销式和螺连接式。

铲斗与液压缸连接的结构形式有四连杆机构和六连杆机构。其中四连杆机构连接方式是铲斗直接交接与液压缸,使铲斗转角较小,工作力矩变化较大;六连杆机构的特点是,在液压缸活塞行程相同的条件下,铲斗可以后的较大的转角,并改善机构的传动特性。

图2-3

反铲斗

1-齿座;2-斗齿;3-橡胶卡销;4-卡销;5、6、7-斗口板

图2-4 斗齿结构

a)螺栓连接方式;b)橡胶卡销连接方式

1-卡销;2-橡胶卡销;3-齿座;4-斗齿

3、液压破碎器

概述

液压破碎器(锤)是利用液压能转化为机械能,对外做工的一种工作装置,它主要用于打桩、开挖冻土层和岩层、可更换的作业工具(凿子、扁铲、镐)等组成。锤的撞击部分再双作用

液压缸作用下,在壳体内作往复直线运动,装机作业工具,完成破碎和开挖作业。液压破碎器通过附加的中间支撑与斗杆连接。为了减轻振动,在锤的壳体和支座的连接处常设有橡胶连接装置。

液压破碎器外观如图所示

液压破碎器经过近40年的发展,其规格和功率都大量增加,可靠性和工作效率也明显提高。其中最大的技术进步是“智能型液压破碎器“的诞生,其特点是能根据岩石的阻力自动调节输出功率,当岩石被击穿是,自动切断功率输出,避免空打、损坏工具和固定销。

液压破碎器的选用

根据液压挖掘机主机总重选择液压破碎器。它与主机的匹配十分重要,其中主要匹配参数主要有两个:一是主机液压泵的压力和流量;另一个是主机的总重。选用是既要考虑充分发挥液压破碎器的工作效率,又要考虑挖掘机的稳定性和结果的耐久性。因此,针对需安装液压破碎器的挖掘机机型,根据提供的液压破碎器与主机总重的匹配范围表,可利用下列公式予以校核:G<(W+γq) (N)

式中 G——液压破碎器总重,N;G=G1+G2+G3,其中G1为支座总重,G2+为破碎器重量,G3为作业工具(如凿子、扁铲、镐等)量,

W——标准铲斗的重量。

γ——砂土容量,一般取1600N/m3

q——标准铲斗容量;m3

若液压破碎其总重(G)为标准斗容量(W)和铲斗中沙土中重量(γq)总和的90%以下时,则可以认为破碎器的选择是正确的。

液压破碎器的基本工作原理

首先、用钢凿将活塞向上推至打击点位置。

1. 活塞上升

图1表示活塞打击钢凿时的位置。

活塞的反向腔与高压腔连通,活塞因上部承压面与下部承压面的面积差之故而上升。

活塞上升,压缩了气体缓冲室内充入的气体。

2. 滑阀上升

图2表示活塞上升过程。

活塞一上升,液压先导腔与低压腔连通,滑阀下部承压面的作用力大于上部承压面的作用力,滑阀上升。

3. 活塞下降(打击)

图3表示活塞上升至上顶部状态。

活塞的反向腔经滑阀从低压腔连通至油箱。活塞上部承压面的作用力大于下部承压面的作用力,活塞下降。

此时,被压缩的气体发挥作用,加快活塞下降速度,打击钢凿。

4. 滑阀下降

图4表示活塞下降过程。

活塞一旦下降,液压先导腔与高压回路连通,滑阀因上部承压面与下部承压面的面积差之故而下降。

滑阀下降结束时如图1状态。从而进行连续打击。

第三节挖掘机的回转装置

一、回转装置

上部转台是液压挖掘机三大组成部分之一。在转台上除了有发动机、液压系统、司机室、平衡重、油箱等以外,还有一个很重要的部分——回转装置。液压挖掘机回转装置有转台、回转支撑和回转机构组成,如图3-1所示,回转装置的外座圈用螺栓与转台连接,带齿的内座圈与底架用螺栓连接,内外圈之间设有滚动体。挖掘机工作装置作用在转台上的垂直载荷、水平载荷、和倾覆力矩通过回转支撑的外座圈、滚动体和內座转传给底架。回转机构的壳体固定在转台上,用小齿轮与回转支撑内座圈上的齿圈相啮合.小齿轮可绕自身轴线旋转,又可绕转台中心线公转,当回传机构工作时就像对底架进行回转。

图3-1回转装置

1、转台

2、回转机构

3、回转支承

4、底架

液压挖掘机的回转装置必需能把转台支承在固定部分(下车)上。不能倾翻倒,并应使回转轻便灵活。为此,液压挖掘机都设置了回转支承装置(起支承作用)和回转传动装置(驱动转台回转),并统称为液压挖掘机的回转装置。

回转支撑

图3-2 转柱式回转支承

1-回转体;2-摆动液压缸;3-上轴承座;4-上支承轴;5-机架;6-下支承轴;7-下轴承座

二、回转支承的主要结构形式

1.转柱式回转支承

摆动式液压马达驱动的转柱式支承如图3-2所示。

它由固定在回转体1上的上、下支承轴4和6,上、下轴座3和7组成。轴承座用螺栓固定在机架5上。回转体与支承轴组成转柱,插入轴承座的轴承中。外壳固定在机架5上的摆动液压缸输出轴插入下支承轴6内,驱动回转体相对于机架转动。回转体常做成“匚”形,以避免与回转机构碰撞。工作装置铰接在回转体上,与回转体一起回转。

2.滚动轴承式回转支承

滚动轴承式回转支承实际上就是一个大直径的滚动轴承。它与普通轴承的最大区别是它的转速很慢。挖掘机的回转速度在5~11r/min之间。此外,一般轴承滚道中心直径和高度比为4~5,而回转支承则达10~15。所以,这种轴承的刚度较差,工作中要靠支承连接结构来保证。

滚动轴承式回转支承的典型构造如图3-3所示。内座圈或外座圈可加工成内齿圈或外齿圈。带齿圈的座圈为固定圈,用沿圆周分布的螺栓4、5固定在底座上。不带齿的座圈为回转圈,用螺栓与挖掘机转台连接。装配时可先把座圈1、3和滚动体8装好,形成一个完整的部件,然后再与挖掘机组装。为保证转动灵活,防止受热膨胀后产生卡死现象,回转支承应留有一定的轴向间隙。此间隙因加工误差和滚道与滚动体的磨损而变化。所以在两座圈之间设有调整垫片2,装配和修理时可以调整间隙。隔离体7用来防止相邻滚动体8间的挤压,减少滚动体的磨损,并起导向作用。滚动体可以是滚珠或滚柱。

图3-3 滚动轴承式支承

1-下座圈;2-调整垫片;3-上座圈;4、5-螺栓;6-内齿圈;7-隔离体;8-滚动体;9-油嘴;10-密封装置滚动轴承式回转支撑机构广泛应用于全回转的液压挖掘机上,它是在普通滚动轴承的基础上发展起来的,结构上相当于放大了的滚动轴承。它与传统的滚动轴承相比,具有尺寸小,结构紧凑,承载能力大,回转摩擦阻力小,滚动体与轨道之间的间隙小,维护方便,使用寿命长,易于实现三化等特点一系列优点,它与普通滚动轴承相比,又有其特点:普通的滚动轴承的内外座圈之间的刚度依靠轴与轴承座之间的装配来保证,而它则有转台和底架来保证;回转支撑的转速低,通常承受轴向载荷,因此轨道上的接触点的循环次数较少。

第四节挖掘机转台的布置

一、转台结构

转台的主要承载部分是由钢板焊接成的抗扭和抗弯刚度很大的相形框架结构主梁3,动臂及其液压缸就支撑在主梁的突耳1上。大型挖掘机的动臂支承多用双凸耳,而小型挖掘机多用单凸耳。主梁下有衬板和支撑环2与回转支承连接左右侧焊有小框架,作为附加承载部分。转台支承处应有足够的刚度,以保证回转支承的正常运转。如图所示。

(a)

(b)

(a)双凸耳式(b)单凸耳式

1、凸耳

2、支撑环

3、纵梁

二、转台布置

液压挖掘机工作时转台上部自重和荷载和的合力位置也是经常变化的,并偏向载荷方面,为平衡载荷力矩转台上的各个装置需要合理布置并在尾部设置配重,以改善转台下部结构的受力,减轻回转支撑磨损,保证整机的稳定性。

图3-16为国产WY160型全液压挖掘机的转台布置,发动机1是横向布置在转台尾部的图3-17为日产HC-300型半液压挖掘机的转台布置,发动机1是纵向布置在转台尾部的。

液压挖掘机的布置原则是左右对称,尽量做到质量均衡,较重的总成、部件靠近转台尾部。此外,还要考虑各个装置工作上的协调,维修方便等。有时转台布置受结构尺寸限制,重心偏离轴线,致使左右履带接地比压不等,影响走架结构强度和挖掘机的行驶能,此时可通过调整配重的重心来解决,如图3-18所示,图中x与x’分别为转台重心与配重中心偏离轴线值。

确定配重位置的布置原则是,使挖掘机重载、大幅度作业时的转台上部合力F R的偏心距e 与其空载小幅度时的合力F R’的偏心距e’大致相等,如图3-19所示。

液压挖掘机的布置原则是左右对称,尽量做到质量均衡,较重的总成、部件靠近转台尾部。此外,还要考虑各个装置工作上的协调,维修方便等。有时转台布置受结构尺寸限制,重心偏离轴线,致使左右履带接地比压不等,影响走架结构强度和挖掘机的行驶能,此时可通过调整配重的重心来解决,如图3-18所示,图中x与x’分别为转台重心与配重中心偏离轴线值。

确定配重位置的布置原则是,使挖掘机重载、大幅度作业时的转台上部合力F R的偏心距e与其空载小幅度时的合力F R’的偏心距e’大致相等,如图3-19所示。

图3-18调整配重的横向位置图3-19确定配重时的偏距

第五节挖掘机的行走装置

因为行走装置兼有液压挖掘机支撑和运行两大功能,因此液压挖掘机行走装置应尽量满足以下要求:

1)应有较大的驱动力,使挖掘机在软湿或高

低不平等不良地面上行走时具有良好的通过

性能、爬坡性能和转向性能。

2)在不增大行走装置高度的前提下,式挖掘

机具有较大的离地间隙,以提高其不平地面上

的越野性能。

3)行走装置具有较大的支撑面积或较小的接

地比压,,以提高挖掘机的稳定性。

4)挖掘机在斜坡下行时不发生下滑和超速溜坡现象,以提高挖掘机的安全性。

5)行走装置的外形尺寸应符合道路运行要求。

液压挖掘机的行走装置,按结构可以分为履带式和轮胎式两大类。

履带式行走装置的特点是,驱动力大,接比压小,因此越野性能和稳定性较好,爬坡能力大且转弯半径小,灵活好用。履带式行走装置在液压挖掘机上应用较普遍。

但履带式行走装置制造成本高,运行所速度低,运行和转向时消耗功率大零件磨损快,因此挖掘机长距离运行时需借助于其他运行车辆。

轮胎式行走装置与履带式的相比,优点是运行速度快、机动性能好,运行时不损坏路面,因而在城市建设中很受欢迎。缺点是接地比压大,爬坡能力小,挖掘机作业时需要用专门的支腿支撑,以确保挖掘机的稳定性和安全性。

1、履带式行走装置

组成与工作原理

履带式行走装置有四轮一带(即驱动轮、引导轮、支重轮、托伦以及履带)张紧装置和缓冲弹簧,行走机构,行走架(包括底架、横梁和履带架)等组成如图所示。

挖掘机运行时驱动轮在履带的紧边——驱动段及接地段产生一拉力,企图把履带从支重轮下拉出,由于支重轮下的履带与地面之间有足够的附着力。阻止履带的拉出。迫使驱动轮卷动履带,引导轮在把履带铺设在地面上,从而使挖掘机借助支重轮沿着履带轨道向前运行。

液压传动的履带行走装置,挖掘机转向时有安装在履带上分别有两台液压泵供油的行走马达通过对油路的控制,很方便地实现转向和就地转弯,以适应挖掘机在各种地面、场地上运动。图为液压挖掘机的转弯情况,图(a)为两个行走马达旋转方向相反,挖掘机就地转向。图(b)为液压泵仅向一个行走马达供油,挖掘机则绕着一测履带转向。

图(a)就地转向图(b)绕一侧履带转向结构

行走结构

行走架是履带式行走装置的承重骨架,它有底架、横梁、横梁和履带架组成,通常用16Mn 钢板焊接而成底架的连接转台,承受挖掘机上部载荷,并通过衡量传给履带架。

行走按结构形式可分为组合式和整体式两种。组合行走架的底架为框架结构,横梁为工字钢或焊接的箱形梁,插入履带架孔中,履带架通常采用下部敞开的“∏”形截面,两端呈叉形以便安装驱动轮、引导轮和支重轮。

组合式行走架的优点是,当需要改变挖掘机的稳定性和降低接地比压时。不需要改变底架的结构就能换装加宽的横梁和加长履带架,从而、安装不同长度和宽度的履带。他的缺点是,履带架截面削弱较多,刚度较差,并且截面削弱处易产生裂缝。

为克服上述缺点,越来越多的液压挖掘机采用整体式行走架,它结构简单,自重轻,刚度大,制造成本低。支重轮直径较小,在行走装置的长度内,每侧可安装5~9个支重轮,这样可使挖掘机上部均匀地传至地面,便于在承能力较低的地面使用,提高行走性能。

四轮一带

有履带和轮驱动轮、引导轮、支重轮、托轮组成的四轮一带,直接关系到挖掘机的工作性能和行走性能,其质量和制造成本约占整机的四分之一。

1)履带。挖掘机的绿带有整体式和组合式两种。

整体式履带是履带板上带啮合齿,直接与驱动轮啮合,履带板本身成为支重轮等轮子的滚动轨道,整体式制造方便,连接履带板的销子容易拆装,但磨损较快。

目前液压挖掘机上广泛采用组合式履带。它有履带板、链轨节和履带销轴和销套等组成。左右链轨接与销套紧配合连接,履带销轴插入销套有一定的间隙,以便转动灵活,其两端与另两个轨节孔配合。锁紧履带销与链轨节孔为动配合,便于整个履带的拆装。组合式履带的节距小,绕转性好,使挖掘机行走速度较快,销轴和硬度较高,耐磨,使用寿命长。

2)支重轮。支重轮将挖掘机的重量传给地面,挖掘机在不同地面上行驶时之中轮经常承受地面的冲击,因此支重轮所受的载荷较大。此外之中轮的工作条件也较恶劣,经常处于尘土中,有时还浸泡在泥水中,故要求良好的密封性。支重轮常用35Mn或50Mn钢铸造而成,轮面淬火硬度为HRC48~57,以获得良好的耐磨性。。支重轮多采用滑动轴承支撑,并用浮动油封防尘。

双边支重轮

单边支重轮

支重轮的结构如上图所示通过两端轴固定在履带架上。支重轮的轮边凸缘,其支持履带的作用,以免履带行走时横向脱落。为了在有限的长度上多安排几个支重轮,往往把支重轮中的几个做成无外凸缘的,并把有无外凸缘的支重轮交替排列。

润滑滑动轴承及油封的润滑油脂从支重轮体中间的螺塞孔加入,通常在一个大修期内只加注一次,简化了挖掘机平时的保养工作。

托轮与支重轮的基本相同。

3)引导轮。引导轮用来引导履带正确绕转,防止其跑偏和越轨。多数液压挖掘机的引导轮同时起到支重轮的作用,这样可增加履带对地面的接触面积,减小接地比压。引导轮的轮面制成光面,中间有挡肩环做为导向用,两侧的环面则支撑轨链。引导轮与最靠近的支重轮的距离愈小,则导向性愈好。

引导轮通常用40、45号钢或35Mn钢铸造、调质处理,硬度为HB230~270.

引导轮

为了使引导轮充分发挥其作用并延长其使用寿命,其轮面对中心孔的径向跳动要≤3mm,安装时要正确对中。

4)驱动轮液压挖掘机发动机的动力是通过行走马达和驱动轮传给履带的,因此驱动轮应与履带的链轨啮合正确、传动平稳,并且当履带因销套磨损伸长时仍能很好地啮合。

驱动轮通常位于挖掘机行走装置的后部,使履带的张紧段较短,以减少其磨损和功率消耗。

驱动轮安轮体构造可分为整体式和分体式两种。分体式驱动轮的轮齿被分为5~9片齿圈,这样部分轮齿磨损时不必卸下履带便可更换,在施工现场修理方便其降低挖掘机维修工成本。

按齿轮节距的不同齿轮有等节距和不等节距两种。其中等节距的齿轮使用较多,而不等节距的齿轮则是新型结构,它的齿数较少,且有两个齿的节距较小,其余齿的节距均相等,如图所示不等节距驱动轮在履带包角范围内只有两个轮齿同时啮合,并且驱动轮的轮面与链轨节踏面相接触,因此一部分驱动扭矩便有驱动轮的轮面来传递,同时履带中最大的张紧力也有驱动轮面承受,这样就减少了轮齿的受力,减少了磨损,提高了履带的使用寿命。

因此驱动轮工作时受履带销套反作用的弯曲压应力,并且轮齿与销套之间有磨料磨损,因此驱动轮应采用淬透性较好的钢材,如50Mn、45SiMn等,其中频淬火,低温回火,使其硬度达HRC55~58.

不等节距的驱动齿轮

张紧装置

液压挖掘机的履带式行走装置使用一段时间后由于链轨销轴的磨损会使节距增大,并使整个履带伸长,导致摩擦履带架、履带脱轨、行走装置噪音大等,从而影响挖掘机的行走性能。因此每条履带必须装张紧装置,使履带经常保持一定的张紧度。

1.支座2.轴 3.油缸4.活塞 5.端盖 6.弹簧前座7.大缓冲弹簧

8.小缓冲弹簧 9.弹簧后座 10.螺母 11.端盖 12.衬套

13.油封 14.耐磨环 15.油封 16.注油嘴 17.油塞油缸3和引导轮架的支座1、轴2,用螺栓连接成一体,以推动引导轮伸缩,活塞4装于油缸中,油封15封住活塞和油缸腔中的黄油,当从注油嘴16注入压力黄油时,则推压活塞右移,活塞推压推杆18,推杆又推压弹簧前座6、弹簧前座则压缩大小弹簧7和8,这样,在引导轮和弹簧之前就形成了一个弹性体,对履带施加的冲力进行缓冲,消除冲击负荷,减少冲击应力,提高使用寿命,螺塞17是放黄油使用的,当履带张紧度过大时,则慢慢旋转螺塞17,使黄油慢慢挤出,不可一下旋松太多,以免黄油射出伤人。从注油嘴注入黄油压力过大时,可活动推土机作为辅助手段,以使黄油易于注入。

挖掘机基本构造工作原理

第一部分:挖掘机 第一章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 上部转台——①发动机、② 减震器主泵、③主阀、④驾 驶室、⑤回转机构、⑥回转 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、○11 控制油路、○12电器部件、○13 配重 行走机构——①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履 带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——动臂油缸(液压能转化为机械能)——实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——铲斗油缸(液压能转化为机械能)——实现铲斗运动

挖掘机的工作原理

挖掘机的工作原理 液压挖掘机主要由发动机、液压系统、工作装置、行走装置和电气控制等部分组成。液压系统由液压泵、控制阀、液压缸、液压马达、管路、油箱等组成。电气控制系统包括监控盘、发动机控制系统、泵控制系统、各类传感器、电磁阀等。 液压挖掘机一般由工作装置、回转装置和行走装置三大部分组成。根据其构造和用途可以区分为:履带式、轮胎式、步履式、全液压、半液压、全回转、非全回转、通用型、专用型、铰接式、伸缩臂式等多种类型。 工作装置是直接完成挖掘任务的装置。它由动臂、斗杆、铲斗等三部分铰接而成。动臂起落、斗杆伸缩和铲斗转动都用往复式双作用液压缸控制。为了适应各种不同施工作业的需要,液压挖掘机可以配装多种工作装置,如挖掘、起重、装载、平整、夹钳、推土、冲击锤等多种作业机具。 回转与行走装置是液压挖掘机的机体,转台上部设有动力装置和传动系统。发动机是液压挖掘机的动力源,大多采用柴油要在方便的场地,也可改用电动机。

液压传动系统通过液压泵将发动机的动力传递给液压马达、液压缸等执行元件,推动工作装置动作,从而完成各种作业。 挖掘机液压系统是怎么工作的? 挖掘机有三个部分的液压缸分别是动臂,斗杆,铲斗。有三个液压马达,左右行走和一个回转。这些都由换向阀控制供油。油液从液压泵出来经换向阀分配到以上各执行元件。挖掘机的换向阀大多是液控的就是用一股压力较小的油推动换向阀的阀芯。一般中型挖掘机用的是三联泵,两个大泵提供工作所需要的压力。一个小齿轮泵给控制油路供油。控制油通过手柄下边的控制阀调节主油路换向阀阀芯的位置从而实现动臂斗杆和铲斗油缸的伸缩。以及液压马达的转与停以及转动方向。主油路设溢流阀,压力超过限定值就会打开,油液直接回油箱。所以系统压力始终保持在一定范围内。同样道理在各油缸的支路也设溢流阀,实现二次调定压力。不光是挖掘机,任何液压系统工作原理都是油箱中油液-泵-控制元件-执行元件-油箱。 液控比例阀换向阀的作用和液控比例阀换向阀串联的先导阀是什么作用 传统换向阀的进出油口控制通过一根阀芯来进行,两油口听开口对应关系早在阀芯设计加工时已确定,在使用过程中不可能修改,从而使得通过两油口的流量或压力不能进行独立控制,互不影响。

发电机结构及原理

**电站发电机结构及原理 一、**水电站发电机为三相凸极同步发电机,布置方式采用立轴全伞式、密闭自循环通风空气冷却的形式。 二、发电机主要由定子、转子、下机架、推力轴承及下导轴承、上机架及空气冷却系统、制动和顶起系统、灭火系统、自动化系统等零件组成。 1、三相凸极同步发电机:因转子绕组布置方式(48个磁极) 布置在转子机械体周围(对称挂在转子圆柱上),叫凸极,最重 要的一个原因,机组转速(低转速)的原因。 2、立轴全伞式:机组整体布置卧式或者立式(大中型机组一般 采用立式布置,卧式布置通常用于小型水轮发电机型机组和贯 流式机组。立式水轮发电机按导轴承支持方式又分为悬式和伞 式两种。伞式水轮发电机按导轴承位于上下机架的不同位置又 分为普通伞式、半伞式和全伞式,因酉酬电站机组是立式布置,发电机没有上导,因此为全伞式,所以为立轴全伞式。 3、密闭双路径无风扇自循环通风空气冷却的形式:发电机外部 及定转子端部全部密闭,由上下挡风板及风罩,组成上下对称 的风道,冷却空气由圆盘支架、磁轭、磁极转动时的离心力的 作用形成。由转子中心机械空洞上、下进入转子铁芯,再由转 子进入定子铁芯,带走热量后,经空气冷却器冷却,冷风再由 转子中心机械空洞上、下进入转子铁芯,如此循环,所以叫密 闭自循环通风空气冷却的形式。循环路径为:圆盘支架→磁轭

→磁极→定子→空气冷却器→机坑→圆盘支架。 三、发电机的主要技术参数: 1.发电机型号:SF60-48/9120(水轮发电机组、额定容量60MW、 磁极个数48、定子(焊接正十六边形)外接圆直径9120mm 2.额定容量:60MW/70.59MV A 3.额定定子电压:10.5kV 4.额定定子电流:3881.3A 5.额定励磁电压:340V 6.额定励磁电流:820A 7.额定功率因数:0.85滞后 8.额定频率:50Hz 9.额定转速:125r/min 10.飞翼转速:250r/min 11.绝缘等级:F/F 12.冷却方式:密闭双路径无风扇自循环通风空气冷却系统 13.励磁方式:静止可控硅 14.旋转方向:俯视顺时针 15.定子接线:2Y 四、原理:在水轮机中,水流通过蜗壳的导流作用径向流入导水机构, 将液体动能转化为静压能,再通过叶片将静压能转换为转子的动能,转轮通过主轴与发电机转子联轴,带动转子旋转并切割发电机定子磁力线圈,利用电磁感应原理在发电机线圈中产生高压电,再经过变压

挖掘机的结构与工作原理(正式版)

文件编号:TP-AR-L2615 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 挖掘机的结构与工作原 理(正式版)

挖掘机的结构与工作原理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 液压挖掘机主要由发动机、液压系统、工作装置、行走装置和电气控制等部分组成。液压系统由液压泵、控制阀、液压缸、液压马达、管路、油箱等组成。电气控制系统包括监控盘、发动机控制系统、泵控制系统、各类传感器、电磁阀等。 液压挖掘机一般由工作装置、回转装置和行走装置三大部分组成。根据其构造和用途可以区分为:履带式、轮胎式、步履式、全液压、半液压、全回转、非全回转、通用型、专用型、铰接式、伸缩臂式等多种类型。 工作装置是直接完成挖掘任务的装置。它由动

臂、斗杆、铲斗等三部分铰接而成。动臂起落、斗杆伸缩和铲斗转动都用往复式双作用液压缸控制。为了适应各种不同施工作业的需要,液压挖掘机可以配装多种工作装置,如挖掘、起重、装载、平整、夹钳、推土、冲击锤等多种作业机具。 回转与行走装置是液压挖掘机的机体,转台上部设有动力装置和传动系统。发动机是液压挖掘机的动力源,大多采用柴油要在方便的场地,也可改用电动机。 液压传动系统通过液压泵将发动机的动力传递给液压马达、液压缸等执行元件,推动工作装置动作,从而完成各种作业。以工地使用较多的PV-200型液压挖掘机为例。该机采用改进型的开式中心负荷传感系统(OLSS)。该系统用控制斜盘式变量柱塞泵斜盘角度(输出流量)的方法,减少了发动机的功率输

发电机励磁原理及构造

发电机原理及构造——发电机的励磁系统 众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二节管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路图。由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK 移相进行相位补偿。 二、三次谐波原理 左图为三次谐波原理图,对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE中进行励磁。 三、可控硅直接励磁原理 由左图可以看出,可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(A VR),控制可控硅的导通角来调节励磁电流大小而维持发电机端电压的稳定。 四、无刷励磁原理 无刷励磁主要用于西门子、斯坦福、利莱等无刷发电机。它是利用交流励磁机,其定子上的剩磁或永久磁铁(带永磁机)建立电压,该交流电压经旋转整流起整流后,送入主发电机的励磁绕组,使发电机建压。自动电压调节器(A VR)能根据输出电压的微小偏差迅速地减小或增加励磁电流,维持发电机的所设定电压近似不变。 中小型三相同步发电机的技术发展概况 一.概述 中小型同步发电机是中小型电机的主要产品之一,广泛应用于小型水电站、船舶电站、移动电站、固定电站、应急备用电站、正弦波试验电源、变频电源、计算机电源及新能源――风力发电、地热发电、潮汐发电、余热发电等。它对边(疆)老(区)贫(穷)地区实现电气化,提高该地区经济发展水平和人民的生活水平有着重要的作用,中小型发电机在船舶、现代电气化火车内燃机车等运输设备中也是一个关键设备。移动电站对国防设施、工程建设、海上石油平台、陆上电驱动石油钻机、野外勘探等也是不可缺少的关键装备之一。应急备用电站在突发事件中的防灾、救护保障人民的生命和财产的安全有着不可替代的作用。开发绿色能源、可再生能源、减少大气二氧化碳的含量,小水电、风力发电、地热发电和余热发电是重要的组成部分。 我国小型同步发电机的第一代产品是1956年电工局在上海组织的统一设计并于1957年完成的TSN、TSWN系列农用水轮发电机。第二代产品是在进行了大量试验研究和调查研究的基础上于1965年开始的T2系列小型三相同步发电机统一设计,该水平达到六十年代国际先进水平,为B级绝缘的有刷三相同步发电机。在这段时间还开发了ST系列有刷单相同

挖掘机的基本构造及工作原理分析

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 上部转台——①发动机、② 减震器主泵、③主阀、④驾 驶室、⑤回转机构、⑥回转 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、○11 控制油路、○12电器部件、○13 配重 行走机构——①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履 带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——动臂油缸(液压能转化为机械能)——实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——铲斗油缸(液压能转化为机械能)——实现铲斗运动

汽轮发电机结构与原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽

轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。 在发电机本体醒目的位置装设有铭牌,标出发电机的主要技术参数,作为发电机运行的技术指标。 (一)定子 发电机的定子由定子铁芯、定子绕组、机座、端盖及轴承等部件组成。 1.定子铁芯 定子铁芯是构成磁路并固定定子绕组的重要部件,通常由0.5mm或0.35mm厚,导磁性能良好的冷轧硅钢片叠装而成。大型汽轮发电机的定子铁芯尺寸很大,硅钢片冲成扇形,再用多片拼装成圆形。 2.定子绕组 定子绕组嵌放在定子铁芯内圆的定子槽中,分三相布置,互成120°电角度,以保证转子旋转时在三相定子绕组中产生互成120°相位差的电动势。每个槽内放有上下两组绝缘导体(亦称线棒),每个线棒分为直线部分(置于铁芯槽内)和两个端接部分。直线部分是切割磁力线并产生感应电动势的有效边,端接部分起连接作用,把各线棒按一定的规律连接起来,构成发电机的定子绕

挖掘机的基本构造及基本原理

液压挖掘机的基本原理与结构特征 1 液压挖掘机的组成和工作原理 液压挖掘机的工作原理与机械式挖掘机工作原理基本相同。液压挖掘机可带正铲、反铲、抓斗或起重等工作装置。 液压挖掘机是在动力装工与工作装盆之间采用了容积式液压传动系统(即采用各种滚压元件).直接控翻各系统机构的运动状态.从而进行挖掘工作的。液压挖掘机分为全液压传动和非全液压传动两种。若其中的一个机构的动作采用机械传动.即称为非全液压传动。例如.WY 一160型,WY -250璧和H121虽等即为全液压传动;WY -60型为非全液压传动.因为其行走机构采用机械传动方式。一般悄况下.对液压挖掘机.其工作装置及回转装置必须是液压传动.只有行走机构既可为液压传动.也可为机械传动。 (1)液压反铲挖掘机。 1)液压反铲挖掘机的组成。液压反挖掘机机结构示意图,它由工作装置、回转装置和运行装置三大部分组成。液压反铲工作装置的结构组成是:下动臂和上动臂,用辅助油缸来控制两者之间的夹角。依命下动臂油缸4.使动臂绕其下支点A进行升降运动。依靠斗柄油缸6.可使斗柄8绕其与上臂的铰接点摆动。问样.借助转斗油缸,.可使铲斗绕着它与斗柄的校接点转动。操纵控制阀,就可使各构件在油缸的作用下,产生所需要的各种运动状态和运动轨迹,特别是可用工作装置支撑起机身前部.以便机器维修。 2)液压反铲挖妇机工作原理。液压反铲挖翻机的工作原理如图4-16所示。工作开始时,机器转向挖拥工作面.间时.动份油缸的连杆腔进油.动,下降.铲斗落至工作面(见图中位盆11).然后,铲斗油缸和斗柄油缸顺序工作.两油缸的活塞腔进油,活班的连杆外伸.进行挖劫和装段(如从位盆田到I)。铲斗装润后(在位置ll》这两个油缸关闭,动份油缸关闭.动衡油缸就反向进油.使动,提升.随之反向接通回转油马达,铲斗鱿转至卸峨地点.斗柄油缸和铲斗油iti 反向进油.铲斗匆截。匆叔完毕后.回转油马达正向接通.上部平台回转.工作装,转回挖州位2,开始第二个工作循环。 在实际操作工作中.因土城和工作面条件的不间和变化.液压反铲的各油缸在挖拥循环中的动作配合是灵活多样的.上述的工作方式只是其中的一种挖月方法。 3)滚压反铲挖翻机的工作特点。液压反铲挖拥机叮用于挖拓机停机面以下的土镶挖扭工作.如挖蜂沟、基坑等。由于各油缸可以分别操纵或联合操纵.故挖拥动作显得更加灵活。护斗挖扭轨迹的形成取决于对各油缸的操纵。当采用动有油虹工作进行挖扭作业时(斗柄和铲斗油位不工作》.就可以得到最大的挖翻半径和最大的挖翻行程.这就有利于在较大的工作面上工作。挖翻的高度和挖扭的深度决定于动特的.大上倾角和下倾角,亦即决定于动价油缸的行程。 当采用斗柄油位进行挖翻作业时.铲斗的挖月轨进是以动份与斗柄的校接点为回心.以斗齿至此校接点的距离为半径所作的圈弧线.圈弧线的长度与包角由斗柄油缸行程来决定。当动,位于级大下倾角,采用斗柄油缸工作时.可得到最大的挖扭深度和较大的挖抽行程,在较坚硬的土质条件下工作时也能装摘铲斗.故在实际工作中常以斗柄油缸进行挖翻作业和平场工作。 当采用铲斗油缸进行挖拓作业时.挖拐行程较短。为便护斗在挖翻行程终了时能保证铲斗装脚土峨.需要有较人的挖翻力挖取较厚的土续。因此.铲斗油包一般用于清除障碍及挖翻。 各油IE组合工作的工况也较多。当挖抽荃坑时,由于深度要求大、基坑璧陡而平整,需要采用动衡会斗柄两油缸同时工作;当挖拓坑底时,挖掘行程将结束.为加速装摘铲斗和挖扭过程需要改变铲斗切削角度等.则要求采用斗柄和铲斗网时工作.以达到良好的挖掘效果并提高生产率。 根据液压反铲挖捆机的结构形式及其结构尺寸.利用作图法可求出挖掘轨进的包络图.从

挖掘机各部件的详细图解

挖掘机各部件的详细图解 一.反铲 铰接式反铲是单斗液压挖掘机最常用的结构型式,动臂、斗杆和铲斗等主要部件彼此铰接(见图1),在液压缸的作用下各部件绕铰接点摆动,完成挖掘、提升和卸土等动作。 图1 反铲 1—斗杆油缸;2—动臂;3—油管;4—动臂油缸;5—铲斗;6—斗齿;7—侧齿;8—连杆;9— 摇杆;10—铲斗油缸;11—斗杆 1.动臂 动臂是反铲的主要部件,其结构有整体式和组合式两种。 1)整体式动臂。其优点是结构简单,质量轻而刚度大。缺点是更换的工作装置少,通用性较差。多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和变动臂两种。其中的直动臂结构简单、质量轻、制造方便,主要用于悬挂式液压挖掘机,但它不能使挖掘机获得较大的挖掘深度,不适用于通用挖掘机;弯动臂是目前应用最广泛的结构型式,与同长度的直动臂相比,可以使挖掘机有较大的挖掘深度。但降低了卸土高度,这正符合挖掘机反铲作业的要求。 2)组合式动臂。如图2所示,组合式动臂用辅助连杆或液压缸3或螺栓连接而成。上、下动臂之间的夹角可用辅助连杆或液压缸来调节,虽然使结构和操作复杂化,但在挖掘机作业中可随时大幅度调整上、下动臂之间的夹角,从而提高挖掘机的作业性能,尤其在用反铲或抓斗挖掘窄而深的基坑时,容易得到较大距离的垂直挖掘轨迹,提高挖掘质量和生产率。组合式动臂的优点是,可以根据作业条件随意调整挖掘机的作业尺寸和挖掘力,且调整时间短。此外,它的互换工作装置多,可满足各种作业的需要,装车运输方便。其缺点是质量大,制造成本高,一般用于中、小型挖掘机上。 2.反铲斗 反铲用的铲斗形式,尺寸与其作业对象有很大关系。为了满足各种挖掘作业的需要,在同一台挖掘机上可配以多种结构型式的铲斗,图3为反铲常用铲斗形式。铲斗的斗齿采用装配式,其形式有橡胶卡销式和螺栓连接式,如图4所示。

挖掘机的基本构造及工作原理演示教学

挖掘机的基本构造及 工作原理

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机 构、辅助设备和驾驶室等都安装在可回转的平台上,通常称为上部转台。因此 又可将单斗液压挖掘机概括成工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲 斗、④液压油缸、⑤连杆、⑥销轴、⑦ 管路 上部转台——①发动 机、②减震器主泵、③ 主阀、④驾驶室、⑤回 转机构、⑥回转支承、 ⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油 箱、○11控制油路、○12电 行走机构——①履带 架、②履带、③引导 轮、④支重轮、⑤托 轮、⑥终传动、⑦张紧挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械 能转换成液压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转 马达+减速机、行走马达+减速机),由各执行元件再把液压能转化为机械能, 实现工作装置的运动、回转平台的回转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下

1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——动臂油缸(液压能转化为机械能)——实现动臂运动4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——斗杆油缸(液压能转化为机械能)——实现斗杆运动5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——铲斗油缸(液压能转化为机械能)——实现铲斗运动

挖掘机电气控制系统

挖掘机电气控制系统 本篇将以SY2XXC5挖掘机为例讲述挖掘机的电气系统基本原理、基本构造、操作说明、故障分析。 一、概述 机电一体化是液压挖掘机的主要发展方向,其最终目的是机器人化,实现全自动运转,这是挖掘机技术的又一次飞跃。作为项目机械主导产品的液压挖掘机,在近几十年的研究和发展中,已逐渐完善,其工作装置、主要结构件和液压系统已基本定型。人们对液压挖掘机的研究,逐步向机电液控制系统方向转移。控制方式不断变革,使挖掘机由简单的杠杆操纵发展到液压操纵、气压操纵、电气操纵、液压伺服操纵、无线电遥控、电液比例操纵和计算机直接控制。所以,对挖掘机机电一体化的研究,主要是集中在液压挖掘机的控制系统上。 液压挖掘机电气控制系统主要是对发动机、液压泵、多路换向阀和执行元件<液压缸、液压马达)的一些温度、压力、速度、开关量的检测并将有关检测数据输入给挖掘机的专用控制器EC-7,EC-7控制器综合各种测量值、设定值和操作信号发出相关控制信息,对发动机、液压泵、液压控制阀和整机进行控制。 <一)电气控制系统具有以下功能: 1:控制功能:负责对发动机、液压泵、液压控制阀和整机的复合控制。 2:检测和保护功能:通过一系列的传感器、油压开关、蜂鸣器、熔断器和触摸屏等对挖机的发动机、液压系统、气压系统和工作状态进行检测和保护。 3:照明功能:主要有司机室厢灯、工作装置作业灯及检修灯。 4:其它功能:主要有刮雨器、喷水器、空调器和收放音机等。 <三)系统组成及原理 SY2XXC5挖掘机电气系统由电源部分、启动部分、照明部分、电气操纵机构、空气调节装置、音响设备、节能控制及故障诊断报警系统等组成。 2.1 电源部分 系统电源为直流24V电压供电、负极搭铁方式;采用2节12V 120AH蓄电池串联作发动机启动电源,由带内置硅整流和电压调节装置的交流发电机充电,以维持蓄电池电量和稳定系统电压;蓄电池输出端装设电源继电器,由钥匙开关控制,以增加电源系统的安全性。 1)蓄电池:采用12V 120AH免维护型蓄电池,2组串联。

挖掘机的工作原理

挖掘机的工作原理 挖掘机的工作原理 一.反铲 铰接式反铲是单斗液压挖掘机最常用的结构型式,动臂、斗杆和铲斗等主要部件彼此铰接(见图1),在液压缸的作用下各部件绕铰 接点摆动,完成挖掘、提升和卸土等动作。 反铲1—斗杆油缸;2—动臂;3—油管;4—动臂油缸;5—铲斗;6— 斗齿;7—侧齿;8—连杆;9—摇杆;10—铲斗油缸;11—斗杆 1.动臂 动臂是反铲的主要部件,其结构有整体式和组合式两种。 1)整体式动臂。其优点是结构简单,质量轻而刚度大。缺点是更换的工作装置少,通用性较差。多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和变动臂两种。其中的直动臂结构 简单、质量轻、制造方便,主要用于悬挂式液压挖掘机,但它不能 使挖掘机获得较大的挖掘深度,不适用于通用挖掘机;弯动臂是目前 应用最广泛的结构型式,与同长度的直动臂相比,可以使挖掘机有 较大的'挖掘深度。但降低了卸土高度,这正符合挖掘机反铲作业的 要求。 2)组合式动臂。如图2所示,组合式动臂用辅助连杆或液压缸3 或螺栓连接而成。上、下动臂之间的夹角可用辅助连杆或液压缸来 调节,虽然使结构和操作复杂化,但在挖掘机作业中可随时大幅度 调整上、下动臂之间的夹角,从而提高挖掘机的作业性能,尤其在 用反铲或抓斗挖掘窄而深的基坑时,容易得到较大距离的垂直挖掘 轨迹,提高挖掘质量和生产率。组合式动臂的优点是,可以根据作 业条件随意调整挖掘机的作业尺寸和挖掘力,且调整时间短。此外,它的互换工作装置多,可满足各种作业的需要,装车运输方便。其 缺点是质量大,制造成本高,一般用于中、小型挖掘机上。

2.反铲斗 反铲用的铲斗形式,尺寸与其作业对象有很大关系。为了满足各种挖掘作业的需要,在同一台挖掘机上可配以多种结构型式的铲斗,图3为反铲常用铲斗形式。铲斗的斗齿采用装配式,其形式有橡胶 卡销式和螺栓连接式,如图4所示。 3.组合式动臂 1—下动臂;2—上动臂;3—连杆或液压缸 常用铲斗结构 1—齿座;2—斗齿;3—橡胶卡销;4—卡销;5、6、7—斗齿板 二.正铲 单斗液压挖掘机的正铲结构如图5所示,主要由动臂2、动臂油 缸1、铲斗5、斗底油缸4等组成。 铲斗的斗底利用液压缸来开启,斗杆6是铰接在动臂的顶端,由双作用的斗杆油缸7使其转动。斗杆油缸的一端铰接在动臂上,另 一端铰接在斗杆上。其铰接形式有两种:一种是铰接在斗杆的前端; 另一种是铰接在斗杆的尾端。 动臂均为单杆式,顶端呈叉形,以便与斗杆铰接。动臂有单节的和双节的两种。单节的动臂有长短两种备品,可根据需要更换。双 节的动臂则由上、下两节拼装而成,根据拼装点的不同,动臂的工 作长度也不同。 斗齿安装形式 (a)螺栓连接;(b)橡胶卡销连接 1—卡销;2—橡胶卡销;3—齿座;4—斗齿 铲1—动臂油缸;2—动臂;3—加长臂;4—斗底油缸;5—铲斗;6— 斗杆;7—斗杆油缸;8—液压软管。

挖掘机的稳定性及挖掘机力等专业计算

液压挖掘机工作原理——专业术语解释 招聘(广告) 一土壤切削 1.挖掘阻力 挖掘阻力是指铲斗在挖掘过程中所遇到的土壤阻力,通常近似的认为它作用在斗尖上,并可依照挖掘轨迹的切线方向分解切向阻力P t和法向阻力Pn 。目前的粗略算法为: Pt=σbc Pn=ψPt 式中:σ为挖掘比阻力,由试验确定;b为斗宽;c为切削厚度;ψ为系数,由试验确定。 2.挖掘功 当不计土壤的松散系数和铲斗的装满系数时,为了在一定的挖掘行程中能装满铲斗,应有 q=bcL 式中:L为挖掘行程;q为斗容量;c为切削厚度。 所以 Pt=σ×b×c=σ q/L

即挖掘功: Pt L=σq 在挖掘过程中,Pn不做功,只有Pt做功,简称为挖掘功。当挖掘对象的土壤等级和铲斗容量以确定时,就可由上式来确定挖掘功P tL。 3. 液压缸所做的功 根据能量守恒定律,当不计损失时,液压缸在其行程上所做的功应等于挖掘功。 即 F△l≥PtL=σ×q 式中:F为液压缸的最大推力;△l为液压缸的行程。 上式是选择液压缸缸径的主要以据,对于反、正铲工作装置上式都是适用的。 4. 应用情况 若土壤等级和铲斗容量都相同,则液压缸所做的功也应相同。但在选择液压缸的缸径和行程上,各公司都具有自己的特点,见表1——2。 液压缸推力大小为 F=Pa 式中:p为工作压力;A为液压缸面积。

表1——2 缸径与行程比较表 公司名称液压缸面积A 液压缸行程△l 德马可大小 Komatsu 小大 利勃海尔中中 液压缸面积A大,推力F也大工作装置受力恶劣,焊接遇到的问题也增多。若液压缸面积A小,行程△l大,则液压缸刚度就差,易弯曲。因此,在设计时要综合考虑各种因素。 根据实践经验,挖掘机铲斗最小挖掘力值与铲斗宽度有关,每米斗宽最小需10吨以上的力, 铲斗挖掘力与斗杆挖掘力和整机重量有关,而铲斗挖掘力与斗杆挖掘力也有一定的比例关系: Fb/W=0.53~0.65 Fa/Fb=0.73~0.85 式中:Fa为斗杆挖掘力;Fb为铲斗挖掘力;W为整机重量。 二反铲工作装置的传动计算 1. 反铲斗与液压缸的连接方式见图1--2 ⑴图1——2(a)所示,铲斗缸直接绞接于铲斗上,由铲斗,斗杆及铲斗缸组成四连杆机构,一般铲斗转角较小,工作力矩变化较大,

第二章挖掘机基本构造与工作原理

第二章挖掘机的结构及工作原理 第一节挖掘机总体结构 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括动力装置、工作装置、回转机构、操纵机构、传动系统、行走机构和辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和驾驶 室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成工作 装置、上部转台和行走机构等三部分. 工作装置--动臂、斗杆、铲斗、液压油缸、连 杆、销轴、管路 上部转台——发动机、减震 器主泵、主阀、驾驶室、回 转机构、回转支承、回转接 头、转台、液压油箱、燃油 箱、控制油路、电器部件、 配重 行走机构——履带架、履 带、引导轮、支重轮、托轮、 终传动、张紧装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机—-联轴节——液压泵(机械能转化为液压能)-—分配阀—— 中央回转接头—-行走马达(液压能转化为机械能)—-减速箱——驱动轮—-轨链履带-—实 现行走 2)回转运动传输路线:柴油机——联轴节—-液压泵(机械能转化为液压能)-—分配阀-— 回转马达(液压能转化为机械能)——减速箱--回转支承-—实现回转 3)动臂运动传输路线:柴油机—-联轴节——液压泵(机械能转化为液压能)——分配阀—— 动臂油缸(液压能转化为机械能)—-实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)—-分配阀-— 铲斗油缸(液压能转化为机械能)——实现铲斗运动

交流发电机机结构和原理一体化教案

教案首页 系别教师班级 课型一体化课时 6 周次 日期地点 课题(章)汽车电气设备构造与维修第四章充电系统系统子课题(节)交流发电机机结构和原理 教学目标(1)掌握发电机的结构组成; (2)掌握发动机的工作原理; 教学重点及 难点重点:发电机的结构组成难点:发动机的工作原理 教学方法讲授法、练习法、、实物演示法等 教学器材及 设备 实训台架、实物教具、多媒体教学设备、动画等课后小结

审核人:日期: 教学过程教师活动学生活动【复习提问】 提出问题“蓄电池有哪些作用” 【新课引入】 汽车上蓄电池存储的电能是有限的,在它放电以后必须及时的补充充电,因此汽车上必须装备充电系统。充电系统一般由发电机、蓄电池、调节器、点火开关、充电指示灯组成(动画视频)。汽车使用的电源有蓄电池和发电机,其中交流发电机作为主要电源,蓄电池作为辅助电源,今天我们就来学习交流发电机。 【新课教授】 一、充电系统 充电系统一般由发电机、蓄电池、调节器、点火开关、充电指示灯组成。 1、发电机 发电机作为汽车运行中的主要的电源,担负着向启动系之外的所有用电设备供电的任务,并为蓄电池充电,目前,汽车普遍采用硅整流发电机。 2、调节器 发动机的转速变化时,发电机的输出电压也随之发生变化,发电机配有调节电压的电压调节器,以保持发电机输出的电压基本稳定,满足汽车用电设备对电压的要求。 3、充电状态指示装置 充电状态指示装置用于指示充电系统的工作情况,反应蓄电池是处于充电还是放电状态。 二、交流发电机的结构组成及原理 硅整流发电机的全称是硅整流交流发电机,俗称交流发电机。 普通硅整流发电机的构造一般由三相同步交流发电机和硅二极管整流器两部分组成。 三相同步交流发电机主要由转子、定子、前后端盖、电刷和电刷架以及皮带轮、风扇等部件组成。 图1 交流发电机的结构图 提问 讲授 提问 讲授 讲授 实物展示 思考 回答 回答 听讲 记笔记 听讲 观察

现代挖掘机液压图分解

Tap Locations Pressure,Sampling,and Sensor Tap Number Description Schematic Location AA Boom,Bucket,and Left Travel Control Pressure Tap D-15 BB Stick,Auxiliary,and Right Travel Pressure Tap D-14 CC Boom Swing,Swing,and Blade Control Pressure Tap D-14 DD Pilot Relief Valve Pressure Tap B-17 EE Pilot Pressure Tap(Future)B-16 FF Hydraulic Oil Manifold Tap(Future)F-7

Description Part Number Machine Location Schematic Location Control Valve(Attachment)-1F-13 Control Valve(Blade)191-13922F-10 Control Valve(Boom I)-3F-16 Control Valve(Boom II)-4F-9 Control Valve(Bucket)-5F-17 Control Valve(Main)-6F-17 Control Valve(Stick)-7F-13 Control Valve(Swing Boom)-8F-10 Control Valve(Swing)-9F-11 Control Valve(Travel,Left)-10F-15 Control Valve(Travel,Right)-11F-14 Control Valve,Pilot(Attachment)-12A-16 Control Valve,Pilot(Blade)-13C-5 Control Valve,Pilot(Boom and Bucket)-14J-4 Control Valve,Pilot(Stick and Swing)-15J-2 Control Valve,Pilot(Travel)-16F-3 Cooler(Hydraulic Oil)194-985117C-12 Cylinder(Blade)205-047718I-10 Cylinder(Boom)259-792619I-16 Cylinder(Bucket)215-223220I-17 Cylinder(Stick)191-195921I-13 Filter(Hydraulic Oil)120-875722B-13 Manifold(Oil)-23F-7 Manifold(Pilot)-24C-9 Motor(Left Travel)191-138425K-16 Motor(Right Travel)191-138426K-13 Motor(Swing)269-428327K-10 Pump(Blade/Swing Boom)-28C-14 Pump(Main)259-795429C-15 Component Locations

挖掘机发展、分类、构造 (1)

挖掘机 我们在各种施工现场都能看一种机械作业的身影,这种机械设备它 能快速、高效的完成施工作业,是施工作业中的一个主要机种,据统计,工程作业中60%以上的士石方量是靠它来完成的。它就是挖掘机,由此可见挖掘机在工程作业中所占有的重要性。 一、挖掘机的发展 自第一台挖掘机问世至今已有130多年的历史 16~18世纪的雏形阶段。 最早的挖掘机是以人力或畜力为动力用于挖深河底的浚泥船,铲斗容 量一般不超过0.2~0.3米。(图) 1833~1910年的蒸汽阶段。 1833~1836年,美国人W.S.奥蒂斯设计和制造了第一台以蒸汽机驱 动、铁木混合结构、半回转、轨行式的单斗挖掘机,生产率为35米3/时,但由于经济性差没有应用。(图) 1912年出现了汽油机和煤油机驱动的全回转式单斗挖掘机 20世纪初至40年代未,挖掘机进入动入和行走装置多样化的阶段。 50年代以后是液压化和大型化阶段。 50年代中期,联邦德国和法国相继研制出全回转式液压挖掘机,从此单斗挖掘机的发展进入一个新阶段。 从60年代起,液压挖掘机进入推广和蓬勃发展的阶段 各国挖掘机制造厂和品种增加很快,产量猛增,轮胎式行走装置广泛应用于液压挖掘机上 从80年代中期开始,应用机电液一体化技术的液压挖掘机开始逐步发展; 90年代,出现了各种型号、规格的液压挖掘机; 进入21世纪,世界各国的挖掘机制造厂家都开发出新一代液电控制一 体化的液压挖掘机。

现在液压挖掘机广泛活跃于建筑工程、采石场、矿山、水利工程等施工现场,其在机械设备市场上占有显著地位。 中国的挖掘机的发展也经历了一个较长的过程,1954年,抚顺重型机器厂从苏联引进机械式挖掘机(图);1961年7月试制成功了我国历史上第一台挖掘机(图) 随着国外机械的引进,现如今国内厂商也渐渐研制出挖掘机生产的核心技术,一台台国内生产的挖掘机开住施工前线。比如有徐工、夏工、柳工等等工程机械设备。 纵观历史,我们了解了挖掘机经历了由蒸汽驱动到电力驱动、内燃机驱动及现如今的机电液一体化技术的全自动液压式挖掘机的逐步发展过程。那么挖掘机在施工作业中是如何进行区分呢? 二、挖掘机的分类 1、按作业方式分:单斗挖掘机和多斗挖掘机 2、按驱动方式分:电驱动内燃机驱动复合驱动 3、按行走方式分:履带式和轮胎式 4、按工作装置分:正铲和反铲 三、挖掘机的基本构造 单斗液压挖掘机从结构上可分为三大部分:底盘总成工作装置总成上部平台总成 (一)、底盘总成功能(图) (1)支承整个挖掘机上部重量 (2)是行走和转向的动力源泉与执行机构 (3)支承工作装置挖掘时的反力 1、底盘主要组成(图) (1)车架本体(焊接件)-----整个底盘的主体,承载所有的内、外力及各种力矩,工作条件极其恶劣,对制件要求较高。左右履带梁平行度有一定要求,否则有较大的侧向力发生,对结构件不利。

发电机的组成及工作原理

发电机的组成及工作原理 <一> 发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。 <二>发电机的分类可归纳如下: 发电机分:直流发电机和交流发电机 交流发电机分:同步发电机和异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 <三>发电机结构及工作原理

发电机通常由定子、转子、端盖及轴承等部件构成。 定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。 转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 柴油发电机工作原理 柴油机驱动发电机运转,将柴油的能量转化为电能。 在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。 将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。

相关文档
最新文档