神经网络的类型

神经网络的类型
神经网络的类型

概述

本文主要介绍了当前常用的神经网络,这些神经网络主要有哪些用途,以及各种神经网络的优点和局限性。

1 BP神经网络

BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。

初始权值阈值的确定:所以权值及阈值的初始值应选为均匀分布的小数经验

值,约为(-2.4/F~2.4/F)之间,其中F 为所连单元的输入层节点数

1.1 主要功能

(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数。

(2)模式识别:用一个待定的输出向量将它与输入向量联系起来。

(3)分类:把输入向量所定义的合适方式进行分类。

(4)数据压缩:减少输出向量维数以便传输或存储。

1.2 优点及其局限性

BP神经网络最主要的优点是具有极强的非线性映射能力。理论上,对于一个三层和三层以上的BP网络,只要隐层神经元数目足够多,该网络就能以任意精度逼近一个非线性函数。其次,BP神经网络具有对外界刺激和输入信息进行联想记忆的能力。这是因为它采用了分布并行的信息处理方式,对信息的提取必须采用联想的方式,才能将相关神经元全部调动起来。BP 神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完整信息。这种能力使其在图像复原、语言处理、模式识别等方面具有重要应用。再次,BP 神经网络对外界输入样本有很强的识别与分类能力。由于它具有强大的非线性处理能力,因此可以较好地进行非线性分类, 解决了神经网络发展史上的非线性分类难题。另外,BP 神经网络具有优化计算能力。BP神经网络本质上是一个非线性优化问题, 它可以在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。不过,其优化计算存在局部极小问题,必须通过改进完善。

由于BP网络训练中稳定性要求学习效率很小,所以梯度下降法使得训练很慢。动量法因为学习率的提高通常比单纯的梯度下降法要快一些,但在实际应用中还是速度不够,这两种方法通常只应用于递增训练。

多层神经网络可以应用于线性系统和非线性系统中,对于任意函数模拟逼近。当然,感知器和线性神经网络能够解决这类网络问题。但是,虽然理论上是可行的,但实际上BP网络并

不一定总能有解。

对于非线性系统,选择合适的学习率是一个重要的问题。在线性网络中,学习率过大会导致训练过程不稳定。相反,学习率过小又会造成训练时间过长。和线性网络不同,对于非线性多层网络很难选择很好的学习率。对那些快速训练算法,缺省参数值基本上都是最有效的设置。

非线性网络的误差面比线性网络的误差面复杂得多,问题在于多层网络中非线性传递函数有多个局部最优解。寻优的过程与初始点的选择关系很大,初始点如果更靠近局部最优点,而不是全局最优点,就不会得到正确的结果,这也是多层网络无法得到最优解的一个原因。为了解决这个问题,在实际训练过程中,应重复选取多个初始点进行训练,以保证训练结果的全局最优性。

网络隐层神经元的数目也对网络有一定的影响。神经元数目太少会造成网络的不适性,而神经元数目太多又会引起网络的过适性。

2 RBF(径向基)神经网络

径向基函数(RBF-Radial Basis Function)神经网络是由J.Moody和C.Darken在80年代末提出的一种神经网络,它是具有单隐层的三层前馈网络。由于它模拟了人脑中局部调整、相互覆盖接收域(或称感受野-Receptive Field)的神经网络结构,因此,RBF网络是一种局部逼近网络,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。

2.1 主要功能

图像处理,语音识别,时间系列预测,雷达原点定位,医疗诊断,错误处理检测,模式识别等。RBF网络用得最多之处是用于分类,在分类之中,最广的还是模式识别问题,次之是时间序列分析问题。

2.2 优点及其局限性

(一)优点:

神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此有很大的应用市场。

①它具有唯一最佳逼近的特性,且无局部极小问题存在。

②RBF神经网络具有较强的输入和输出映射功能,并且理论证明在前向网络中RBF网络是完成映射功能的最优网络。

③网络连接权值与输出呈线性关系。

④分类能力好。

⑤学习过程收敛速度快

(二)局限性:

①最严重的问题是没能力来解释自己的推理过程和推理依据。

②不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

③把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

④理论和学习算法还有待于进一步完善和提高。

⑤隐层基函数的中心是在输入样本集中选取的, 这在许多情况下难以反映出系统真正的输入输出关系, 并且初始中心点数太多; 另外优选过程会出现数据病态现象。

3 感知器神经网络

是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。原始的感知器神经网络只有一个神经元。主要用来模拟人脑的感知特征,由于采取阈值单元作为传递函数,所以只能输出两个值,适合简单的模式分类问题。当感知器用于两类模式分类时,相当于在高维样本空间用一个超平面将两类样本分开,但是单层感知器只能处理线性问题,对于非线性或者线性不可分问题无能为力。假设p是输入向量,w是权值矩阵向量,b为阈值向量,由于其传递函数是阈值单元,也就是所谓的硬限幅函数,那么感知器的决策边界就是wp+b,当wp+b>=0时,判定类别1,否则判定为类别2。

3.1 主要功能

主要用于分类。

3.2 优点及其局限性

感知器模型简单易于实现,缺点是仅能解决线性可分问题。解决线性不可分问题途径:一是采用多层感知器模型,二是选择功能更加强大的神经网络模型。

4 线性神经网络

线性神经网络是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。线性神经网络可以采用基于最小二乘LMS的Widrow-Hoff学习规则调节网络的权值和阈值,和感知器一样,线性神经网络只能处理反应输入输出样本向量空间的线性映射关系,也只能处理线性可分问题。目前线性神经网络在函数拟合、信号滤波、预测、控制等方面有广泛的应用。线性神经网络和感知器网络不同,它的传递函数是线性函数,输入和输出之间是简单的纯比例关系,而且神经元的个数可以是多个。只有一个神经元的线性神经网络仅仅在传递函数上和感知器不同,前者是线性函数的传递函数,后者是阈值单元的传递函数,仅此而已。

4.1 主要功能

(1)线性预测;

(2)自适应滤波噪声抵消;

(3)自适应滤波系统辨识;

4.2优点及其局限性

线性神经网络只能反应输入和输出样本向量空间的线性映射关系。由于线性神经网络的误差曲面是一个多维抛物面,所以在学习速率足够小的情况下,对于基于最小二乘梯度下降原理进行训练的神经网络总是可以找到一个最优解。尽管如此,对线性神经网络的训练并不能一定总能达到零误差。线性神经网络的训练性能要受到网络规模、训练集大小的限制。若神经网络的自由度(所有权值和阈值的总个数)小于样本空间中输入-输出向量的个数,而且各样本向量线性无关,则网络不可能达到零误差,只能得到一个使得网络的误差最小的解。反之,如果网络的自由度大于样本集的个数,则会得到无穷多个可以使得网络误差为零的解。

另外对超定系统、不定系统、线性相关向量的情况还有一些其他的限制。

5自组织神经网络

在生物神经细胞中存在一种特征敏感细胞,这种细胞只对外界信号刺激的某一特征敏感,并且这种特征是通过自学习形成的。在人脑的脑皮层中,对于外界信号刺激的感知和处理是分区进行的,有学者认为,脑皮层通过邻近神经细胞的相互竞争学习,自适应的发展称为对不同性质的信号敏感的区域。根据这一特征现象,芬兰学者Kohonen提出了自组织特征映射神经网络模型。他认为一个神经网络在接受外界输入模式时,会自适应的对输入信号的特征进行学习,进而自组织成不同的区域,并且在各个区域对输入模式具有不同的响应特征。在输出空间中,这些神经元将形成一张映射图,映射图中功能相同的神经元靠的比较近,功能不同的神经元分的比较开,自组织特征映射网络也是因此得名。

自组织映射过程是通过竞争学习完成的。所谓竞争学习是指同一层神经元之间相互竞争,竞争胜利的神经元修改与其连接的连接权值的过程。竞争学习是一种无监督学习方法,在学习过程中,只需要向网络提供一些学习样本,而无需提供理想的目标输出,网络根据输入样本的特性进行自组织映射,从而对样本进行自动排序和分类。

自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。

5.1 自组织竞争网络

竞争学习网络的结构:假设网络输入为R维,输出为S个,典型的竞争学习网络由隐层和竞争层组成,与径向基函数网络的神经网络模型相比,不同的就是竞争传递函数的输入是输入向量p与神经元权值向量w之间的距离取负以后和阈值向量b的和,即ni=-||wi-p||+bi。网络的输出由竞争层各神经元的输出组成,除了在竞争中获胜的神经元以外,其余的神经元的输出都是0,竞争传递函数输入向量中最大元素对应的神经元是竞争的获胜者,其输出固定是1。

竞争学习网络的训练:竞争学习网络依据Kohonen学习规则和阈值学习规则进行训练,竞

争网络每进行一步学习,权值向量与当前输入向量最为接近的神经元将在竞争中获胜,网络依据Kohonen准则对这个神经元的权值进行调整。假设竞争层中第i个神经元获胜,其权值向量Wi将修改为:Wi(k)=Wi(k-1)-alpha*(p(k)-Wi(k-1))。按照这一规则,修改后的神经元权值向量将更加接近当前的输入。经过这样调整以后,当下一此网络输入类似的向量时,这一神经元就很有可能在竞争中获胜,如果输入向量与该神经元的权值向量相差很大,则该神经元极有可能落败。随着训练的进行,网络中的每一个节点将代表一类近似的向量,当接受某一类向量的输入时,对应类别的神经元将在竞争中获胜,从而网络就具备了分类功能。

5.2 自组织特征映射网络

自组织特征映射网络SOFM的构造时基于人类大脑皮质层的模仿。在人脑的脑皮层中,对外界信号刺激的感知和处理是分区进行的,因此自组织特征映射网络不仅仅要对不同的信号产生不同的响应,即与竞争学习网络一样具有分类功能。而且还要实现功能相同的神经元在空间分布上的聚集。因此自组织特征映射网络在训练时除了要对获胜的神经元的权值进行调整之外,还要对获胜神经元邻域内所有的神经元进行权值修正,从而使得相近的神经元具有相同的功能。自组织特征映射网络的结构域竞争学习网络的结构完全相同,只是学习算法有所区别而已。

稳定时,每一邻域的所有节点对某种输入具有类似的输出,并且这聚类的概率分布与输入模式的概率分布相接近。

5.3 学习向量量化网络

学习向量量化网络由一个竞争层和一个线性层组成,竞争层的作用仍然是分类,但是竞争层首先将输入向量划分为比较精细的子类别,然后在线性层将竞争层的分类结果进行合并,从而形成符合用户定义的目标分类模式,因此线性层的神经元个数肯定比竞争层的神经元的个数要少。

学习向量量化网络的训练:学习向量量化网络在建立的时候,竞争层和线性层之间的连接权重矩阵就已经确定了。如果竞争层的某一神经元对应的向量子类别属于线性层的某个神经元所对应的类别,则这两个神经元之间的连接权值等于1,否则两者之间的连接权值为0,这样的权值矩阵就实现了子类别到目标类别的合并。根据这一原则,竞争层和线性层之间的连接权重矩阵的每一列除了一个元素为1之外,其余元素都是0。1在该列中的位置表示了竞争层所确定的子类别属于哪一种目标类别(列中的每一个位置分别表示一种目标类别)。在建立网络时,每一类数据占数据总数的百分比是已知的,这个比例恰恰就是竞争层神经元归并到线性层各个输出时所依据的比例。由于竞争层和线性层之间的连接权重矩阵是事先确定的,所以在网络训练的时候只需要调整竞争层的权值矩阵。

5.4 主要功能

特别适合于解决模式分类和识别方面的应用问题。

5.5 优点及其局限性

SOFM网络(自组织特征映射网络)的最大优点是网络输出层引入了拓扑结构,从而实现了对生物神经网络竞争过程的模拟。

LVQ网络(学习向量量化网路)则在竞争学习的基础山引入了有监督的学习算法,被认为

是SOFM算法的扩展形式。

常用的结合方法是,将学习向量算法作为自组织映射算法的补充,在输出层应用具有拓扑结构的自组织映射网络结构,一次采用自组织映射学习算法和学习矢量量化算法对网络进行两次训练。

6 反馈神经网络

前面介绍的网络都是前向网络,实际应用中还有另外一种网络——反馈网络。在反馈网络中,信息在前向传递的同时还要进行反向传递,这种信息的反馈可以发生在不同网络层的神经元之间,也可以只局限于某一层神经元上。由于反馈网络属于动态网络,只有满足了稳定条件,网络才能在工作了一段时间之后达到稳定状态。反馈网络的典型代表是Elman网络和Hopfield网络。

6.1 Elman神经网络

Elman网络由若干个隐层和输出层构成,并且在隐层存在反馈环节,隐层神经元采用正切sigmoid型函数作为传递函数,输出层神经元传递函数为纯线性函数,当隐层神经元足够多的时候,Elman网络可以保证网络以任意精度逼近任意非线性函数。

6.2 Hopfield网络

Hopfield网络主要用于联想记忆和优化计算。联想记忆是指当网络输入某一个向量之后,网络经过反馈演化,从网络的输出端得到另外一个向量,这样输出向量称为网络从初始输入向量联想得到的一个稳定的记忆,也就是网络的一个平衡点。优化计算是指某一问题存在多个解法的时候,可以设计一个目标函数,然后寻求满足折椅目标的最优解法。例如在很多情况下可以把能量函数看作是目标函数,得到最优解法需要使得能量函数达到极小值,也就是所谓的能量函数的稳定平衡点。总之,Hopfield网络的设计思想就是在初始输入下,使得网络经过反馈计算,最后达到稳定状态,这时候的输出就是用户需要的平衡点。

6.3 主要应用

Elman网络主要用于信号检测和预测方面,Hopfield网络主要用于联想记忆、聚类以及优化计算等方面。

6.4 优点及其局限性

(一)Hopfield神经网络

对于Hopfield神经网络而言, 都存在以下问题:

(1)在具体神经网络实现中要保证连接权矩阵是对称的;

(2)在实际的神经网络实现中, 总会存在信息的传输延迟, 这些延迟对神经网络的特性有影响。

(3)神经网络实现中的规模问题, 即集成度问题。

(二)Elman神经网络

Elman神经网络模型与其他神经网络模型一样,具有输入层、隐层和输出层,具有学习期和工作期,因此具有自组织、自学习的特征。另外,由于在Elman神经网络模型中增加了隐层及输出层节点的反馈,因而更进一步地增强了网络学习的精确性和容错性。

利用Elman神经网络建立的网络模型,对具有非线性时间序列特征的其它应用领域都具有较好地应用前景,它具有较强的鲁棒性、良好的泛化能力、较强的通用性和客观性,充分显示出神经网络方法的优越性和合理性,这种神经网络方法在其它领域预测和评价方面的使用将具有较好的实际应用价值。

7.其它:

收集了一些资料,还有另一个版本,有重叠:

ANNs指使用第一代或第二代神经元模型的算法

unsupervised learning (聚类)

1、其他聚类:

SOM

autoencoder

2、Deep learning,分三类,方法完全不同,连神经元都不一样

前馈预测:见3

反馈预测:stacked sparse autoencoder(聚类), predictive coding (属RNN,聚类)

交互预测:Deep belief net (DBN,属RNN,聚类+分类)

3、前馈神经网络(分类)

perceptron

BP

RBF

前馈Deep learning:convolutional neural network (CNN)

4、Recurrent NN类

hopfield

Boltzmann machine 及变种

echo state network

5、其他工程用算法的神经网络版本,数量太多,简单写几

强化学习如TD(reinforcement learning)

PCA

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

人工神经网络的模型

人工神经网络的模型:人工神经元的模型、常用的激活转移函数、MP模型神经元 人工神经元的主要结构单元是信号的输入、综合处理和输出 人工神经元之间通过互相联接形成网络,称为人工神经网络 神经元之间相互联接的方式称为联接模式。相互之间的联接强度由联接权值体现。 在人工神经网络中,改变信息处理及能力的过程,就是修改网络权值的过程。 人工神经网络的构造大体上都采用如下的一些原则: 由一定数量的基本神经元分层联接; 每个神经元的输入、输出信号以及综合处理内容都比较简单; 网络的学习和知识存储体现在各神经元之间的联接强度上。 神经网络解决问题的能力与功效除了与网络结构有关外,在很大程度上取决于网络激活函数。人工神经网络是对人类神经系统的一种模拟。尽管人类神经系统规模宏大、结构复杂、功能神奇,但其最基本的处理单元却只有神经元。人工神经系统的功能实际上是通过大量神经元的广泛互连,以规模宏伟的并行运算来实现的。 人工神经网络模型至少有几十种,其分类方法也有多种。例如,若按网络拓扑结构,可分为无反馈网络与有反馈网络;若按网络的学习方法,可分为有教师的学习网络和无教师的学习网络;若按网络的性能,可分为连续型网络与离散型网络,或分为确定性网络与随机型网络;若按突触连接的性质,可分为一阶线性关联网络与高阶非线性关联网络。 人工神经网络的局限性: (1) 受到脑科学研究的限制:由于生理实验的困难性,因此目前人类对思维和记忆机制的认识还很肤浅,还有很多问题需要解决; (2) 还没有完整成熟的理论体系; (3) 还带有浓厚的策略和经验色彩; (4) 与传统技术的接口不成熟。 如果将大量功能简单的形式神经元通过一定的拓扑结构组织起来,构成群体并行分布式处理的计算结构,那么这种结构就是人工神经网络,在不引起混淆的情况下,统称为神经网络。根据神经元之间连接的拓扑结构上的不同,可将神经网络结构分为两大类:分层网络相互连接型网络 分层网络可以细分为三种互连形式: 简单的前向网络; 具有反馈的前向网络; 层内有相互连接的前向网络。 神经网络的学习分为三种类型:有导师学习、强化学习无导师学习 有导师学习:必须预先知道学习的期望结果——教师信息,并依此按照某一学习规则来修正权值。 强化学习:利用某一表示“奖/惩”的全局信号,衡量与强化输入相关的局部决策如何。 无导师学习:不需要教师信息或强化信号,只要给定输入信息,网络通过自组织调整,自学习并给出一定意义下的输出响应。 神经网络结构变化的角度,学习技术还可分为三种: 权值修正、拓扑变化、权值与拓扑修正学习技术又还可分为:确定性学习、随机性学习 人工神经网络 人工神经网络是生物神经网络的某种模型(数学模型);是对生物神经网络的模仿 基本处理单元为人工神经元 生物神经元(neuron)是基本的信息处理单元

BP神经网络的预测理论的及程序 学习

12、智能算法 12.1 人工神经网络 1、人工神经网络的原理假如我们只知道一些输入和相应的输出,但是不清楚这些输入和输出之间的具体关系是什么,我们可以把输入和输出之间的未知过程看成是一个“网络”,通过不断的网络输入和相应的输出进行“训练”(学习),网络根据输入和对应输出不断调整连接网络的权值,直到满足我们的目标要求,这样就训练好了一个神经网络,当我们给定一个输入, 网络就会计算出一个相应的输出。 2、网络结构神经网络一般有一个输入层,多个隐层,和一个输出层。隐层并非越多越好。如下图所示: 神经网络工具箱几乎 MATLAB 12.2 Matlab 神经网络工具箱 BP 网络和涵盖了所有的神经网络的基本常用模型,如感知器、nntool nftool,nctool,nprtool,nntraintool 和等。它由RBFNN 函数逼近和数据拟合、信息处理和预测、神经网组成。主要应用于

在实际应用中,针对具体的问题,首先络控制和故障诊断等领域。.需要分析利用神经网络来解决问题的性质,然后依据问题的特点,提取训练和测试数据样本,确定网络模型,最后通过对网络进行训练、仿真等检验网络的性能是否满足要求。具体过程如下: (1)确定信息表达的方式,主要包括数据样本已知;数据样本之间相互关系不明确;输入/输出模式为连续的或离散的;数据样本的预处理;将数据样本分成训练样本和测试样本。 (2)网络模型的确定。确定选择何种神经网络以及网络层数。 (3)网络参数的选择,如输入输出神经元个数的确定,隐层神经元的个数等。 (4)训练模式的确定,包括选择合理的训练算法、确定合适的训练步数、指定适当的训练目标误差等 (5)网络测试,选择合理的样本对网络进行测试。 简单来讲就是三个步骤:建立网络(newXX)—训练网络(trainXX)—仿真网络(sim) 12.3 BP 神经网络的 Matlab 相关函数 BP 算法的基本思想:学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号作为修正各单元权

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

(完整word版)BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出: (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

神经网络心得

人工神经网络学习心得 时间如白马过隙,很快八周的人工神经网络学习即将结束,仿佛昨天才刚刚开始学习这门课程,在这段时间的学习中,我有起初对神经网络的不了解到现在的熟悉和掌握,这其中的变化,是我知识提高的过程。我在这个过程中有一些自己的体会和感想。 我是一名学习控制科学和工程的研究生,起初对于神经网络的认识很肤浅,由于我相应知识的欠缺,想要理解神经网络的结构会很不容易。在开始的几节课中,老师给我们讲了神经网络的发展史、结构和原理,当时感觉有压力、紧张。因为我感觉和生物的神经学差不多,一开始接触觉得它不是一门智能控制学,而是一门生物学,所以只能慢慢学习和理解,最终完成课程的学习。虽然相比于其他学过的课程,我对这门学科的了解稍微逊色点,但我还不是一个害怕困难的人,越是困难我越是会迎头前进的,不会倒下,去努力掌握这些知识。 接下来的几周,是老师的授课过程,说实话老师讲的论文我听的不太懂,讲的软件的应用也是一知半解……有种痛苦的感觉,好像什么也没学到,问了其他同学,他们也有同样的感觉,哦,原来都一样啊,没事,那就继续坚持吧…… 过了这个彷徨期,该是呐喊的时候了,该写期末作业了,开始做题的时候还挺紧张,害怕题很难做,找了很多资料,照葫芦画瓢,硬着头皮写,写完了之后有一点小小的成就感,我终于给做出来了,可当时我们还是不知道如RBF网络和BP网络怎么应用,只是有那么点熟悉,有那么点感觉。

最重要的时刻到了,在课堂中老师提的问题,我显得是那么生疏,满脸的惆怅,对问题不知所措,迷茫与疲惫缠绕着我的身心。每次上课之前我都要花上一段时间去预习课程内容,但是每次看的都是一脸迷茫,一知半解。老师所说的每一句话,我要想半天才会明白过来。这事我猜知道,基础是多么的重要,而且我知道学习知识最重要的是要学会应用和实践。不然就只能只上谈兵,但是一到应用我就不知从何下手。因此,我知道我还有很长的路要走。 其中的辛酸与乐趣大概也只有一块学习的学友们了解。在这近两个月中我们体会到了坚持的力量。遇到问题,不能退缩,只能前进。坚持就是胜利。问题只有在不断的思考和学习中才能解决。同时,也能是自己得到提高。 经过几周的的学习我对神经网络的理解能力明显有所提高。在神经网络中我们可以用跳跃性的思维去思考问题,这锻炼了我们的跨越式思维,提高了我们的能力,增强了我们的自信心,在人生道路上选择的关键时刻起了很大的作用,让我们明白了独立思考,开阔眼界,在科研方面所发挥的重要作用,使我们“学以致用,终生受益。 在此,我们要感谢授课的李晓强老师,谢谢李老师在这近两个月来对我们的关心。通过这八周的学习,锻炼了我的能力;增加了对人工神经网络知识的了解;提高了创新意识和解决问题的能力。

基于神经网络的专家系统

基于神经网络的专家系统 摘要:人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 关键词:专家系统;神经网络;系统集成; 0 引言 专家系统(Expert System)是一种设计用来对人类专家的问题求解能力建模的计算机程序。专家系统是一个智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。一个专家系统应具有以下三个基本特征:启发性——不仅能使用逻辑性知识还能使用启发性知识;透明性——能向用户解释它们的推理过程,还能回答用户的一些问题;灵活性——系统中的知识应便于修改和扩充;推理性——系统中的知识必然是一个漫长的测试,修改和完善过程。专家系统是基于知识的系统。它由如图1所示的5个基本的部分组成[1,2,3]。 知识库存储从专家那里得到的特定领域的知识,这些知识包括逻辑性的知识和启发性知识两类。数据库用于存放专家系统运行过程中所需要和产生的信息。推理机的作用是按照一定的控制策略,根据用户提出的问题和输入的有关数据或信息,按专家的意图选择利用知识库的知识,并进行推理,以得到问题的解答,它是专家系统的核心部分。人机接口部分的功能是解释系统的结论,回答用户的问题,它是连接用户与专家系统之间的桥梁。知识的获取是为修改知识库原有的知识和扩充知识提供的手段。 1 传统专家系统存在的问题 传统专家系统是基于知识的处理的系统,将领域知识整理后形式化为一系列系统所能接受并能存储的形式,利用其进行推理实现问题的求解。尽管与人类专家相比,专家系统具有很大的优越性。但是,随着专家系统应用的日益广泛及所处理问题的难度和复杂度的不断扩大和提高,专家系统在某些方面已不能满足是实际工作中的需求,具体体现在以下一个方面[1,2]:(1)知识获取的“瓶颈”问题。(2)知识获取的“窄台阶”。(3)缺乏联想功能、推理能力弱。(4)智能水平低、更谈不上创造性的知识。(5)系统层次少。(6)实用性差。 2 神经网络与传统专家系统的集成 神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神经网络专家系统,可以取长补短。根据侧重点的不同,神经网络与专家系统的集成有三种模式[2]:(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。 (2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。 (3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

神经网络实学习 例子

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

基于纹理信息与神经网络的遥感影像分类

基于纹理信息提取与神经网络分类方法的 遥感影像分类

目录 1 实验目的 (3) 2 实验原理 (3) 基本概念 (3) 原理阐述 (4) 技术路线 (7) 3、实验设备与数据与研究区域 (7) 4、实验过程 (8) 4.1 数据预处理 (8) 4.1.1 数据裁剪 (8) 4.1.2 辐射校正(包括辐射定标和大气校正) (8) 4.2 数据融合 (10) 4.3 训练样区的选择 (11) 4.3.1打开Google Earth影像作为训练样区选择的参照 (11) 4.3.2 建立兴趣区 (12) 4.3.3 训练样区的选择 (13) 4.3.4 训练样区的评价 (14) 4.4 基于光谱信息的神经网络分类 (14) 4.5 分类后处理 (18) 4.6 分类精度分析 (19) 4.7 基于光谱信息和纹理信息的神经网络分类 (20) 4.8 实验结果与评价 (25) 参考文献 (26)

基于纹理信息提取与神经网络分类方法的 遥感影像分类 1 实验目的 1、通过深入研究遥感影像纹理信息的提取原理与方法,针对研究区影像特征,掌握纹理信息对提高影像分类精度的重要作用。 2、了解ENVI中基于神经网络的影像监督分类方法原理,采用纹理信息与神经网络分类相结合的方式,对研究区影像进行分类,与无纹理信息的分类结果进行对比与评价。 3、进一步熟悉影像神经网络分类的原理和方法、训练区选取、分类后处理方法等操作,并根据研究区实际情况进行分类后评价。 2 实验原理 基本概念 神经网络指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程应用于图像分类。 神经网络算法是用计算机模拟人类学习的过程, 建立输入和输出数据之间联系的方法。神经网络分类器在遥感影像分类领域得到了普遍的关注。国内外学者发展了多种形式的神经网络模型和算法, 如反向传播网络、模糊神经网络、多层感知网络、Kohonen自组织特征映射网络、Hybrid学习向量分层网络等。网络的输入和输出节点之间通过隐含层相连, 节点之间通过权重连接, 因而这种方法可以将多种数据, 如纹理信息、地形信息等, 方便有效地融合到遥感影像的分类过程中, 增强了分类能力。神经网络是非线性系统, 可以在特征空间构造出分类界面比较复杂的子空间, 因此对非线性可分的特征子空间尤为有效。但是, 神经网络也存在一定的缺点, 如初始权重选择的困难、收敛速度慢、对输入数据的预处理要求高等, 对遥感影像分类结果有重要影响。 目前, 应用和研究最多的是利用反向传播算法( BP算法)训练权值的多层前馈神经网络。该网络的学习训练过程由正向传播和反向传播组成, 在正向传播过程中, 输入信息从输入层经隐含层逐层处理, 并传向输出层,若在输出层得不到期望的输出, 则输入反向传播, 将误差信号沿原路返回, 通过修改各层神经元间的权值, 达到误差最小。一般说来, 隐含层

神经网络学习报告1

阶段学习报告 摘要:现阶段已学习过神经网络中的Hebb学习,感知器,自适应线性神经元和多层前向网络,本文对上述规则进行总结,分析各种规则之间的关系及它们之间的异同,并介绍它们各自的典型应用。 关键字:Hebb学习感知器自适应线性神经元多层前向网络 引言 神经网络技术[1]中,对神经网络的优化一直是人们研究的热点问题。1943年心理学家Warren McCulloch和数理逻辑学家Walter Pitts首先提出人工神经元模型;1949年心理学家Donald O.Hebb提出了神经网络联想式学习规则,给出了神经网络的学习方法;1957年美国学者Frank Rosenblatt和其它研究人员提出了一种简单的且具有学习能力的神经网络——感知器(Perceptron),并给出了感知器学习规则;1960年Bernard Widrow和他的研究生Marcian Hoff提出了自适应线性神经元,并给出了Widrow-Hoff学习算法;之后神经网络研究陷入低潮,直至80年代,改进的(多层)感知器网络和相应学习规则的提出才为克服这些局限性开辟了新的途径。 本文结构如下:首先介绍感知器模型,Hebb学习,自适应线性神经元和多层前向网络;其次分析上述规则之间的关系和异同;最后给出它们的典型应用。

第一章 典型的神经网络学习方法 1.1 Hebb 学习规则[2] Hebb 规则是最早的神经网络学习规则之一,是一种联想式学习方法,由Donald Hebb 在1949年作为大脑的一种神经元突触调整的可能机制而提出,从那以后Hebb 规则就一直用于人工神经网络的训练。这一学习规则可归纳为“当某一突触连接两端的神经元同时处于激活状态(或同为抑制)时,该连接的强度应增加,反之应减弱”。 学习信号简单的等于神经元的输出: ()T j r f W X = (1-1) 权向量的调整公式为 ()T j j W f W X X η= (1-2) 权值的调整量与输入输出的乘积成正比。经常出现的模式对权向量有最大的影响。为此,Hebb 学习规则需先设定权饱和值,以防止输入和输出正负始终一致时出现权值无限制增长。 Hebb 学习规则是一种无教师的学习方法,它只根据神经元连接间的激活水平改变权值,因此这种方法又称为相关学习或并联学习。 1.2 感知器学习规则[3] 感知器是第一个完整的人工神经网络,它具有联想记忆的功能。 θ∑)(x f 1u 1w x y 2 u i u n u 2w i w n w 图1 单层感知器神经元模型 对于图1给出的感知器神经元,其净输入x 及输出y 为: ) (2211x f y u w u w u w u w x n n i i =++++++=θ (1-3) 若令[]n i w w w w 21=w ,则: )(θ+=u w f y (1-4)

神经网络学习文章

9.3 Neural Networks Neural networks are an interesting topic for artificial intelligence researchers. Since they are related to man’s nervous system construction, the results of their investigations form a foundation on which hypotheses describing the working of a brain can be built [1]. Neural Network Objectives Although various neural network models to a greater or a lesser extent remind one of the actual neural network, nevertheless they do differ from it (apart from cases where such models are constructed with the intention of an exact simulation). The purpose of the limits imposed is to simplify the reasoning, and to enable the executability of algorithms devised [2]. Artificial neural networks enable the execution of certain intelligent operations, e.g. associations. The analysis of these networks also provides interesting conclusions on parallel processing. Neural cells are characterized by a very long response (reaction) time (i.e. they work slowly), but because of [3] the massively parallel processing man is capable of instant execution of tasks for which conventional sequential machines require significantly more time; for instance, image recognition. Investigations of such processes will eventually lead to the design of fast algorithms that use the parallelism of artificial neurons. Parallel processing is especially important in building search algorithms employing neural networks. In the last couple of years electronic cubes containing more and more densely packed neural networks have appeared. Neural Network Structure A neural network is a set of processing units (nodes) joined by links through which they communicate. Each unit is characterized by its activation state which changes in time. From the current unit's activation state a signal it sends into the network is calculated [4]. This signal is carried over the links to other nodes. During the transmission it may be weakened or strengthened, depending upon the link's characteristics. Signals reaching a unit from its neighbors are combined into an input signal, from which the next activation state of that unit is computed [5]. Network definition comprises descriptions of the following elements: ?set of nodes ?links ?rules for calculating the input signal ?activation function ?output signal function We should start the characterization of processing units (neurons) by first indicating the significance of each unit. In some of the systems, single nodes clearly represent defined objects, features or concepts. This representation method is called local. Its opposite is a distributed representation, where single units denote not whole concepts but rather their abstract parts which do not have a representation in the language in which the working of a network is interpreted [6]. Only subsets of the whole network form full concept descriptions. A processing unit executes a simple sequence of operations: receives signals from neighbors, computes its activation state, and sends that state into the network. Not all units have to have the same characteristics (activation function, input signal), although networks

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/8f14223585.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

相关文档
最新文档