高数_大一_上学期知识要点

高数_大一_上学期知识要点
高数_大一_上学期知识要点

总复习(上)

一、求极限的方法:

1、利用运算法则与基本初等函数的极限;

①、定理 若lim

(),lim ()f x A g x B ==, 则

(加减运算) lim[()()]f x g x A B +=+

(乘法运算) lim

()()f x g x AB =

(除法运算) ()0,lim ()f x A

B g x B

≠=若 推论1: lim

(),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数)

推论2: lim ()[lim ()]cf x c f x =

②结论m n a x b x --+

++++11结论2:

()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则

0lim ()()x

x

f x f x →=

2、利用等价无穷小代换及无穷小的性质;

①定义1: 若0

lim ()0x x

f x →=或(lim ()0x f x →∞

=)

则称

()f x 是当0x x → (或x →∞)时的无穷小.

定义2: ,αβ是自变量在同一变化过程中的无穷小:

若lim 1β

α

=, 则称α与β是等价无穷小, 记为

αβ.

②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小.

推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设ααββ'',

且lim

βα''

存在, 则

(因式替换原则)

常用等价无穷小:

sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x

()()2

12

1cos ~,1~,11~,ln 1~,x

x x e x x x x x μ

μ--+-+

1~ln ,x a x a -()0→x

3、利用夹逼准则和单调有界收敛准则;

①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件:

(1)(,,,)n

n n y x z n ≤≤=123;

(2)lim lim n n

n n y z a →∞

→∞

==,

则数列n x 的极限存在, 且lim n

n x

a →∞

=.

②准则II: 单调有界数列必有极限.

4、利用两个重要极限。

0sin lim 1x x x →= 1

0lim(1)x x x e →+= 1lim(1)x x e x

→∞+= 5、利用洛必达法则。

未定式为0,,,0,00∞

∞∞-∞?∞∞

类型. ①定理(x a →时的0

型): 设

(1)lim ()lim ()0x a

x a

f x F x →→==;

(2) 在某(,)U a δ内, ()f x 及()F x 都存在且()0F x ≠;

()(3)lim ()

x a f x F x →'存在(或为无穷大)

二、求导数和微分: 1.定义

①导数:函数

()y f x =在0x x =处的导数:

0000000()()()()

()lim lim .x x x f x f x f x x f x f x x x x

→?→-+?-'==-?

函数()y f x =在区间I 上的导函数:

0()()()lim .x f x x f x dy

f x x dx

?→+?-==?

②函数的微分:().dy f x dx '=

2.导数运算法则(须记住P140导数公式)

① 函数和差积商求导法则:函数()u x 、()v x 可导,则:

(()())()()u x v x u x v x αβαβ'''+=+

(()())()()()().u x v x u x v x u x v x '''=+

(

)2

(()0)u u v uv v x v v

''-''=≠

②反函数求导法则:若()x y =的导数存在且()0y ?≠,

则反函数

()y f x =的导数也存在且为

1().()

f x y ?'=

'

③复合函数求导法则(链式法则):()u x ?=可导,()y f u =可导,

(())y f x ?=可导,且

.dy dy du dx du dx

= ④隐函数求导法则:

⑤参数方程求导法则:

(),()x t y t ?ψ=??=?

若()0t ?'≠则()

()dy t dx t ψ?'='. 2

2

()()()1()t dy d d d y t dx dx dx dx dt

dt

ψ?''==?

3.微分运算法则

三、求积分:

1.概念:原函数、不定积分。定积分是一个数,是一个和的极限形式。

1

()lim ()n

b

i i a

i f x dx f x λξ→∞

==?∑?

性质1:()0,()()a a b

a

b a

f x dx f x dx f x dx =-=???

性质2:[()()]()()b b b

a

a a

f x

g x dx f x dx g x dx +=+??? 性质3:()(),().b b

a a

kf x dx k f x dx k =??是常数

性质4:

()()()c

c

b

b

a

a

f x dx f x dx f x dx =+?

?? (去绝对值, 分段函

数积分)

性质5:b

a dx

b a =-?

2.计算公式: P186基本积分表; P203常用积分公式;

①第一换元法(凑微分):

()

()(())()(())()()u x u x f x x dx f x d x f u du ??????==??'==???

??

2

1

arcsin arccos,

11

(),2

dx d x d x

dx d dx

x x

==-

=-=

②第二换元法:

()

2.()(())()

x t

f x dx f t t dt

?

??

=

'

=

??

③分部积分法:

3.()()()()()()u x v x dx u x v x u x v x dx ''=-??

udv uv vdu

=-??)(反对幂指三”,前,后u v '

④有理函数积分:

循环解出; 递推公式 分部化简 ;

混合法 (赋值法+特殊值法)确定系数

⑤牛顿莱布尼茨公式:

4.()()()[()](()())b

b a

a

f x dx F b F a F x F x f x '=-==?其中 ⑥定积分换元法:

5.()(())()(())b a

f x dx f t t dt

a b β

α

???α?β'=??=()=

(换元换限,配元(凑微)不换限) ⑦定积分分部积分法:[]6.()()()()()()b

b

b

a a a

u x v x dx u x v x u x v x dx ''=-?

?

⑧结论(偶倍奇零):

① 若函数()f x 为偶函数,则0

()2()a

a

a

f x dx f x dx -=?

?。

②若函数()f x 为奇函数,则()0a

a

f x dx -=?

注意:

1. 利用“偶倍奇零”简化定积分的计算;

2. 定积分几何意义求一些特殊的积分(

如2

4

a a π=

?)

⑨ 变限积分求导

四、微分和积分的应用

1. 判断函数的单调性、凹凸性、求其极值、拐点、描绘函数图形

① 判断单调性:

第一步:找使

()0f x '=的点和不可导点。

第二步:以驻点和不可导点划分单调区间,在每个区间上讨论

()f x '的正

负,()0,f x '>函数递增,

()0,f x '<

函数递减。

② 判断凹凸性:

第一步:找使

()0f x ''=的点和不可导点。

第二步:以这些点划分定义区间,在每个区间上讨论

()f x ''的正负,

()0f x ''>,是凹区间,()0f x ''<,是凸区间。(拐点:左右两边

()f x ''的符号相反)

③ 判断函数极值:

第一步:找使

()0f x '=的点和不可导点。

第二步:判断这些点两边()f x '的正负,若左正右负极大值点

左负右正极小值点。

2.1 定积分的几何应用---求面积,体积和弧长

所求图形的面积为:[()()]b

a

S

f x f

x dx =-?下

所求图形的面积为:[()()]d

c

S y y dy ??=-?右左

旋转体:由连续曲线 y =f (x )、直线 x =a 、x =b 及 x 轴所围成的曲边梯 形绕 x 轴旋转一周而成的立体。

y + y

旋转体:由连续曲线 ()x y ?= 、 直线 y =c 、y =d 及 y 轴所围曲边梯 形绕 y 轴旋转一周而成的立体

2[()]d

c

V y dy π?=?

?b

a [f (x )]2

π dx =π?b

a [f (x )]2dx 。

2.3 定积分的物理应用

变力沿直线做功;水(侧)压力;引力

思路: 建立坐标系,选取积分变量(如x ),在[x, x+d x ]上给出微元

第六 空间解析几何 1. 向量x y z a

a i a j a k

=++在坐标轴上的投影分别为:

,,x y z a a a ;在坐标轴上

的分量分别为:

,,x y z a i a j a k 。

||a →

=,(cos ,cos ,cos )||

a a

e a αβγ== 2. 利用坐标作向量的线性运算

(,,),x y z a a a a = (,,),x y z b b b b =

a b ±= (,,)x x y y z z a b a b a b ±±±,

a λ= (,,)x y z a a a λλλ,

数量积(数):

||||cos(,)x x y y z z a b a b a b a b a b a b ∧

?=++=

向量积(向量)

x y z x y z

i j k

a b a a a b b b ?=

a b a ?⊥,a b b ?⊥,且 a b ?,,a b

构成右手系,

||||||sin (,)a b a b a b ∧

?= (几何意义: 平行四边形的面积)

3.向量之间的关系 a b ⊥?0x x y y z z a b a b a b a b ??++=

//00y x z

x

y z x y z

x

y

z

i

j k

a a a a

b a b a a a b b b b b b ?==??=?=()

4.平面图形及其方程

平面的法向量:和平面垂直的非零向量。

①点法式方程:

设平面过点0000(,,)M x y z 法向量(,,)n A B C =(其中,,A B C 不全为0),

则平面的方程为

000()()()0A x x B y y C z z -+-+-=

②一般方程:

0Ax By Cz D +++=

[ 当 D = 0 时, A x + B y + C z = 0 表示 通过原点的平面; 当 A = 0 时, B y + C z + D = 0表示平行于 x 轴的平面; Ax+Cz+D = 0 表示平行于 y 轴的平面; Ax+By+D = 0 表示平行于 z 轴的平面 Cz + D = 0 表示平行于 xoy 面 的平面; Ax + D =0 表示平行于 yoz 面 的平面;

By + D =0 表示平行于 zox 面 的平面]

设平面∏1的法向量为1111(,,)n A B C =,

平面∏2的法向量为2

222(,,)n A B C =,

则两平面夹角θ 的余弦为:

1212

cos n n n n θ?=

平面外一点()000,,P

x y z 到平面0Ax By Cz D +++=的距离:

d =

5.空间直线及其方程

① 一般方程:直线可视为两平面交线,其一般式方程为:

1111222200A x B y C z D A x B y C z D +++=??+++=?

方向向量: 12s n n =?

②点向式方程

方向向量:

(,,)s m n p =

③参数方程 (求交点)

p z z n y y m x x 0

00-=-=-??

???+=+=+=t

p z z t n y y t m x x 000

大一上学期高数期末考试题

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由 x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 121 1--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

(完整版)大一上学期(第一学期)高数期末考试题[1]

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的 无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

大一上学期(第一学期)高数期末考试题(有标准答案)详解

大一上学期高数期末考试 、单项选择题(本大题有4小题,每小题4分,共16分) 1 设 f ( X )cos x (x sin x ),则在 x 0 处有( (A) f (0) 2 (B) f (0)1 (C) f (0)° c 设(x) 1 x , (x) 3 33 x ? 则当 x 1 时( 2. 1 X (A) g 与 M 是同阶无穷小,但不是等价无穷小; 是等价无穷小; (C) (X )是比(x)高阶的无穷小; (D) 无穷小? (A) 函数F (x )必在X 0处取得极大值; (B) 函数F (x)必在x 0处取得极小值; (C) 函数F(x)在xo 处没有极值,但点(o,F (o ))为曲线yF(x)的拐点; (D) 函数F”)在xO 处没有极值,点(:F (o ))也干是曲 线YF(x)的拐点。4设f (x)是连续函数,且 "X ) 22 X X 、僅產题(本夫龊右4小题' 2 8. 斥曰 二 ' 解答题(本大题有 5小题,每小题8分,共40分)exy sin(xy)1 9. 设函数y y (x)由方程确定,求y (x)以及y (0). 求I X 10. x(心 3?若F f(x) (X) 0 (2t x)f(t )dt ,其中f (x)在区间上(")二阶可导且 )? (D) MX)不可导. ) (B) (X)与(X) (X )是比(x)高阶的 2of(t)dt,则 f(x)( (D)? 4分,共16分) 5. lim (1 3x)办 x0\ / 6. 已知沪空是f(X)的一个原函数 X I r COS X 则 7. lim n —(cos 2 — n n cos3 ) n 2 x arcsin x i dx x 2 1 V1 A 2

大一第一学期期末高等数学(上)试题及答案

1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) .d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求

(第七题删掉了) 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+3 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422 11、(本小题5分) . 求? π +20 2sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226

14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) . d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分) 1、(本小题7分) ,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿 2、(本小题7分) . 823 2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题 ( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230

大一上学期(第一学期)高数期末考试题及答案

高等数学I (大一第一学期期末考试题及答案) 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B )e (C )a e cot (D )a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C )e (D )1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ))(3a f '(B ))(2a f ' (C) )(a f '(D )) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为(-∞,0)和(1,+∞). 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-. 解:1 1 ln(1)120 00(1)1 ln(1)lim lim lim 2x x x x x x x e e x x e e e x x x +-→→→+--+-===-

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

合肥工业大学大一上学期高数期末考试题

咼数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 2 .lim (1 + 3x)sin x = 1. x -0 _______________________________________ . 已知cosx 是f(x)的一个原函数, 则 2. x x 兀 2兀 2 2兀 2 n — 1 lim — (cos 2 — + cos 2 ——+||| + cos 2 兀)= 3. “世 n n n n ______________ . 1 2 2 x arcsin x 1 , dx 二 2 — 1 书1 一 X 4. _ 运 ______________________ . 二、单项选择题(本大题有4小题,每小题4分,共16分) 设口(x) = —x , P (x)=3-3%'x ,则当 X T 1 时( ) 5. 1 x . (A) 〉(x)与-(x) 是同阶无穷小,但不是等价无穷小; (B )〉(x)与](x) 是等价无穷小; (C (X)是比-(x)高阶的无穷小; (D ) -(x) 是比〉(X)高阶的 无穷小. 6 设 f (x) = cos x( x + sin x ),则在 x = 0处有 ( A C ) ■ (D ) f(x) 不可导. x 7.若 F (x ) 二0( 2 —x ) f ( t ) dt ,其中f (x)在区间上(-1,1)二阶可导且 f (x) ,则( ). (A) 函数F(x)必在x=0处取得极大值; (B) 函数F (x)必在x = 0处取得极小值; (C) 函数 F(x)在x=0处没有极值,但点(0, F(0))为曲线y = F(x)的拐点; (D) 函数F (x)在x=0处没有极值,点(0 ,F(0) )也不是曲线y 二F(x)的拐点。 1 设f (x)是连续函数,且 f (x) = x + 2 j° f (t)dt ,贝U f (x)=( (A ) 2 解答题(本大题有5小题,每小题8分,共40分) 10. 设函数厂y (x) 由方程e x y - sin(x y)二1 确定,求y (x) 以及y (°). 1 - x 7 8. 2 —+2 (B ) 2 (C ) x 1 (D ) x 2. 9. 三

大一第一学期期末高数试卷复习

广东技术师范学院期末考试试卷A 卷 参考答案及评分标准 高等数学(上) 一、填空题(每小题3分,共30分) 1. 如果函数)(x f y =的定义域为]1,0[,则)(ln x f 的定义域为],1[e .(3分) 2.已知2)0('=f ,而且0)0(=f ,则=→x x f x )2(lim 0 4 .(3分) 3.已知22lim e x x kx x =??? ??+∞→,则=k 1 .(3分) 4.曲线x x y ln =在点)0,1(处的切线方程是 1-=x y .(3分) 5.函数653 )(2+--=x x x x f 的间断点个数为 2 .(3分) 6.如果???????>+=<=0,)1ln(0 ,0, sin )(x x x x k x x x x f 在0=x 处连续,则=k 1 .(3分) 7.函数x e x f 2)(=的带有拉格朗日型余项的n 阶麦克劳林展式为:(3分) )10()!1(2!2221)(112 <<++++++=++θθn x n n n x n e x n x x x f . 8.函数)0,,()(2≠++=p r q p r qx px x f 是常数,且,则)(x f 在区间],[b a 上 满 足拉格朗日中值公式的ξ=2b a +.(3分) 9.定积分()dx x x x 1011 sin ?-+的值为61.(3分) 10.设? +=C x F dx x f )()(,则?--dx e f e x x )(=C e F x +--)(.(3分) 二.计算题(要求有计算过程,每小题5分,共40分) 11.求极限113lim 21-+--→x x x x .(5分) 解:)13)(1()13)(13(lim 113lim 2121++--++-+--=-+--→→x x x x x x x x x x x x ---------(3分) 42)13)(1(2lim 1-=++-+-=→x x x x ----------------------------------(5分)

大一上学期高数期末考试题

大一上学期高数期末考试卷 一、单项选择题 本大题有 小题 每小题 分 共 分 )(0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ()( , )(2)( )(10=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )222x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) =+→x x x sin 20)31(lim

,)(cos 的一个原函数是已知x f x x =??x x x x f d cos )(则 lim (cos cos cos )→∞-+++=22221n n n n n n ππππ =-+? 21 21 2211arcsin -dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(177x x x x ?+-求 . 求,, 设?--?????≤<-≤=1 32)(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 0()()g x f xt dt ,且→=0()lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足=-1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成 平面图形

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

合肥工业大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. = +→x x x sin 2 ) 31(l i m . 2. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 3. lim (cos cos cos )→∞-+++=2 2 2 21 n n n n n n π π ππ . 4. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共16分) 5. )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的 无穷小. 6. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 7. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 8. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 9. 三、解答题(本大题有5小题,每小题8分,共40分) 10. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 11. .d )1(17 7 x x x x ?+-求

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '=(B )(0)1f '=(C )(0)0f '=(D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小;(B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小;(D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则(). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x -(D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则. 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ. 8. = -+? 2 1 2 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 本大题有 小题 每小题 分 共 分 )( 0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )2 2 2x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) = +→x x x sin 2 ) 31(lim ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则

lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π = -+? 2 12 1 2 211 arcsin - dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(17 7 x x x x ?+-求 .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 ()()g x f xt dt ,且→=0 () lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足 =- 1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍 与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成平面图形 求 的面积 ; 求 绕直线 旋转一周所得旋转体的体积 六、证明题(本大题有 小题,每小题 分,共 分)

大一上学期 高数复习要点整理

高数解题技巧。高数(上册)期末复习要点 高数(上册)期末复习要点 第一章:1、极限 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧。(高等数学、考研数学通用) 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势

大一上学期高数知识点

第二章导数与微分 一、主要内容小结 1.定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2)定理与运算法则 定理1)(0x f '存在? ='- )(0x f )(0x f +'. 定理2若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3函数)(x f 在0x 处可微? )(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(,dv du v u d ±=±)( u v v u uv '+'=')(,vdu udv uv d +=)( )0()(2≠' -'='v v v u u v v u ,)0()(2≠-=v v udv vdu v u d (3)基本求导公式 2.各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法

(4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3.高阶导数 (1)定义与基本公式 高阶导数公式:a a a n x n x ln )()(=)0(>a x n x e e =)()( 莱布尼兹公式: (2)高阶导数的求法①直接法②间接法 4.导数的简单应用 (1)求曲线的切线、法线(2)求变化率——相关变化率 二、例题解析 例2.1 设?? ???=≠?=0,00 ,1sin )(x x x x x f K ,(K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续;

大一第一学期期末高等数学(上)试题及答案.docx

第一学期期末高等数学试卷 一、解答下列各题 (本大题共 16 小题,总计 80 分 ) 1、 (本小题 5 分 ) 求极限 lim x 3 12 x 16 3 9x 2 12x 4 x 2 2x 2、 (本小题 5 分 ) 求 x x 2 ) 2 dx. (1 3、 (本小题 5 分 ) 求极限 limarctan x arcsin 1 x x 4、 (本小题 5 分 ) 求 x d x. 1 x 5、 (本小题 5 分 ) 求 d dx x 2 1 t 2 dt . 6、 (本小题 5 分 ) 求 cot 6 x csc 4 x d x. 7、 (本小题 5 分 ) 2 cos 1 dx . 求 1 12 x x 8、 (本小题 5 分 ) 设 x e t cost 2 确定了函数 y y( x), 求 dy . y e 2t sin t dx 9、 (本小题 5 分 ) 3 求 x 1 x dx . 10、 (本小题 5 分 ) 求函数 y 4 2 x x 2 的单调区间 Y 11、 (本小题 5 分 ) 求 2 sin x . 8 sin 2 dx x 12、 (本小题 5 分 ) 设 x t ) e kt (3cos t 4 sin t ,求 dx . ( ) 13、 (本小题 5 分 ) 设函数 y y x 由方程 y 2 ln y 2 x 6 所确定 , 求 dy . ( ) dx 14、 (本小题 5 分 ) 求函数 y e x e x 的极值 2 15、 (本小题 5 分 ) 求极限 lim ( x 1)2 (2x 1)2 ( 3x 1) 2 (10x 1)2 x (10x 1)(11x 1) 16、 (本小题 5 分 )

大一上学期高数知识点

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2 cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )!1()1()(ln 1 )(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00 ,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: lim →x =--0 ) 0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1 sin )(? = 0 lim →x x x K 1 sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ? ?>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?? ???=≠?-?='--0 ,00,1cos 1sin )(21 x x x x x Kx x f K K

相关文档
最新文档