仿生四足机器人设计及运动学足端受力分析

仿生四足机器人设计及运动学足端受力分析
仿生四足机器人设计及运动学足端受力分析

仿生六足机器人中期报告

编号: 哈尔滨工业大学 大一年度项目中期检查报告 项目名称:仿生六足机器人 项目负责人:学号 联系电话:电子邮箱: 院系及专业:机电工程学院 指导教师:职称: 联系电话:电子邮箱: 院系及专业:机电工程学院 哈尔滨工业大学基础学部制表 填表日期:2014 年 6 月28 日

一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见 三、项目专家组意见

四、研究背景 1.研究现状 4.1国内研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人行走运动控制过程的应用。Boston Dynamics公司的Big Dog四足机器人用于为军队运输装备,其高3英尺,重165磅,可以以3.3英里的速度行进,其采用汽油动力。 图1 Adaptive Suspension Vehicle 图2 Odex1步行机器人 图3 MIT腿部实验室的四足和双足机器人图4 DANTE步行机器人 由于新的材料的发现、智能控制技术的发展、对步行机器人运动学、动力学高效建模方法的提出以及生物学知识的增长促使了步行机器人向模仿生物的方向发展。 4.2国外研究现状 我国步行机器人的研究开始较晚,真正开始是在上世纪80年代初。1980年,中国科学院长春光学精密机械研究所采用平行四边形和凸轮机构研制出一台八足螃蟹式步行机,主要用于海底探测

四足机器人步行腿运动学正反解

四足机器人步行腿的运动学正反解摘要:本文设计的步行腿具有3个驱动关节,分析了该步行机器人的机构及其等效简化,给出了运动学正反解,正解问题要比反解问题复杂很多。该分析方法准确率高,为步行腿的运动空间、轨迹规划和位置控制奠定了基础。 关键词:步行腿运动学正反解 abstract: in this paper, the design of walking legs with three drive joint analysis of the institutions of the walking robot and its equivalent simplified kinematics and inverse solution positive solution of the problem is much more complex than the inverse solution. the analytical method with high accuracy, and laid the foundation for walking space for the movement of the legs, trajectory planning and position control. keywords: walking legs kinematics positive and negative solution 0 前言 四足机器人的行走机构是步行腿,它是步行机器人中最为重要也是最复杂的构件[1],步行腿的灵活度这届决定了步行机器人的行走姿态和完成任务的复杂程度。本文设计的步行腿具有三个驱动关节,采用混连机构设计。给出了步行腿的运动正解和反解,是整个四足步行机器人系统设计的基础,也是机器人运动空间分析和尺

仿生机器人课程报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 仿生感知与先进机器人技术 课程报告(1) 报告题目:仿生机械的发展 院系:机电学院 班级: 姓名: 学号: 哈尔滨工业大学机电工程学院

仿生学及仿生机械学的由来 仿生学(Bionics)是模仿生物的特殊本领的一门科学。仿生学籍了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。1960年由美国的J.E.Steele 首先提出。 仿生学这个名词来源于希腊文“Bio”,意思是“生命”,字尾“nic”有“具有……的技术中利用这些原理,提供新的设计思想、工作原理和系统架构的技术科学。 仿生机械学是上世纪60年代初期出现的一门综合性的新兴边缘学科,它是生命科学与工程技术科学相互渗透、相互结合而形成的。包含着对生物现象进行力学研究,对生物的运动、动作进行工程分析,并把这些成果根据社会的要求付之实用化。 仿生学的研究方向 (1)生物材料力学和机械力学,是以骨或软组织(肌肉、皮肤等)作为对象,通过模型实验方法,测定其应力、变形特性,求出力的分布规律。还可根据骨骼、肌肉系统力学的研究,对骨和肌肉的相互作用等进行分析。另外,生物的形态研究也是一大热门。因为生物的形态经过亿万年的变化,往往已形成最佳结构,如人体骨骼系统具有最少材料、最大强度的构造形态,可以通过最优论的观点来学习模拟建造工程结构系统。 (2)生物流体力学,主要涉及生物的循环系统,关于血液动力学等的研究已有很长的历史,但仍有许许多多的问题尚未解决,特别是因为它的研究与心血管疾病关系十分密切,已成为一门倍受关注的学科。 (3)生物运动学,生物的运动十分复杂,因为它与骨骼和肌肉的力学现象、感觉反馈及中枢控制牵连在一起。虽然各种生物的运动或人体各种器官的运动测定与分析都是重要的基础研究,但在仿生机械学中,目前特别重视人体上肢运动及步行姿态的测定与分析,因为人体上肢运动机能非常复杂,而下肢运动分析对动力学研究十分典型。这对康复工程的研究也有很大的帮助。 (4)生物运动能量学,生物的形态是最优的,同样,节约能量消耗量也是生物的基本原理。从运动能量消耗最优性的特点对生物体的运动形态、结构和功能等进行分析、研究,特别是对有关能量的传递与变换的研究,是很有意义的。

六足机器人设计参考解析

摘要 六足机器人有强大的运动能力,采用类似生物的爬行机构进行运动,自动化程度高,可以提供给运动学、仿生学原理研究提供有力的工具。本设计中六足机器人系统基于仿生学原理,采用六足昆虫的机械结构,通过控制18个舵机,采用三角步态和定点转弯等步态,实现六足机器人的姿态控制。系统使用 RF24L01射频模块进行遥控。为提高响应速度和动作连贯性,六足机器人的驱动芯片采用ARM Cortex M4芯片,基于μC/OS-II操作系统,遥控器部分采用ARM9处理器S3C2440,基于Linux系统。通过建立六足机器人的运动模型,运用正运动学和逆运动学对机器人进行分析,验证机器人步态的可靠性。 关键字:六足机器人,Linux,ARM,NRF24L01,运动学 Abstract Bionic hexapod walking robot has a strong ability of movement, the use of similar creatures crawling mechanism movement, high degree of automation, can be provided to the kinematics, the principle of bionics research provides powerful tool. Six feet in the design of this robot system based on bionics principle, the mechanical structure of the six-legged insect, through 18 steering gear control, use the gait, such as triangle gait and turning point to control the position of six-legged robot. Remote control system use RF24L01 rf modules. In order to improve the response speed and motion consistency, six-legged robot driver chip USES the ARM architecture (M4 chip, based on mu C/OS - II operation system, remote control part adopts ARM9 processor S3C2440, based on Linux system. By establishing a six-legged robot motion model, using forward kinematics and inverse kinematics analysis of robot, verify the reliability of the robot gait. KEYWORD:Bionic hexapod walking robot;Linux,ARM,NRF24L01;Kinematics

仿生鱼机器人设计说明书

仿生鱼机器人设计说明书

目录 第一章绪论 (3) 1.1目的及意义 (4) 1.2研究现状 (4) 1.3本文的主要工作 (4) 第二章概述 (5) 2.1 整体构思 (5) 2.2 仿生依据 (5) 第三章机械结构设计 (7) 3.1机械设计思路及建模 (7) 3.2创新点 (8) 3.3 零件明细 (9) 第四章仿真分析 (10) 第五章电路设计 (12) 第六章控制系统 (13) 第七章总结 (17) 7.1优势及创新点 (17) 7.2主要关键技术 (17) 7.3 应用前景与趋势 (18) 7.4 不足与改进 (18)

仿生鱼机器人设计说明书 第一章绪论 1.1目的及意义 21世纪是海洋的世纪,占全球71%面积的海洋将是下一个世纪,也是未来人类赖以生存的资源海洋,对于人类的发展和社会的进步将起到至关重要的作用。在民用上,海洋蕴藏着丰富的矿物资源、海洋生物资源和能源,是人类社会可持续发展的重要财富。因此,对于海洋的开发和争夺成了很多发达国家的战略重点,而且愈演愈烈。在各种海洋技术中,作为用在一般潜水技术不可能到达的深度或区域进行综合考察和研究并能完成多种作业使命的水下机器人使海洋开发进入了新时代。随之“蓝色经济”越来越成为各沿海地区经济发展的“正能量”,大规模的开发探测和利于海洋资源,已经成为我们21 世纪要面对和必须解决的现实问题。另外,军事方面对其需求也日益增加,为了适应这种需求,研究和开发潜水器和水下机器人成为了极佳的选择。鱼类经过长期的自然选择,具备非凡的游动能力,近年来随着仿生技术的进步,人类纷纷模仿自然界中鱼类的运动方式和运动器官,即各种各样的水下机器人。世界上第一台水下机器人“Poodle”诞生于1953 年。近20 年来,水下机器人有了很大的发展,它们既可军用又可民用。到目前为止,全世界大约共建造了6000 多台各种各样的水下机器。水下机器人有广泛的应用空间,民用和军用均可,不仅可以代替潜水员在深水长时间工作,降低工作风险,提高工作效率,而且还可以检测水污染状况,监测鱼类生长状况,探测海底火山活动状况;在军事方面,可以用于跟踪敌人的船舰和潜艇,捕获地方军事信息,也可以降低敌人对我军的探测几率,甚至可以携带炸药至敌人军舰处,炸毁敌方舰艇的动力系统,摧毁敌方舰队。此外,仿鱼形水下机器人还可以应用于海洋动物园。仿鱼形水下机器人是一种集机械、智能控制与一体的高科技设备,在民用、军事、科学研究等领域体现出了广阔的应用前景和巨大的潜在价值。

仿生机械蜘蛛设计与仿真

vvv学院毕业论文(设计)任务书 毕业论文(设计)题目 仿生机械蜘蛛设计与仿真 学生姓名 vvv 专业 机制 班级 0912 指导教师 vvv 一、毕业论文(设计)的主要内容及要求 设计一种步行仿生机械蜘蛛,要求: 1、绘制仿生机械蜘蛛零部件三维图型和装配图; 2、绘制仿生机械蜘蛛零部件工程图; 3、对仿生机械蜘蛛进行运动仿真; 4、设计仿生机械蜘蛛运动控制方案。 二、毕业论文(设计)应收集的资料及主要参考文献 [1]孙立宁,王鹏飞,黄博. 四足仿生机器人嵌入式多关节伺服控制器的研究[J]. 机 器人,2005,06:517-520. [2] 许宏岩 , 付宜利 , 王树国 , 刘建国 . 仿生机器人的研究 [J]. 机器 人,2004,03:283-288. [3]徐小云,颜国正,丁国清. 微型六足仿生机器人及其三角步态的研究[J]. 光学精 密工程,2002,04:392-396. [4]马光. 仿生机器人的研究进展[J]. 机器人,2001,05:463-466. [5]迟冬祥,颜国正. 仿生机器人的研究状况及其未来发展[J]. 机器 人,2001,05:476-480. [6]徐小云,颜国正,丁国清,刘华,付轩,吴岩. 六足移动式微型仿生机器人的研究[J]. 机器人,2002,05:427-431. [7]刘鹏,郑浩峻,关旭. 基于并联腿机构的四足仿生机器人开发[J]. 微计算机信 息,2007,No.19205:226-227+264. [8]漆向军,陈霖,刘明丹. 控制六足仿生机器人三角步态的研究[J]. 计算机仿

真,2007,04:158-161. [9]张争艳,刘彦飞,冯敏,杨艳芳. 基于虚拟样机技术的六足仿生机器人设计与仿 真[J]. 装备制造技术,2007,No.15410:35+43. [10]王丽慧,周华. 仿生机器人的研究现状及其发展方向[J]. 上海师范大学学报 (自然科学版),2007,06:58-62. [11]赵涓涓,李强,任美荣,郭晓东,李晓飞. 六足仿生机器人运动控制系统的设计[J]. 机电工程技术,2008,v.37?No.20112:44-45+76+106. [12]王鹏飞,黄博,孙立宁. 四足仿生机器人稳定性判定方法[J]. 哈尔滨工业大学 学报,2008,07:1063-1066. [13] 孙立宁 , 胡海燕 , 李满天 . 连续型机器人研究综述 [J]. 机器 人,2010,v.3205:688-694. [14]谭云福,党培. 一种四足仿生机器人步态协调控制的策略[J]. 微计算机信 息,2010,v.26?No.34132:152-154. [15]姜铭,李鹭扬. 混联仿生机器狗构型研究[J]. 机械工程学报,2012,v.4801:19-24. 三、毕业论文(设计)进度及要求 1、1~3周阅读资料、撰写开题报告; 2、4~10周完成毕业设计任务指定工作; 3、11~13周撰写毕业论文; 4、14周毕业答辩 5、要求每周至少向指导教师汇报一次工作进度。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

最新六足爬虫机器人

本文的设计为六足爬虫机器人,机器人以锂电池为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析

六足步行机器人的毕业设计说明书

本科毕业设计(论文) 六足步行机器人设计与仿真 燕山大学 2012年6月

本科毕业设计(论文) 六足步行机器人设计与仿真 学院(系):里仁学院 专业:机械电子工程 学生姓名:牛智 学号: 0811******** 指导教师:田行斌 答辩日期: 20012.6.17

燕山大学毕业设计(论文)任务书

摘要 摘要 基于仿生学原理,在分析六足昆虫运动机理的基础上,采用了仿哺乳类的腿部结构,并针对这种腿部结构设计了六足的行走方式,通过对18个直流伺服电机的控制,采用三角步态,实现了六足机器人的直行功能。仿真证明,这种结构能较好地维持六足机器人自身的平衡,并且对今后更深入地研究六足机器人抬腿行走姿态及可行性,具有较高的参考价值。 针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与UG软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析。通过仿真,验证了所设计的三角步态的适用性。 关键词六足机器人;步行;三角步态;运动学仿真

燕山大学本科生毕业设计(论文) Abstract A bionic leg structure which is similar to the legs of mammals was used,and a hexapod walking mode was designed according to this structure.By controlling 18 step motors straight walking function of the hexapod robot has been implemented with tripod gait movement.Simulation and experiment show that this structure can keep the hexapod robot balance better,providing high reference value to research the advantage and feasibility of leg raising walking gesture. As there are many joints in the bionic hexapod walking robot and the calculation of its walking track and joints control unit are comparatively comp- licated,the kinematical simulation and analysis of the model of bionic hexapod walking robot have been done by using solidworks and UG.Through simulation,the applicability of designed tripod gait are validated. Keywords Hexapod robot;Walking;Tripod gait;Kinematics simulation

仿生机器人论文

仿生机器人探秘 经过数十亿年的进化和自然选择,自然界的生物为人类的创新提供了天然的宝库,令人不得不惊叹大自然的鬼斧神工,感受到生命进化演变的魅力。 几千年来,人类从大自然的杰作里获得了取之不竭的灵感:鸽子滑翔在半空,工程师由此发明了木质自动平衡飞行器;看见黄蜂筑巢,四大发明之一的造纸术由此诞生;因模仿生物的结构和形态而获得优良性能的建筑和艺术品更是数不胜数。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。 如今的仿生学,不仅仅局限于传统机械、化学、建筑学等,而融入了很多现代元素,是一门生命科学、物质科学、数学与力学、信息科学、工程技术以及系统科学等学科的交叉学科。在过去的几十年,随着人类科学技术的高速发展,机器人专家借鉴了更多来自数学、力学、电子和计算机科学的知识。一方面,这种方法无疑整合了技术的基础学科使生产非常成功的产品成为可能,特别是在工业机器人领域。另一方面,它能够用来更好地认识机器和动物的差距,努力去缩小这种差距,使得机器人更加“人类化”。 仿生形态 文章首先介绍了仿生形态。一是对动物本身的生物形态和动作表现的运用,如娱乐产业的动画。二是运用了其与人类的交互功能:老人和孩子接受和喜爱仿生动物陪伴,它们不仅外形像宠物,有的还能够感知和应对人类情感,甚至能够生动地表达自己的情绪。这些人性化的机器人可以使面部表情,具有眼睛的眨动,头的摇晃,身体动作和姿势。它们用手臂和手,依靠在它们的衣服和皮肤上灵敏的触摸传感器,对可变压力做出反应,达成响应。 另一个活跃的研究领域是能够发挥重要作用的变形,科学家们在尝试使机器人可以根据内部或外部环境,动态重新配置他们的形态。生物的灵感来源于生物体,失去了附件还可以再生,像蜥蜴的尾巴,或从在发展阶段过渡,如形态形成两栖类的变化。感觉这个研究会用到一些拓扑学和流形的知识,令我非常感兴趣。

仿生蜘蛛机器人的设计与研究

毕业设计(论文) 仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程及自动化 系别:机械与电气工程系 指导教师:孔繁征

2020年6月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以及相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

六足仿生机器人

六足仿生机器人 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人们完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变为现实。随着机器人工作环境和工作任务的复杂化,要求机器人具备有更高的运动灵活性和特殊位置环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,各种各样的仿生机器人相继被研制出来,仿生机器人已经成为机器人家族重要的成员。 仿生爬行机器人是一种基于仿生学原理研制开发的新型足式机器人。与传统的轮式或者履带机器人相比,足式机器人自由度多,可变性大、结构发杂、控制繁琐,但其在运动特性方面具有独特的优点:首先是足式机器人具有较好的机动性,对不平地面的适应能力十分突出,由于其立足点是离散的,与地面的接触面积较小,因而可以在可能达到的地面上选择最优支撑点,从而能够相对容易的通过松软地面以及跨过比较大的障碍;其次是足式机器人的运动系统可以实现主动隔振,允许机身运动轨迹与足轨迹解耦。尽管地面高

低不平,机身的运动仍可达到相对平稳。 本课题主要研究的内容是一种六足仿生机器人的机械机构部分的设计和分析,围绕六足仿生机器人的前沿技术,主要仿生对象为蚂蚁,主要实现机器人前后左右移动,具有良好的仿生特性,研究具有抗冲击性以及地形适应能力的仿生机设计技术,六足仿生机器人系统模型;研究六足机器人适应不同地形环境的能力。研制系统设计与仿真等核心单元。研制高速、高负载力、对典型非结构化地形具有高适应能力的六足仿生机器人,并开展系统结构、地形适应能力以及对抗控制实验验证。本次设计的预期要达到的效果是可以实现灵活进退和转向,跨越障碍物,通过洼地和台阶并且保持平衡防止倾翻,能够实现实时避障,合理规划行走路线。 1、技术方案 一、机器人功能介绍: a)可实现前进后退转弯等基本动作,加装传感器后对小障碍物越过、大障碍物绕开,具有遥控模式,可通过无线装置无线控制。 b)机器人机械机构: 舵机在仿生机器人中的应用:舵机有体积紧凑,便于安装,输出力矩大,稳定性好等优点。一个放上机器人,机器人各个关节都有一定的自由度数,而每个舵机正是实现其中一个个关节在一个自由度上的运动。

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

基于Arduino的多功能六足仿生机器人

基于Arduino的多功能六足仿生机器人 如今这个时代人们对地球的探索进行的越来越深入,探索的区域越来越不适合人类工作,因此探索方式由传统的人工探测改为较为先进的机器人探测。然而传统的轮式机器人已不能满足人类的需求,严重的受于地形限制,尤其是工作环境不稳定的废墟、丛林、山洞等特殊场合。因此仿生学引起普遍重视,仿生学机器人被大量生产制作。 我们此次设计采用仿生学原理,制作了这个仿生学六足机器人。六足仿生机器人就可以很好地克服普通轮式机器人的缺点,可以很好地适应各种工作环境不稳定的废墟、丛林、山洞等,使得其工作区域增大。 该仿生机器人以arduino作为主控,用24路舵机控制板控制18路舵机以实现机器人的平稳运行,用PS2无线手柄控制机器人运动。有关机器人运动方式,采用传统的三角步态。三角步态(或交替三角步态),是β =1/2 时的波形步态,运动时六条腿成两组三角形交替支撑迈步前进。“六足纲”昆虫(蟑螂、蚂蚁等)步行时,一般不是六足同时直线前进,而是将三对足分成两组,以三角形支架结构交替前行。身体左侧的前、后足及右侧的中足为一组,右侧的前、后足和左侧的中足为另一组,分别组成两个三角形支架。当一组三角形支架中所有的足同时提起时,另一组三角形支架的三只足原地不动,支撑身体,并以其中足为支点,前足胫节的肌肉收缩,拉动身体向前,后足胫节的肌肉收缩,将虫体往前推,因此身体略作以中足为支点的转动,同时虫体的重心落在一另一组“三角形支架”的三足上,然后再重复

前一组的动作,相互轮换周而复始。这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。这就是典型的三角步态行走法,其行走轨迹并非是直线,而是呈“之”字形的曲线前进。 采用ADXL335模块进行运动姿态步伐的检测,判断其运动中躯干是否平稳。超声波红外模块结合以实现大角度区域内完美避障,有PS2无线手柄控制,采用将人工控制与自主控制相结合的方式,确保其运动的稳定性。机器人上还有GSM通信模块,可以将其搭载的数据采集系统的数据实时传输回PC端,并在PC端进行数据分析。 本次设计创新点在于它所带的无线充电模块,使它还可以作为小型机站,前期搭载小型无人机进行工作,当运动至陆地机器人无法通

类人形机器人项目总体设计报告

类人型机器人项目 总体设计报告 编制单位: 作者: 版本: 发布日期:

审核人:批准人:

目录 1.引言 (1) 1.1背景 (1) 1.2定义 (2) 1.2.1专门术语的定义 (2) 1.2.2外文首字母组词的原词组 (2) 1.3参考资料 (3) 2.总体设计 (3) 2.1开发与运行环境 (3) 2.1.1系统硬件运行环境 (3) 2.1.2系统软件运行环境 (4) 2.2硬件功能描述 (4) 2.3硬件结构(如图2所示) (4) 3.硬件模块设计 (4) 3.1机器人套件 (5) 3.1.1舵机 (5) 3.1.2机器人合金零件 (7) 3.2舵机控制器电路 (7) 4.嵌入式软件设计 (8) 4.1流程逻辑 (8)

4.1.1程序流程图 (8) 4.1.2程序流程图简述 (9) 4.2算法 (9) 4.2.1主要计算方法 (9) 4.2.2源程序说明 (10) 5.系统调试与总结 (13) 5.1系统调试 (13) 5.1.1单个舵机的研究和控制 (13) 5.1.2单个舵机的研究和控制 (15) 5.1.3机器人下肢运动的动作分解及实现 (15) 5.2总结 (16) 5.2.1总结一(作者:王刚) (16) 5.2.2总结二(作者:赵爱芳) (19) 5.2.3总结三(作者:刘丹) (24) 5.2.4总结四(作者:张瑞娜) (24) 附录一系统源程序 (32)

1.引言 类人型机器人是现在机器人研究领域的一个热点,无论是SONY公司不断更新的“阿西莫”机器人,还是每年在机器人世界杯上不断推陈出新的足球机器人,大家都把目光聚焦于更加拟人化的类人型双足行走机器人。 基于双足平台的机器人要正常工作首先需要能够平稳的行走,而双足步行是步行方式中自动化程度最高、最为复杂的动态系统。它具有支撑面积小、支撑面的形状随时间变化较大,质心的相对位置高的特点,是最复杂、控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类进行协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 目前对双足行走机构的研究主要基于仿生学原理与动态控制原理,SONY公司的“阿西莫”主要基于仿生学原理,这种研究方式也是类人型机器人舞蹈比赛与人形组机器人足球比赛中常见的控制方式,因为这种控制方法容易上手,能够从最简单的步伐控制开始了解类人型机器人控制的基本原理。 1.1背景 本小组以类人型机器人为课题,着重研究类人型机器人的结构与控制原理,掌握舵机的控制方式,掌握双足步行机器人步伐调整原理。 项目初期主要以上海英集斯公司的8自由度双足步行机器人为研究平台,以最基本的对单个舵机结构的研究及运动控制为起点,从而从每一个关节开始了解类人型机器人的组成,逐步过渡到多个舵机的

仿生机器人设计报告

目录 1.绪论 1 1.1课题背景 1 1.2 慧鱼机器人 2 1.3 走进实验室 3 1.4 按键式传感器 3 1.5 设计工作原理 4 1.6慧鱼模型操作规程 5 2. 仿生机器人6 2.1仿生机器人迈克仿真示意图 6 2.2仿生机器人迈克仿真程序图示 6 2.3仿生机器人结构简图7 3. 移动机器人8 3.1 移动机器人基础模型8 3.2 移动机器人仿真图8 3.3移动机器人结构简图9 3.4移动机器人仿真程序框图10 4.工业机器人10 4.1工业机器人仿真图11 4.2业机器人结构简图11 4.3工业机器人仿真程序12 5.寻光机器人14 5.1寻光机器人仿真模型14 5.2连线图和结构简图15 5.3光机器人仿真程序16

一、绪论 1.1课题背景 由机器人的发展和快速广泛的被使用,可知科学家对于机器人的功能也相提高,除了超强的逻辑运算、记忆能力及具备类似的自我思考能力,另外在机器人的外表及内部结构,科学家更希望能模仿人类。对于外在资讯的选集,也透过各种感应器,企图达到类似人类各种触觉的功能,选集了外在环境的资讯,一旦外在环境起了改变,机器人一定要能随着变化,做出该有的反应动作,更新自己的资料库,达到类似人类学习的功能。 移动式机器人形态分为车轮式、特殊车轮式、不限轨道式、不行式等,若是在平坦的地面上移动时,车轮式是最具效率的,不懂机构简单,且具实用性,但其缺点是在凹凸不平的岩地上便不能行走。此外,因普通车轮无法在阶梯及有段差的地外行走,因此积极研究一种有车轮、三辆以上连结构的特殊形态,及特殊组合的不限轨道式机器人,最近亦努力开发步行机器人,使其能登上阶梯。 本次研究即为移动机器人设计及其在控制器的实现,是说明当移动机器人在轨行动作中若遇到障碍物时会透过微动开关将讯息传回电路板中进行判断,再配合计数器的动作使机器人能避开障碍物并往下个路径前进,知道要到远的目标。 无疑,自动化控制理论本来是要使机器人变聪明。但是如何实现呢? 我们先用一个启发式实验进行说明。我们可能都观察过飞蛾趋光的特点,飞蛾找到光源,向那里飞去,即使非常近的距离,也绝不会拍打到光源。显然飞蛾之所以能够这样做,是因为它发觉光源,划出路线然后再向其扑去。这本领是基于这种昆虫自身具备的机敏的行为模式。 现在我们将上述能力应用到一个技术系统中。先用光学传感器探测到光源,马达执行动作,这样,我们必须在发现信号和执行信号之间建立一个合理的连接,即程序。 20世纪50年代,一位名叫沃特格雷(Walter Grey)的英国人将上述引人思考的实验付诸于实践。借助于几个简单的传感器,马达和电路,他创作出多种自动化动物,

仿生六足机器人 结题报告

编号:13 哈尔滨工业大学机电工程学院基于项目学习的机械创新设计大赛 结题报告书 项目名称:仿生六足机器人 项目负责人:闫振学号:1120830201 联系电话:电子邮箱: 院系及专业:机电工程学院飞行器制造工程 指导教师:李立青职称:高级工程师 联系电话:电子邮箱: 院系及专业:机电工程学院航空宇航制造工 程系

姓名性别专业方向班级学号本人签字 闫振男飞行器制造工程 王志强男飞行器制造工程 晏理邦男飞行器制造工程 赵京昊男飞行器制造工程 穆思宇男 飞行器制造工程 签 名: 年 月 日 哈尔滨工业大学机电工程学院制表填表日期:2014 年7月 20日 项目名称: 仿生六足机器人 一、课题组成员:(包括项目负责人、按顺序) 二、指导教师意见: 三、院评审委员会意见:

评审主任签名(或盖章 ): 年 月 日 四、研究背景 1.研究现状 4.1国外研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为 1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人 DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人 行走运动控制过程的应用。1983年,Odetics公司推出的六足机器人Odex1,图2所示,把六条腿均匀分布在一个圆形框架上,可方 便的实现全方位运动,而且能够通过对形体的重构改变机器人的 形状,是对传统的长方形框架六足步行机的挑战。麻省理工的 Raibert利用相对自由度数较少的简单腿部机构建造了一些机器 人,利用简单的控制,这些机器人能够实现走、跑、跳等动作, 实现主动平衡,如图3所示。1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图4所示,用于对南极的埃里伯斯火

仿生机器人的机构设计及运动仿真

前言 随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用[3]。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、海洋探索、水下洞穴探索、军事侦察、军事攻击、军事防御、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展,未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、己知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。 本文结合当前仿生机器人的研究现状与未来发展方向,以慧鱼机器人模型为平台制作对机械本体结构、传动系统,控制系统的软件编程进行了系统设计及介绍。现对研究和实验当中取得的主要成果总结如下: 1.通过对甲虫六条腿的结构与功能的研究,设计了六足仿生机器人的足的结构,实现了机器人的结构仿生。 2.在对仿生模型的结构仿生与运动仿生分析的基础上,确定了采用慧鱼ROBO接口板作为控制器。 3.利用慧鱼ROBO接口板实现了电机和微动的控制,从而对机器人进行运动控制。 4.根据三角步态原理,设计了前进、后退以及转弯等不同运动状态。并对机器人进行了运动分析,得出了一般的结论。 5.以慧鱼公司开发的编程软件:ROBO PRO,对机器人进行软件编程,使它按规定的路线运动,实现对其运动的控制。 本次毕业设计的目的和意义是综合运用大学四年里所学到的基础理论知识达到设计目的并提高自己分析问题和解决问题的能力,提高机械控制系统设计、操纵机构的设计能力及运用PRO/E设计软件的建模能力,并增强自身的动手能力与计算机编程能力。 本课题的研究前景十分广阔。例如,可以通过对海蟹的研究,进行仿生设计,制造出海陆两用的仿生机器人,建立基于环境适应行为的智能运动控制策略。在此基础上,为未来智能化近海两栖作战新概念武器结构设计与分析提供新方法。 对于跟踪国际先进军事技术,建立新型作战武器有重要意义。同时,开展对海的

仿生机器人课程报告

仿生机器人概论课程报告 ——人机接口方向 一、前言 本文是作者在阅读reference 2016中相关文档以及查阅相关资料之后编写而成,选取的课程报告方向为人机接口方向(Neural Interfacing)。文中主要包含了参考文献的读后感,作者平时了解到的一些资料,以及很多个人感悟和对先前个人经历的总结。根据文件《课程考察说明2016》的指导思想,本文可能并不会像一般学术论文那样具有无可挑剔的严谨性和科学性,感性认识和个人感情将会占据一定比重。我个人认为,从事科学研究和技术工作的人员,在从事具体的工作时应当具有理性精神,但是,支持我们进行理性思考和分析的原动力,必然是热情,是对科研工作的热爱,是对未知领域的好奇,是对自然规律的敬畏和赞赏(当然,同样也包含对更高工资水平和生活质量的追求)。 《仿生机器人概论》就是这样一门能燃起?钻研的热情?的课程。课堂不注重对具体机器人的机械结构和控制算法的讲解,而是更多地从功能和目的的角度,去讲解仿生机器人这一门类的重要意义。张老师也是一位非常有热情的老师,每节课我们都会自然而然地受到激励。老师给我们布置的这一篇课程报告,想必也是希望我们能拥有这种力量,能在之后的工作和生活中走得更好。 综上,这篇文章不是专业的、学术的、论文性质的文章。老师希望我们在完成这篇文章之后,能做出更好的研究,写出更多的优秀文章。所以如果今后此文若被上传至网络,也只是一名普通学生的拙见,并不能达到作为参考文献的要求。 二、参考文献·我·智能手机 老实说,这是我第一次进行全英文文献的阅读。若是换做几年以前,我必然会被这项工作难住,觉得自己不能胜任。但是,经过这几年在大学的磨练(或者说,混日子),我明白了一个普适,同时又容易被忽略的道理:任何看起来会让你感到无所适从、不能轻松驾驭的事情,硬着头皮去做,搞那么一段时间,也就不会那么困难了。古诗有云,?曾经沧海难为水,除却巫山不是云?,用现在的话来说,?我见得多了,已经是老油条了,还有什么事情能让我害怕的??于是乎,文献被打印,有道词典app被下载到手机,旧钢笔被塞进书包,我开始了文献的阅读。 首先是一篇在《新英格兰医学杂志》上发表的文章,名为《一位接受神经移植手术的被截肢者的基于肌电信号解码的机械腿控制》(Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers)。此文章主要讲述了通过对肌电信号进行识别,机械腿可以根据人的思维进行相应的运动。同时,研究人员设置了对照,经过对照之后发现,接受了神经移植手术的患者,控制机

相关文档
最新文档