在螺栓组连接的结构设计中应注意哪些问题

在螺栓组连接的结构设计中应注意哪些问题
在螺栓组连接的结构设计中应注意哪些问题

一.在螺栓组连接的结构设计中应注意哪些问题?

1.连接合面得几何形状应尽量简单

2.螺栓的布置应使各螺栓的受力合理

3.螺栓排列应有合理的边距和间距

4.同一圆圈上螺栓数目,应尽量取4.6.8等偶数

5.避免螺栓承受附加弯曲载荷二.提高螺纹连接强度的措施主要有哪些?

1.改善螺纹牙上载荷分布不均现象2减小应力幅3避免附加弯曲应力4减小应力集中5采用合理的制造工艺

三.在下列工况下,选择哪类联轴器较好?试举出一种联轴器的名称

(1)载荷平稳,冲击轻微,两轴易于准确队中,则希望联轴器寿命较长

(2)载荷比较平稳,冲击不大,但两轴轴线具有一定程度的相对偏移

(3)机械在运动过程中载荷较平稳,但可能产生很大的瞬时过载,导致机器损坏

(4)安全联轴器在所传递的转矩超过规定值时,其中的链接元件便会折断,分离或大话,使传送终端,从而保护其他重要零件不至损坏

1.可选择刚性联轴器。如凸缘联轴器或套筒联轴器等

2.无弹性元件的挠性联轴器,如十字滑块联轴器或齿式联轴器,滚子联轴器

3.弹性元件的挠性联轴器,如弹性销联轴器或弹性套柱销联轴器,轮胎式联轴器,梅花形联轴器等

4.可选安全联轴器,如剪切销安全联轴器

5.机械在运动过程中载荷较平稳,但可能产生很大的瞬时过载,导致机器损坏

四.根据以下的工况条件,选择适合的联轴器

轻微冲击双万向联轴器,平稳凸缘,有冲击弹性柱销

一.带传动的主要失效形式是什么?带传送设计的主要依据是什么?

1打滑2带的疲劳损坏在保证不打滑的前提下,最大限度地发挥带传送的工作能力,同时保证带具有一定的疲劳强度和寿命

二.在带传动设计中,为何要限制带速?销带轮直径的选择应满足什么条件?为何要校核小带轮的包角?

1带速过高会使离心率增大,使带于带轮间的摩擦力减小,传动中容易打滑,单位时间内带绕过的次数也增多,降低带寿命,若带速过低则当传递功率一定时,使传递的圆周力增大,带的根数增多2带轮直径销使传动结构紧凑,且另一方面弯曲应力打,使带的寿命降低3大带轮的包角大于小带轮,小带轮易于打滑

三.带传动中,打滑是怎么产生的?试分析打滑的有利和有害的影响各式什么

打滑是由于过载所引起的带在带轮上的全面滑动,由于带在大轮上的包角大于小带轮包角,所以打滑发生在小带轮,打滑将造成带的严重磨损,带的运动处于不平稳状态,致使传动失效,工作中应该避免打滑传递的力超过极限有效拉力时,滑动范围扩大到整个接错,带便在带轮上打滑。打滑可防止损坏其他零件,不能保证准确的传动比

四.对于图示V带传动的四种布置方案,试分析比较其张紧轮位置的合理性,要求说明理由

(a)(b)张紧轮位于紧边,不合理(c)张紧轮装于松边内侧靠近大带轮处,张紧轮向外带不存在反向弯曲,虽然增加了带的弯曲应力循环次数,但是循环特性仍为脉动循环,对待的疲劳强度影响不大,两带轮的包角均减小,为降低小带轮包角的减小两,1应使张紧轮靠近大轮(d)张紧轮装于松边外侧,靠近小带轮处,张紧力向奶,两带轮包角均增大,张紧轮靠近小带轮处事为了提高小带轮的增大量,增大承载能力,但是带在反向弯曲,既增加了带的完全应力循环次数,又使带的弯曲应力变化,对称循环应力,降低了带的疲劳强度

一.蜗杆传动进行热平衡计算时,当油温过高或散热面积不足时,可采取哪些措施来提高散热能力?

1采用散热片得箱体2蜗杆轴装风扇通风3箱体内装冷却水管4压力喷油润滑

二.齿轮传动常见的实效形式有哪些?计算齿面接触疲劳强度是为了避免何种失效?计算齿根弯曲疲劳强度是为了避免何种失效?

1齿轮折断2齿面点蚀3齿面胶合4齿面胶合5齿面塑性变形

齿面点蚀齿轮折断

三.一对闭式软齿面直齿轮传动,其齿数与模数有2种方案(1)m=4mm,z1=20,z2=60;(2)m=2mm,z1=40,z2=120;其他参数都一样

(1)两种方案的接触强度和弯曲强度是否相同?

(2)若两种方案的完全强度都能满足,则那种方案比较好?

1接触相同,弯曲强度不同

2方案(2)好,在满足弯曲疲劳强度的基础上,将模数取得小些,齿数增多,改善了传动平稳性和载荷分配情况,模数小,滑动速度降低了磨损和胶合的可能性,同时也节省了材料

螺纹连接习题解答(讲解)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力:[σ]=σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁 间的 最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距 t0 不得大于 下表 所推荐的数值 扳手空间尺寸 螺栓间距 t 0 注:表中 d 为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成 4,6,8 等偶数,以便在圆周上钻孔时的分度 和画 线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上 保 证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图 2)等。

机械设计基础-螺栓联接实验要点

螺栓联接静、动态特性实验报告 专业班级 ___________ 姓名 ___________ 日期 2006-08-15 指导教师 ___________ 成绩 ___________ 一、实验条件: 1、试验台型号及主要技术参数 螺栓联接实验台型号: 主要技术参数: ①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。 ③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形计算长度L=88mm。 2、测试仪器的型号及规格 ①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2 二、实验数据及计算结果 1、螺栓联接实验台试验项目:空心螺杆 2、螺栓组静态特性实验 实测值理论值 预紧形变值(μm) 预紧应变值(με) 预紧力(N) 预紧刚度(N/mm) 预紧标定值(με/N)加载形变值(μm) 加载应变值(με) 加载力(N) 加载刚度(N/mm) 加载标定值(με/N)螺栓拉力 40 167 5187.7 129692.5 螺栓扭矩 113 177.1 八角环 126 0 5219.4 41172.2 挺杆 -2 -31.7 螺栓拉力 40 250 7766 194150.4 螺栓扭矩 342.8 八角环 126 7766 61635.1 挺杆 0 0 1463.9 -0.018443 0.0321915 0.1287509 0.0000000 0.0630915 0.0215039 0.3296382 0 45 182 5653.7 129692.5 120 185.2 118 0 6129.3 41172.2 -30 -475.7 45 281.25 8736.8 194150

螺栓组联接实验指导

实验二螺栓组联接实验指导书 一、实验目的 1.测试螺栓组联接在翻转力矩作用下各螺栓所受的载荷; 2.深化课程学习中对螺栓组联接受力分析的认识; 3.初步掌握电阻应变仪的工作原理和使用方法。 二、实验设备及工具 1.CQL-B多功能螺栓组联接综合实验台; 2.CQYJ-12静态电阻应变仪一台; 3.其它仪器工具:螺丝刀、扳手。 三、实验台结构及工作原理 图1 多功能螺栓组联接实验台结构 1.机座 2.测试螺栓 3.测试梁 4.托架 5.测试齿块 6.杠杆系统 7.砝码 8.齿板接线柱 9.螺栓1—5接线柱 10.螺栓6—10接线柱 11.垫片 多功能螺栓组联接实验台结构如图l所示,被联接件机座1和托架4被双排共10个螺栓2联接,联接面间加入垫片11(硬橡胶板),砝码7的重力通过双级杠杆加载系统6(1:75)增力作用到托架4上,托架受到翻转力矩的作用,螺栓组联接受横向载荷和倾覆力矩联合作用,各个螺栓所受轴向力不同,它们的轴向变形也就不同。在各个螺栓上贴有电阻应变片,可在螺栓中段测试部位的任一侧贴一片,或在对称的两侧各贴一片,如图2所示。各个螺栓的受力可通过贴在其上的电阻应变片的变形,用电阻应变仪测得。 实验台主要技术参数: 1.联接螺栓中段直径Φ6.5mm,两端螺纹M10,螺栓材料40Gr,其弹性模量E=206GPa; 2.加载杠杆比:1:75; 3.托架悬臂长L=214mm; 4.砝码:共3块(两块1Kg,一块0.5Kg)

静态电阻应变仪的工作原理如图3所示,主要由:测量桥、桥压、滤波器、 A /D 转换器、MCU 、键盘、显示屏组成。测量方法:由DC2.5V 高精度稳定桥压供电,通过高精度放大器,把测量桥桥臂压差(μV 信号)放大,后经过数字滤波器,滤去杂波信号,通过24位A /D 模数转换送入MCU(即CPU)处理,调零点方式采用计算机内部自动调零。送显示屏显示测量数据,同时配有RS232通讯口,可以与计算机通讯。 εK E U BD 4=? 式中: BD U ? ——工作片平衡电压差; E ——电阻应变系数; ε——应变值。 当工作电阻片由于螺栓受力变形,长度变化L ?时,其电阻也要变化 R ? ,并且R R ?正比于 L L ? , R ?使测量桥失去平衡。通过应变仪测 量出BD U ?的变化,测量出螺栓的应变量。电阻应变仪的工作原理如图3所示, 主要有测量桥、读数桥、毫安表等。工作电阻应变片和补偿电阻应变片分别接入电阻应变仪测量桥的一个臂,当工作电阻片由于螺栓受力变形,长度变化l ? 时,其电阻值也要变化R ? ,并且R R ? ,正比于l l ? ;R ?使测量桥失 去平衡,使毫安表恢复零点,读出读数桥的调节量,及为被测螺栓的应变量。

机械设计--螺栓组连接的设计

螺栓组连接的设计 各位评委老师: 上午好,今天我要进行说课的题目是《螺栓组连接的设计》。首先我们来进行教材分析。 一、教材分析 本节课出自本节课出自高等教育出版社出版的《机械设计》第八版第二篇连接中的第五章的第5节。本节贯穿了机械设计以后的整个教学,同时也是形成学生合理知识链的重要环节。学好本节知识不仅能使学生认识螺栓组连接的结构设计和学会螺栓组连接的受力分析,并且为后续的机械设计课程设计打下扎实的理论基础。 二、教学目标 根据上述教材分析,考虑到学生已有的认知结构心理特征,结合《机械设计》教学大纲要求,制定如下的教学目标: 1、知识目标 (1)了解键连接的主要类型和应用特点; (2)掌握平键连接的强度校核方法。 2、能力目标 (1)通过讲练结合,培养学生分析和解决问题的能力。 (2)通过本节课的教学使学生掌握键连接的设计方法。 (3)通过分组学习方式,培养学生与他人沟通交流,分工合作的能力。 3、情感目标 培养学生认真、细致的学习态度和从事工程技术工作认真、严谨的工作作风。 三、教学重点和难点 1、教学重点 在了解键连接的功能和平键连接的结构形式及应用后如何进行平键连接的强度校核。2、教学难点 如何根据实际要求进行键连接的选择和平键连接的强度校核方法。 为了讲清本节的重点和难点,使学生能达到本节课设定的教学目标,接下来我谈谈本节课的教法和学法。 四、教法 我们知道机械设计制造类专业是为了培养学生实际动手,解决现实生产中实际问题的能力。因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识,解决实际问题的思维过程。 考虑到大二的学生对专业知识的认知,我主要采取讲授法和互动法相结合,培养学生将课堂教学和自己主动认知学习结合起来的能力,引导学生全面地观察身边的事物,养成严谨细致、一丝不苟的科学态度。 当然教师自身也是非常重要的教学资源。教师应该通过课堂教学感染和鼓励学生的运用,充分调动学生参与课堂教学互动的积极性,激发学生对解决实际问题的渴望,并且要培养学生理论联系实际的能力,从而达到最佳的教学效果。 基于本节的内容特点,我主要采用以下的教学方法: 直观演示法:利用多媒体课件的手段进行直观的演示,激发学生学习兴趣,活跃课堂气氛,促进学生对知识的掌握。 案例分析法:以具体的工程案例引导学生对实际问题解决的能力。

螺栓组连接实验报告

螺栓组联接实验报告 专业班级: 姓名: 日期: 指导教师: 成绩: 一、实验条件: ⑴、实验台型号及主要规格 ⑵、测试仪器的型号及规格 ①静态应变仪 CQYJ-12 ②应变片:R=120,灵敏系数=2.2 二、实验数据及计算结果 ⒈螺栓组静态特性实验 螺栓号 1 2 3 4 5 6 7 8 9 10 零点应变0 0 0 0 0 0 0 0 0 0 预紧应变267 229 280 253 263 240 246 281 244 244 第一组με300 241 278 241 227 278 258 278 227 205 第二组με0 0 0 0 0 0 0 0 0 0 第三组με0 0 0 0 0 0 0 0 0 0 平均值με300 241 278 241 227 278 258 278 227 205 负荷应变33 12 -2 -12 -36 38 12 -3 -17 -39 应力/1000 δ61800 49646 57268 49646 46762 57268 53148 57268 46762 42230 预紧拉力 F1[N] 1824 1565 1913 1729 1797 1640 1681 1920 1667 1667 实验拉力 F2[N] 2050 1647 1899 1647 1551 1899 1763 1899 1551 1401 负荷拉力△F[N] 225 82 -14 -82 -246 260 82 -20 -116 -266 理论拉力 PN[N] 486 243 0 -243 -486 486 243 0 -243 -486 ⒉应力分布图

实验一 螺栓联接实验

实验一 螺栓联接实验 一、实验目的 1. 测试轴向工作载荷的紧螺栓联接的受力和变形的关系曲线(变形协调图); 2. 求螺栓刚度1C 、被联接件刚度2C 、相对刚度211 C C C ; 3. 试验预紧力和相对刚度对应力幅的影响,以考察对螺栓疲劳的影响。 二、实验设备和仪器 1. 实验机结构和工作原理 图1 LB-实验机结构简图 图1为型螺栓联接实验机结构图。手轮1相当于螺母,与螺栓杆2相连。套筒3相当于被联结件,拧紧手轮1就可将其预紧。在螺栓杆和套筒上均贴有电阻应变片,用电阻应变仪测量它们的应变来求受力和变形。测力环4是用来测量轴向工作载荷的。拧紧加载手轮(螺母)6使拉杆5产生轴向拉力,经过测力环4将轴向力作用到螺杆上。测力环上的百分表读数正比于轴向载荷的大小。 图2为LB-型实验机结构图 本实验的实验参数如下:

1)螺栓材料为45号钢、弹性模量2 511006.2mm N E ?=,螺栓杆直径 mm D 10=,变形计算长度mm L 1301=。 2)套筒材料为45号钢,弹性模量2 511006.2mm N E ?=,外直径mm D 31=和mm 32各一件,内直径mm D 5.271=,变形计算长度mm L 1302=。 3)测力环刚度=K /N 百分表1格。 4)电阻应变片灵敏度系数 。 2. 仪器 1)16-YJ 型数字电阻应变仪 2)18-YJ 型数字电阻应变仪 3)1810-PR 型预调平衡箱 1. 背紧手轮 2. 螺栓 3. 套筒 4. 测力环 5. 拉杆 6. 加载手轮 7. 电阻应变片 8. 百分表 9. 预紧手轮 图2 型实验机结构简图 三、实验原理 1. 力与变形协调关系 在螺栓联接中,螺栓受拉力,产生拉伸变形;被联结件受压力,产生压缩变形。根据螺栓和被联接件预紧力相等,可把二者的力和变形图线画在一个坐标系

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

螺栓组联接中螺栓的受力和相对刚性系数

螺栓组联接中螺栓的受力和相对刚性系数 一、实验目的 1.了解在受倾覆力矩时螺栓组联接中各螺栓的受力情况; 2.了解螺栓相对刚度系数即被联接件间垫片材料对螺栓受力的影响; 3.了解单个螺栓预紧力的大小对螺栓组中其它各螺栓受力的影响; 3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。 4.了解和部分掌握电阻应变片技术、计算机技术在力测量中的应用。从而验证螺栓组联接受力分析理论和现代测量技术在机械设计中的应用。 二.实验要求: 1.实验前预习实验指导书和教科书中有关本实验的相关内容; 2.实验中按指导教师要求和实验指导书中实验步骤进行实验,注意观察实验中各螺栓载荷变化情况,并能用螺栓组联接受力分析理论解释其现象; 3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。 4.按指导教师要求完成指定思考题。 三、实验设备: 1. 螺栓组实验台一台 2. 计算机一台 3. 10通道A/D转换板(包括放大器)一块 4. 调零接线盒一个 5. 25线联接电缆一条 四、实验原理 1. 机械部分: 当将砝码加上后通过杠杆增力系统可作用在被联接件上一个力P,该力对被联接件上的作用效果可产生一个力矩,为平衡该力矩,已加上预紧力的螺栓组中各螺栓受力状况会发生变化,且受力情况会因垫片材料不同而不同;螺栓所处位置不同而不同。测出各螺栓受力变化(如图11-2),即可检验螺栓组受力理论。 螺栓实验台(如图一)本体由①机座、②螺栓(10个)、③被联接件、④1 75的杠杆增力系统、⑤砝码(2—2kg,1—1kg)、⑥垫片六部分组成。 各螺栓的工作拉力F i可根据支架静力平衡条件和变形协调条件求出。设在M(PL)作用下接触面仍保持为平面,且被联接件④在M作用下有绕O-O线翻转的趋势(如图11-3)。为平衡该翻转力矩M,各螺栓将承受工作拉力F i;此时,O-O 线上侧的螺栓进一步受拉,螺栓拉力加大;O-O 线下侧的螺栓则被放松,螺栓拉力减小。

螺栓连接性能测试实验ya-2静载

螺栓连接性能测试实验指导书 ——(2) 螺栓组连接受力与相对刚度实验 一、实验目的 1、验证螺栓组连接受力分析理论; 2、了解用电阻应变仪测定机器机构中应力的一般方法。 二、实验设备和工作原理 螺栓组连接实验台由螺栓连接、加载装置及测试仪器三部分组成。如图1所示螺栓组连接是由十个均布排列为二行的螺栓将支架11和机座12连接起来而构成。加载装置是由具有1:100放大比的两极杠杆13和14组成,砝码力G经过杠杆放大而作用在支架上的载荷为P,因此,连接接触面将受有横向载荷P和翻转力矩M。 M? = (N·㎜) P l = (N) P100 G 式中l—力臂(㎜) 由于P和M的作用,在螺栓中引起的受力是通过贴在每个螺栓上的电阻应变片15的变形并借助电阻应变仪而测得。电阻应变仪是通过载波电桥将机械量转换成电量实现测量的。如图2所示,将贴在螺栓上的电阻应变片1作为电桥一个桥臂,温度补偿应变片2为另一个桥臂。螺栓不受力时,使电桥呈现平衡状态。当螺栓受力发生变形后,应变片电阻值发生变化,电桥失去平衡,输出一个电压讯号,经放大、检波等环节,便可在应变仪上直接读出应变值来。经过适当的计算就可以得到各螺栓的受力大小。

图1 螺栓连接实验台结构简图 1,2,……10—实验螺栓;11—支架;12—机座;13—第一杠杆;14—第二杠杆;15— 电阻应变片;16—砝码(相关尺寸:l=200㎜;a=160㎜;b=105㎜;c=55㎜;G=22N) 图2 电桥工作原理图 本实验是针对不允许连接接合面分开的情况。螺栓预紧时,连接在预紧力作用下,接合面间产生挤压应力。当受载后,支架在翻转力矩M 作用下,有绕其对称轴线0-0翻转趋势,使连接右部挤压应力减小,左部挤压应力增加。为保证连接最右端处不出现间隙,应满足以下条件: 0≥- ?W M A Q Z p (1) 式中 Qp —单个螺栓预紧力(N ); Z —螺栓个数 Z=10; A —接合面面积 A=a(b-c) (㎜2 ) M —翻转力矩 M=Pl

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺栓组设计

§5-5 螺栓组联接的结构设计工程中螺栓皆成组使用,单个使用极少。因此,须研究螺栓组设计和受力分析,它是单个螺栓计算基础和前提条件。 螺栓组联接设计的顺序——选布局、定数目、力分析、设计尺寸。 结构设计原则 1、布局要尽量对称分布,螺栓组中心与形心重合,使受力均匀 图5-14 螺栓的对称布置 2、受剪螺栓组(铰制孔螺栓联接)时,不要在外载作用方向布置8个以上,以免载荷分布过于不均。弯、扭作用螺栓组,要适当靠近联接接合面边缘布局,避免受力太大。

图5-15 接合面受弯矩或转矩时螺栓的布置 3、合理间距,适当边距,以利于扳手装拆。对压力容器其间距t如下表5-1所示: 表5-1 螺栓间距 4、分布在同一圆周上的螺栓数目,应取4,6,8等偶数,以便在圆周上钻孔时的分度和划线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5、避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被连接件,螺母和螺栓头部的支承面平整,并与螺栓轴线垂直。在铸,锻件等的粗糙表面上安装螺栓时,应制成凸台或沉头座(5-16a)。当支承面为倾斜表面时,应采用斜面垫圈(图5-16b),特殊情况下,也可采用斜面垫圈或球面垫圈(图5-17)等。 图5-16 凸台与沉头座的应用

图5-17 斜面垫圈与球面垫圈的应用 防偏载措施:a)凸合;b)凹坑(鱼眼坑);c)斜垫片;d)球形垫片 8.5 螺栓组联接的结构设计与受力分析 螺栓组联接的设计过程,一般是先根据联接用途和被联接件结构选定螺栓数目及布局形式,然后分析各螺栓的受力情况,求出受力最大的螺栓及其所受力的大小;最后对受力最大的螺栓进行强度计算,并确定螺栓联接的结构尺寸。本节主要讨论如何合理地确定联接接合面的几何形状和螺栓布局形式,使各螺栓和联接接合面间受力均匀且便于加工、装配(即螺栓组联接的结构设计),并对螺栓组联接进行受力分析,为螺栓联接强度计算作好准备。 8.5.1 螺栓组联接的结构设计 (1)联接接合面的几何形状应与机器的结构形状相适应,一般可设计成轴对称的简单几何形状,以便加工制造和对称布置螺栓(见机械设计手册),使螺栓组的对称中心和联接接合面的形心重合,保证联接接合面受力较均匀。 (2)螺栓的布局应使各螺栓受力合理。对于承受弯矩或扭矩的螺栓组联接,根据力学原理,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(见机械设计手册)。对于承受横向载荷的铰制孔用螺栓联接,在平行于工作载荷的方向上要避免成排布置八个以上的螺栓,以免载荷分布过于不均;在垂

螺栓组受力分析与计算..

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

图1 凸台与沉头座的应用图2 斜面垫圈 的应用 2. 螺栓组联接的受力分析 1).受横向载荷的螺栓组联接 2).受转矩的螺栓组联接 3).受轴向载荷的螺栓组联接 4).受倾覆力矩的螺栓组联接 进行螺栓组联接受力分析的目的是,根据联接的结构和受载情况,求出受力最大的螺栓及其所受的力,以便进行螺栓联接的强度计算。 为了简化计算,在分析螺栓组联接的受力时,假设所有螺栓的材料,直径,长度和预紧力均相同;螺栓组的对称中心与联接接合面的形心重合;受载后联接接合面仍保持为平面。下面针对几种典型的受载情况,分别加以讨论。 1).受横向载荷的螺栓组联 接 图所示为一由四个螺栓组成的受横向载荷的螺栓组联接。横向载荷的作用线与螺栓轴线垂直,并通过螺栓组的对称中心。当采用螺栓杆与孔壁间留有间隙的普通螺栓联接时(图a)。 靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接时(图b),靠螺栓杆受剪切和挤压来抵抗横向载荷。虽然两者的传力方式不同,但计算时可近 似地认为,在横向总载荷F∑的作用下,各螺栓所承担的工作载荷是均等的。因此,对于铰制孔用螺栓联接,每个螺栓所受的横向工作剪力为 (5-23) 式中z为螺栓联接数目。

螺栓组及单螺栓联接静、动态综合实验台

JLS-C螺栓组及单螺栓联接静、动态综合实验台 一、功能简介 现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。JLS-C螺栓联接实验台是本公司根据《现代机械工程基础实验教程》指导书开发的实用性很强的教学设备。本实验台采用全新现代测试手段,利用传感器及计算机对螺栓联接静、动态参数进行采集、处理、仿真的实验设备,其设计紧密结合螺栓联接的教学内容,可完成螺栓应力与变形的测试与分析,测量数据稳定、重复性好,是当前理想的基础教学实验设备。 二、性能特点 1、该实验台为螺栓组及单螺栓的组合实验台,同时具有螺栓组静态实验及单螺栓静、动态实验组合功能。一台实验台可完成两种实验台的实验功能。 2、螺栓静动态受力、变形、刚度,轴向载荷,预紧拉力等实验。 3、通过计算机测试分析软件自动进行螺栓联接动静态实验,实现两种实验手

段,可作综合性实验; 三、实验项目及内容 1、螺栓组载荷分布及其测试; 2、静态测试相对刚度变化对螺栓总拉力的影响; 3、动态测试相对刚度变化对螺栓应力幅值与动载荷幅值的影响。 4、电阻应变仪的工作原理及各测量点应变片的组桥方式 本仪器由精密恒流源,多路切换开关,前置放大器,低通滤波器,A/D转换器,单片机,显示电路,电源等部分组成见方框图。 四、实验设备主要技术参数 1、单相交流异步电机:90W、N=1400r/min 2、电阻应变片电阻值:R=120Ω;灵敏度系数:K=2.08 3、螺栓组实验螺栓:M12(10个) 4、实验单螺栓:M12(1个) 5、工作载荷加载吊耳:1个 6、四路静动态测试仪:测量范围:0±30000με 1.零点不平衡:±10000με 2.基本误差:0.2﹪FS 3.分辨率:1με 4.零点漂移:±2με/4小时、±0.5με/℃ 5.测量方式:1/4桥、半桥、全桥 7、外型尺寸:800×350×600 五、JLS-C螺栓组及单螺栓联接静、动态综合实验台

螺栓组受力分析与计算..

螺栓组受力分析与计算 1.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性

要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。 图1 凸台与沉头座的应用 图2 斜面垫圈的应 用

静态螺栓组联接实验台

JLS-A静态螺栓组联接实验台 一、功能简介: 现代各类机械中均广泛采用螺栓进行联接,如何计算和测量螺栓及螺栓组在受力情况及静、动态参数,是工程技术人员的一个重要课题,本实验台通过对螺栓组的受力进行测试和分析,使学生更深入的了解这方面的知识,为以后在社会工程中奠定基础。 二、实验目的: 1、掌握螺栓组联接受外载后,螺栓和被联接体的受力及变形的变化规律。 2、绘制螺栓的载荷分布图及螺栓与被联接载荷——变形曲线。 3、了解机械参数电测的基本方法及应变仪的使用方法。 三、实验设备: 1、螺栓组联接实验台的机械结构及试验原理

1-底脚螺钉2-安装底板3-传感器支撑板4-荷重传感器5-加载螺杆6-螺杆套7-杠杆8-悬臂9-弹性块101-被连接件11-试验螺栓 (2)静态电阻应变仪工作原理 电阻应变仪是利用金属材料的特性,将非电量的变化转换成电量变化的测量仪器,应变测量的转换元件——应变片,是用极细的金属电阻丝绕成或用金属箔片印刷腐蚀而成,用粘剂将应变片牢固地贴在试件上,当被测试件受到外力作用长度发生变化时,粘贴在试件上的应变片也相应变化,应变片的电阻值也随着发生了ΔR的变化,这样就把机械量——变形转换电量——电阻值的变化。用灵敏的电阻测量仪器——电桥,测出电阻值的变化ΔR/R,就可以换算出相应的应变ε,如果这电桥用应变来刻度,就可以直接读出应变,完成了非电量的电测。静态数字应变仪就是按照该原理进行数字表示的。电阻应变片的“应变效应”,是指上述机械量转换成电量的关系,用电阻应变的“灵敏系数”K来表征:可用式(1)表示之。 (3)加载力的测量 本实验台在加载杆下安装的荷重传感器,当加载螺杆拧紧时,荷重传感器将

在螺栓组连接的结构设计中应注意哪些问题

一.在螺栓组连接的结构设计中应注意哪些问题? 1.连接合面得几何形状应尽量简单 2.螺栓的布置应使各螺栓的受力合理 3.螺栓排列应有合理的边距和间距 4.同一圆圈上螺栓数目,应尽量取4.6.8等偶数 5.避免螺栓承受附加弯曲载荷二.提高螺纹连接强度的措施主要有哪些? 1.改善螺纹牙上载荷分布不均现象2减小应力幅3避免附加弯曲应力4减小应力集中5采用合理的制造工艺 三.在下列工况下,选择哪类联轴器较好?试举出一种联轴器的名称 (1)载荷平稳,冲击轻微,两轴易于准确队中,则希望联轴器寿命较长 (2)载荷比较平稳,冲击不大,但两轴轴线具有一定程度的相对偏移 (3)机械在运动过程中载荷较平稳,但可能产生很大的瞬时过载,导致机器损坏 (4)安全联轴器在所传递的转矩超过规定值时,其中的链接元件便会折断,分离或大话,使传送终端,从而保护其他重要零件不至损坏 1.可选择刚性联轴器。如凸缘联轴器或套筒联轴器等 2.无弹性元件的挠性联轴器,如十字滑块联轴器或齿式联轴器,滚子联轴器 3.弹性元件的挠性联轴器,如弹性销联轴器或弹性套柱销联轴器,轮胎式联轴器,梅花形联轴器等 4.可选安全联轴器,如剪切销安全联轴器 5.机械在运动过程中载荷较平稳,但可能产生很大的瞬时过载,导致机器损坏 四.根据以下的工况条件,选择适合的联轴器 轻微冲击双万向联轴器,平稳凸缘,有冲击弹性柱销 一.带传动的主要失效形式是什么?带传送设计的主要依据是什么? 1打滑2带的疲劳损坏在保证不打滑的前提下,最大限度地发挥带传送的工作能力,同时保证带具有一定的疲劳强度和寿命 二.在带传动设计中,为何要限制带速?销带轮直径的选择应满足什么条件?为何要校核小带轮的包角? 1带速过高会使离心率增大,使带于带轮间的摩擦力减小,传动中容易打滑,单位时间内带绕过的次数也增多,降低带寿命,若带速过低则当传递功率一定时,使传递的圆周力增大,带的根数增多2带轮直径销使传动结构紧凑,且另一方面弯曲应力打,使带的寿命降低3大带轮的包角大于小带轮,小带轮易于打滑 三.带传动中,打滑是怎么产生的?试分析打滑的有利和有害的影响各式什么 打滑是由于过载所引起的带在带轮上的全面滑动,由于带在大轮上的包角大于小带轮包角,所以打滑发生在小带轮,打滑将造成带的严重磨损,带的运动处于不平稳状态,致使传动失效,工作中应该避免打滑传递的力超过极限有效拉力时,滑动范围扩大到整个接错,带便在带轮上打滑。打滑可防止损坏其他零件,不能保证准确的传动比 四.对于图示V带传动的四种布置方案,试分析比较其张紧轮位置的合理性,要求说明理由 (a)(b)张紧轮位于紧边,不合理(c)张紧轮装于松边内侧靠近大带轮处,张紧轮向外带不存在反向弯曲,虽然增加了带的弯曲应力循环次数,但是循环特性仍为脉动循环,对待的疲劳强度影响不大,两带轮的包角均减小,为降低小带轮包角的减小两,1应使张紧轮靠近大轮(d)张紧轮装于松边外侧,靠近小带轮处,张紧力向奶,两带轮包角均增大,张紧轮靠近小带轮处事为了提高小带轮的增大量,增大承载能力,但是带在反向弯曲,既增加了带的完全应力循环次数,又使带的弯曲应力变化,对称循环应力,降低了带的疲劳强度

螺栓组联接的设计

螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

相关文档
最新文档