数学建模报告(定稿)

数学建模报告(定稿)
数学建模报告(定稿)

课程设计报告

课程设计题目:最优化肥调拨方案

姓名1:张兵魁学号:08110630

姓名2:肖巍伟学号:08110623

姓名3:刘鹏学号:08110610

专业:软将工程

班级:0 8 1 1 0 6

指导教师:李雄

2010年 6 月3 日

本文给出了关于化肥调拨的一个线性规划数学模型,根据货运公司需要完成的运输量和确定的运输路线图,对货运公司的运送路线和运输量方案进行分析和优化,解决了运输量和运输路线的问题,得出了最少运费的方案。

在化肥产量与粮食产区化肥消耗量一定的情况下,由于化肥的运费的价格不同,合理的分配不同化肥厂与粮食产区之间的销售关系,有利于减少商品的生产成本,提升商品的竞争力,同时获取最大利润。由于化肥.粮食产量一定(题设已给出),各厂到粮产区的化肥运输单价也已给出,因此可以建立原始集来描述化肥的产与耗,而两集合之间的关系则是化肥的分配与运输价格问题,以派生集表示。要付出最少的运费,则定有一定的厂与粮食产区的对应关系,再运用LINGO 工具软件求解,得出最后的最少运费方案为: A厂分别供应乙地6万吨、甲地1万吨; B厂分别供应甲地5万吨、丁地3万吨; C厂全部供应到丙地,即3万吨;总运费为100万元。

关键词:现行规划数学模型;LINGO工具软件;最少运费

一、问题的提出 (1)

二、问题的分析 (2)

1、符号说明 (2)

2、模型假设 (2)

三、模型的建立与求解 (4)

四、模型评价 (5)

参考文献 (6)

附录 (7)

附录一:代码 (7)

附录二:运行结果 (7)

附录三:评分表 (9)

三个化肥厂,每年可供应的化肥的数字为:化肥厂A—7万吨,B—8万吨,C—3万吨。有四个产粮区需要该种化肥,需要量为:甲地区—6万吨,乙地区—6万吨,丙地区—3万吨,丁地区—3万吨。已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示:

则要使运费最少,我们可以制定哪些可行的方案,以及最后的最少运费是多少?

1、符号说明:

X i j :i 化肥厂向j产粮区运送的化肥量

X 11 :A化肥厂向甲产粮区运送的化肥量

X 12 :A化肥厂向乙产粮区运送的化肥量

X 13 :A化肥厂向丙产粮区运送的化肥量

X 14 :A化肥厂向丁产粮区运送的化肥量

X 21 :B化肥厂向甲产粮区运送的化肥量

X 22 :B化肥厂向乙产粮区运送的化肥量

X 23 :B化肥厂向丙产粮区运送的化肥量

X 24 :B化肥厂向丁产粮区运送的化肥量

X 31 :C化肥厂向甲产粮区运送的化肥量

X 32 :C化肥厂向乙产粮区运送的化肥量

X 33 :C化肥厂向丙产粮区运送的化肥量

X 34 :C化肥厂向丁产粮区运送的化肥量

2、模型假设:

(1)化肥产量不会因市场供求关系,原料,厂房设备等原因的改变而改变;(2)粮食产区的化肥消耗量保持不变;

(3)不考虑化肥的运输单价的波动;

(4)设定变量和参数

化肥供应集supply,含三个成员,成员属性为a(单位:万吨)

化肥需求集demand,含四个成员,成员属性为b(单位:万吨)

化肥的运输单价c(单位:万元/万吨)

化肥的消耗量x(单位:万吨)

i,j分别对应的是产区与消耗去

在本题中a,b,c是问题的参数,i,j是问题中的变量,x是所求解,

模型的参数题设以给出。

三、模型的建立与求解

在已知每年可供应本地区的数字为:化肥厂A—7万吨,B—8万吨,C—3万吨。有四个产粮区需要该种化肥,需要量为:甲地区—6万吨,乙地区—6万吨,丙地区—3万吨,丁地区—3万吨的情况下,supply,demand与link之间相互关联。在此三者之间进行操作可以得到所求解。

由题设可以知:

最少运费为:@sum(link:c*x)

化肥消耗量不变,有:

@sum(demand(j):x(i,j))=a(i))

化肥产量一定,有:

@sum(supply(i):x(i,j))=b(j))

a= 7 8 3;

b= 6 6 3 3;

c= 5 8 7 9

4 9 10 7

8 4 2 9;

经程序运算得解:

A厂分别供应乙地6万吨、甲地1万吨; B厂分别供应甲地5万吨、丁地3万吨; C厂全部供应到丙地,即3万吨;总运费为100万元。

四、模型评价

1、程序方案时间复杂度低,计算速度快,且便于计算机程序实现;

2、对于化肥分配的具体方案,可操作性强;

3、模型是建立在线性规划模型的基础上,即方便保证化肥合理分配,又可保证

运费最少。

4、算法描述:线性规划算法问题是目标函数和约束条件都是线性的最优化问题。很多运筹学中的实际问题都可以用线性规划来表述。线性规划的某些特殊情况,例如网络流、多商品流量等问题,都被认为非常重要,并有大量对其算法的专门研究。很多其他种类的最优化问题算法都可以分拆成线性规划子问题,然后求得解。在历史上,由线性规划引申出的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性”的重要性及其一般化等。

参考文献

[1] 姜启源、谢金星、叶俊编;《数学模型》,高等教育出版社,第三版。

[2] 谢金星、薛毅编著;《优化建模与LINGO》,清华大学出版社,2005年7月

第1版。

[3] 维基百科,自由的百科全书;

https://www.360docs.net/doc/9116450245.html,/zh-cn/%E7%BA%BF%E6%80%A7%E8%A7%84%E 5%88%92(2010年6月2日)

[4] 费培之等,《数学模型实用教程》,四川大学出版社,1998.

[5] 何万生等,《数学模型与建模》,甘肃教育出版社,2001.

[6] 寿纪麟,数学建模- 方法与范例,西安交通大学出版社,1993.

附录

附录一:代码

model:

sets:

supply/1..3/:a;

demand/1..4/:b;

link(supply,demand):c,x;

endsets

data:

a=7 8 3;

b=6 6 3 3;

c=5 8 7 9

4 9 10 7

8 4 2 9;

enddata

min=@sum(link:c*x);

@for(supply(i):@sum(demand(j):x(i,j))=a(i));

@for(demand(j):@sum(supply(i):x(i,j))=b(j));

end

附录二:运行结果

Global optimal solution found.

Objective value: 100.0000

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost

A( 1) 7.000000 0.000000

A( 2) 8.000000 0.000000

A( 3) 3.000000 0.000000 B( 1) 6.000000 0.000000 B( 2) 6.000000 0.000000 B( 3) 3.000000 0.000000 B( 4) 3.000000 0.000000 C( 1, 1) 5.000000 0.000000 C( 1, 2) 8.000000 0.000000 C( 1, 3) 7.000000 0.000000 C( 1, 4) 9.000000 0.000000 C( 2, 1) 4.000000 0.000000 C( 2, 2) 9.000000 0.000000 C( 2, 3) 10.00000 0.000000 C( 2, 4) 7.000000 0.000000 C( 3, 1) 8.000000 0.000000 C( 3, 2) 4.000000 0.000000 C( 3, 3) 2.000000 0.000000 C( 3, 4) 9.000000 0.000000 X( 1, 1) 1.000000 0.000000 X( 1, 2) 6.000000 0.000000 X( 1, 3) 0.000000 0.000000 X( 1, 4) 0.000000 1.000000 X( 2, 1) 5.000000 0.000000 X( 2, 2) 0.000000 2.000000 X( 2, 3) 0.000000 4.000000 X( 2, 4) 3.000000 0.000000 X( 3, 1) 0.000000 8.000000 X( 3, 2) 0.000000 1.000000 X( 3, 3) 3.000000 0.000000 X( 3, 4) 0.000000 6.000000 Row Slack or Surplus Dual Price

1 100.0000 -1.000000

2 0.000000 -5.000000

3 0.000000 -4.000000

4 0.000000 0.000000

5 0.000000 0.000000

6 0.000000 -3.000000

7 0.000000 -2.000000

8 0.000000 -3.000000

附录三:

东华理工大学

课程设计评分表

学生姓名:张兵魁、肖巍伟、刘鹏班级:081106 学号:08110630 、08110623 、08110610

课程设计题目:最优化肥调拨方案

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

数学建模-大学生就业问题

2010-2011第二学期 数学建模课程设计 2011年6月27日-7月1日 题目大学生就业问题 第 11 组组员1 组员2 组员3 组员4 姓名 学号 0808060217 0808060218 0808060219 0808060220 专业信计0802 信计0802 信计0802 信计0802 成绩

论文摘要 本文讨论了在新的形势下大学生的就业问题。20世纪90年代以来,我国出现了一种前所未有的现象,有着“天之骄子”美誉的大学生也开始面临失业问题。大学生就业难问题已受到普遍关注。大学生毕业失业群体正在不断扩大,已成为我国扩大社会就业,构建和谐稳定社会的急需解决的社会问题。 本文针对我国现有的国情,综合考虑了高校毕业生的就业率和高校招生规模的扩大之间的关系,建立了定量分析的微分方程模型,随后又建立了了离散正交曲线拟合模型对得出的结果进行了检验,并分析模型得出的结果得合理性。最终得到生源数量与失业率之间的拟合多项式和拟合曲线,并预测出了未来高校招生规模的变化趋势。 在找到大学生失业规律以后,本文还具体的对毕业生的性别、出生地对失业的影响做出了定量分析。 关键词:大学生就业微分方程模型多项式曲线拟合MATLAB软件 1、问题重述 大学生就业问题:如果我们将每年毕业的大学生中既没有找到工作又没有继续深造的情况视为失业,就可以用失业率来反映大学生就业的状况。下面的表中给出了某城市的大学生失业数占城市总失业人数的比率,比率的计算是按照国际劳工组织的定义,对16岁以上失业人员进行统计的结果。 表 1

请建立相应的模型对大学生就业状况进行分析找出其中的规律并讨论下面两个问题: (1)、就业中是否存在性别歧视; (2)、学生的出生对就业是否有影响。 2、模型假设 2.1在本次研究中做出以下假设: (1)、假设毕业生求职时竞争是公平的; (2)、假设考研等继续深造的毕业生属于已就业人群; (3)、假设每个毕业生都有就业或者继续深造的意图 (4)、假设就业率和失业率之和为1; (5)、假设本文搜集的数据全部真实可靠; 2.2 在定量分析性别、出生地对失业的影响时还要做以下假设: (1)、假设毕业生就业情况只受性别、出生地等因素的影响; (2)、假设具有上述同等条件的毕业生间就业机会相同 (3)、假设附件中的数据信息均合理; 3、问题分析 3.1 对问题的分析 若要分析新失业群体产生的主要原因,并就其重要性给出各种因素的排序,就需要对搜集的数据进行整理,并进行系统的分析,划分为不同的体系和矛盾,然后我们考虑用Logistic模型分析。 为了得到新失业群体对高校招生生源的影响和预测未来高校招生规模的变

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目 (2010-09-28 21:58:01) 标签: 分类:专业教学 数学建模 应用数学模型 教育 一、数学建模的涵 (一)数学建模的概念 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。(二)应用数学模型 应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如 Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点 数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。(四)数学建模的指导思想 数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。 (五)数学建模的意义 数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 1.培养创新意识和创造能力; 2.训练快速获取信息和资料的能力; 3.锻炼快速了解和掌握新知识的技能; 4.培养团队合作意识和团队合作精神; 5.增强写作技能和排版技术;

全国大学生数学建模竞赛论文模板

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填 写): 我们的参赛报名号为(如果赛区设置报名号的 话): 所属学校(请填写完整的全 名): 参赛队员 (打印并签名) : 1. 2.

3. 指导教师或指导教师组负责人 (打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号): 2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):

全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号): 论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。

摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。 一、问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意: 在写这部分的内容时,绝对不可照抄原题!

大学生就业问题数学模型

重庆交通大学学生实验报告 实验课程名称数学模型课程设计 开课实验室数学实验室 学院 XXX级 XXX 专业 1 班 开课时间 2013 至 2014 学年第 2 学期设计题目大学生就业问题

2013 年 12月 大学生就业问题 摘要:近年来,我国高校毕业生数量逐年增多,加之当前金融危机的影响,毕业生的就业形势受到前所未有的挑战,甚至出现了所谓“毕业即失业”的说法。因此大学生毕业后能否顺利就业,已成为全社会普遍关注的热点问题。大学生就业难不仅有社会原因,也有大学生自身的原因。如何解决大学生就业难的问题不仅关系到大学生的切身利益,更关系到社会的和谐稳定,需要政府、企业、高校和大学生共同的努力。本文从大学生自身,企业和社会三个大方面方面进行了分析和论述,从而总结出相关的结论及解决大学生就业难题的可行方法。 关键词大学生就业 Matlab 数据拟合 一、问题重述 据中国媒体援引人力和社会保障部的最新统计数据,二零一零年全国高校毕业生为630万人,比去年的611万多19万人,加上往届未能就业的,需要就业的毕业生数量很大,高校毕业生就业形势十分严峻。 随着九十年代末大学扩招和教育产业化政策推行以来,大学生人数的增幅远远超过经济增长所需要的人才增长,大学生就业不难才是怪事,"毕业即失业"成为中国大学生的普遍现象。 尽管如此,中国教育部决定继续扩大全日制专业学位硕士研究生招生规模,努力培养更多高层次、应用型人才。表面上看,研究生扩招能提高大学生学历层次,可以缓解就业难。但是,如果不清理高等教育积弊,扩招研究生来应对就业难将是饮鸩止渴,使就业矛盾更加突出。 现在大学生就业难的问题,是由许多原因造成的,既有社会原因,也有历史原因。 请用数学建模的方法从以下几个侧面探讨大学生就业问题: (1)利用网上大学生就业统计数据建立大学生就业供需预测模型,利用所建模型对2012年就业形势进行预测; (2)分析影响大学生就业的主要因素,建立就业竞争力评价模型,利用所建模型评估你的竞争力;

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

全国大学生数学建模竞赛一等奖

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):湖州师范学院 参赛队员(打印并签名) :1. 陈艺 2. 王一江 3. 叶帆帆 指导教师或指导教师组负责人(打印并签名):李立平 日期: 2010 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 储油罐的变位识别与罐容表标定 摘要 储油罐的变位识别与灌装表标定关系到各个加油站的资源利用率和生产效益,同时与人民社会生活也密切相关。因此,本题的建模具有很好的理论意义和应用价值。 针对赛题A的要求,本论文主要做了以下工作: 对于问题一:首先采用积分思想,分别推导出罐体无变位及纵向倾斜?1.4两种情况下罐内的油位高度和储油量;其次对以上两种情况下罐内实际进油量与理论进油量进行误差分析,并通过三次多项式拟合方法得到各自的误差表达式以及修正后罐内油位高度 和储油量的关系式;接着,采用插值方法推算出无变位及倾斜?1.4时罐体出油情况下储存油体积的初始值,进而对两种情况在出油时的误差进行了分析;最后根据校正后的表达式,给出了罐体变位后油位高度间隔为1cm的罐容表标定值(见附件3)。 对于问题二:首先在问题一后半部分问题求解的基础上,推导出罐体纵向倾斜α角度后罐内油面高度与存储油体积之间的关系,再将已纵向倾斜α角得罐体横向转动β 角,并求出此时罐内油面高度与存储油体积之间的实际表达式;接着,对已获表达式中的积分进行符号求解,并利用本题数据附件2给出的数据及最小二乘法的思想用三重循 环搜索出α和β的最优近似值(见附件6),求出α=?1.2和β=?8.4;然后利用α和β的 值计算后可发现本题数据附件2显示的油量容积与实际油量容积要高出许多,并得出理论出油量与实际出油量很接近(两者误差在3升以内),从而该模型能很好地反映油量与油位高度之间的对应关系。接着给出了罐体变位后油位高度间隔为10cm的罐容表标定值(见附件7),最后通过本题数据附件2及问题一中的试验模型,验证了模型的正确性与方法的可靠性。 在回答了以上两个问题基础上,我们对模型的优缺点进行总结,并讨论该模型的推广及评价。

数学模型课程设计一

课程设计名称: 设计一:MATLAB 软件入门 指导教师: 张莉 课程设计时数: 8 课程设计设备:安装了Matlab 、C ++软件的计算机 课程设计日期: 实验地点: 第五教学楼北902 课程设计目的: 1. 熟悉MA TLAB 软件的用户环境; 2. 了解MA TLAB 软件的一般目的命令; 3. 掌握MA TLAB 数组操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 4. 掌握MA TLAB 语言的几种循环、条件和开关选择结构。 课程设计准备: 1. 在开始本实验之前,请回顾相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 采用向量构造符得到向量[1,4,7,,31] 。 //a=[1:3:31] 2. 随机产生一向量x ,求向量x 的最大值。 // a=rand(1,6) max(a) 3. 利用列向量(1,2,3,,6)T 建立一个范德蒙矩阵A ,并利用位于矩阵A 的奇数行偶数列的元素建立一个新的矩阵B ,须保持这些元素的相对位置不变。 4. 按水平和竖直方向分别合并下述两个矩阵: 100234110,5670018910A B ????????==???????????? 5. 当100n =时,求1121n i y i ==-∑的值。 6. 一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数。 7. 求[1000,2000]之间第一个被17整除的整数。 8. 用MATLAB 绘制两条曲线,[0,2]x π∈,以10 π为步长,一条是正弦曲线,一条是余弦曲线,线宽为6个象素,正弦曲线为绿色,余弦曲线为红色,线型分别为实线和虚线,并给所绘的两条曲线增添图例,分别为“正弦曲线”和“余弦曲线”。

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

环境数模课程设计说明书

2016《环境数学模型》课程设计说明书 1.题目 活性污泥系统生化反应器中底物降解与微生物增长数学模型的建立 2.实验方法与结果 2.1.实验方法 2.1.1.工艺流程与反应器 本设计采用的工艺流程如下图所示: 图2-1 活性污泥系统工艺流程图 本设计工艺采用活性污泥法处理污水,工艺的主要反应器包括生化反应器和沉淀池。污水通过蠕动泵恒速加到生化反应器中,反应器内活性污泥和污水在机械搅拌设备和鼓风曝气设备的共同作用下充分接触,并在氧气充足的条件下进行反应。经处理后,污泥混液通过管道自流到沉淀池中,在里面实现泥水分离。分离后的水通过溢流堰从周边排出,直接被排放到下水道系统,沉淀下来的污泥则通过回流泵,全部被抽回进行回流。 系统运行过程中,进出水流量、进水质量、污水的停留时间、生化反应器的容积、机械搅拌设备转轴转速、鼓风曝气装置的曝气风量气速、污泥回流量等参数在系统运行的过程中都保持不变。待系统持续运行一周稳定后再取样进行分析。 实验的进水为实验室配置的污水,污水分别以葡萄糖、尿素、磷酸二氢钾为碳源、氮源和磷源,其中C:N:P=100:40:1(浓度比),TOC含量为200mg/L。生化反应器内污泥混液的容量为12L,污水停留时间为6h。系统运行时间为两周,第一周是调适阶段,第二周取样测试,测得的数据作为建模的原始数据。 表2-1 污水中各营养物质的含量 2.1.2.取样方法

每隔24h取一次样,通过虹吸管取样。每次取样时,先取进水和出水水样用于测水体的COD指标,其中进水直接取配得的污水溶液,出水取沉淀池上清液。取得的水样过膜除去水中的悬浮固体和微生物,保存在5ml玻璃消解管中,并在4℃下冷藏保存。 取完用于测COD的水样后,全开污泥回流泵,将沉淀池中的污泥全部抽回生化反应器(由于实验装置的原因,沉淀池排泥管易堵,污泥易积聚在沉淀池中,为更准确测定活性污泥的增长情况,在此实验中将泥完全抽回后再测定),待搅拌均匀后,取5ml污泥混液于干净、衡重的坩埚中,待用于测污泥混液的SS。 2.1. 3.分析方法 本实验一共分析进出水COD和污泥混液SS两个指标。其中COD采用《水质快速消解分光光度法》(HJ/T 399-2007)方法进行分析,SS采用《水质悬浮物的测定重量法》(GB 11901-89)方法进行分析。 准确取2ml经过膜处理的水样于5mlcod消解管中,以重铬酸钾为氧化剂,硫酸银-浓硫酸为催化剂,硫酸汞为抗氯离子干扰剂,按一定比例与水样混合均匀。将消解管放在COD 消解仪中,在150℃条件下消解2h。待经消解的溶液冷却后,以空白样为参比液,在COD 分析仪上读出待测水样的COD值,记录数据。 将装在已衡重称重的坩埚中的污泥混液放在烘箱中,在105℃温度下烘3h以上,保证污泥中的水分被充分除去。坩埚冷却后衡重称重,记录干污泥的质量,求得活性污泥的SS。 实验过程的所有样品都设置两个平行样,最后结果取平行样的算术平均值。 2.2.实验结果 2.2.1.实验数据 实验测得数据如下表: 表2-2 活性污泥系统水质分析结果 2.2.2.数据分析

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

2018全国大学生数学建模大赛模板

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2018年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和

数学建模课程设计

攀枝花学院 学生课程设计(论文) 题目:产品广告费用分配对销量及利润的影响模型学生姓名:梁忠 学号: 201210802007 所在院(系):数学与计算机学院 专业:信息与计算科学 班级: 12信本1班 指导教师:马亮亮职称:讲师 2014年12 月19 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题目具有自身阻滞作用的食饵—捕食者模型 1、课程设计的目的 数学建模课程设计是让学生通过动手动脑解决实际问题,让学生学完《数学建模》课程后进行的一次全面的综合训练,是一个非常重要的教学环节。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 根据指导教师所下达的课程设计题目和课程设计要求,在规定的时间内完成设计任务;撰写详细的课程设计论文一份。 3、主要参考文献 【1】姜启源,数学模型(第二版),高等教育出版社,北京。 【2】寿纪麟,数学建模——方法与范例,西安交大出版社。 【3】(美)JOHN A.QUELCH 等著吕—林等译,市场营销管理教程和案例, 北京大学出版社 2000。 【4】戴永良广告绩效评估,中国戏剧出版社,2001。 4、课程设计工作进度计划 序号时间(天)内容安排备注 1 2 分析设计准备周一至周二 2 4 编程调试阶段周三至周一 3 2 编写课程设计报告周二至周三 4 2 考核周四至周五 总计10(天) 指导教师(签字)日期年月日 教研室意见: 年月日 学生(签字): 接受任务时间:2014 年12 月15 日

注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表题目名称具有自身阻滞作用的食饵—捕食者模型 评分项目分 值 得 分 评价内涵 选题15% 01 能结合所学课程知识,有 一定的能力训练。符合选 题要求 5 遵守各项纪律,工作刻苦努力,具有良好的科学 工作态度。 02 工作量适中,难易度合理10 通过实验、试验、查阅文献、深入生产实践等渠 道获取与课程设计有关的材料。 能力水平35% 04 综合运用知识的能力10 能运用所学知识和技能去发现与解决实际问题, 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并 较好地论述课题的实施方案;有收集、加工各种 信息及获取新知识的能力。 06 设计(实验)能力,方案 的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、 操作等实验工作,数据正确、可靠;研究思路清 晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机 进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析 能力(综合分析能力、技 术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果质量45% 09 插图(或图纸)质量、篇 幅、设计(论文)规范化 程度 5 符合本专业相关规范或规定要求;规范化符合本 文件第五条要求。 10 设计说明书(论文)质量30 综述简练完整,有见解;立论正确,论述充分, 结论严谨合理;实验正确,分析处理科学。 11 创新10 对前人工作有改进或突破,或有独特见解。 成绩 指 导 教 师 评 语 指导教师签名:年月日

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学模型课程设计

数学模型课程设计

文档仅供参考,不当之处,请联系改正。 攀枝花学院 学生课程设计(论文) 题目:蔬菜的运输问题 学生姓名:孟蕾 学号: 1080 所在院(系):数学与计算机学院 专业:信息与计算科学 班级:级信本 指导教师:李思霖 6 月 29 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书

课程设计(论文)指导教师成绩评定表

摘要 本文针对蔬菜的运输问题进行分析,针对蔬菜运输时所需要注意的蔬菜供应量,需求量,运输距离,运输补贴,短缺补偿等约束性条件,运用lingo编程的方法解决如何进行蔬菜运输来分别使各类要求的支出最少的问题。 问题一中,要求如果不考虑短缺补偿,只考虑运费补贴最少,请为该市设计最优蔬菜运输方案。我们将供货商和销售点需求分别编号a和b,数量是从1~8和1~35。从题中能够看出其约束条件,所有销售点从第 A基地获得的蔬菜数量应该等于该基地所 i 生产的蔬菜数量;所有基地给 B销售点提供的蔬菜数量要大于等 j 于0,而且应该小于或等于该点的需求量。 问题二中,增添了对短缺补缺的考虑,规定各蔬菜销售点的短缺量一律不超过需求量的30%,在同时考虑短缺补偿和运费补贴的情况下再次设计最有蔬菜方案。由题意即是要求总费用,具体步骤仍同问题一,需要变化的分别是总费用w的表示式和关于销售点需求的约束条件。w变为原运输补贴的公式再加上每个销售点每吨短缺蔬菜的数量乘上各个销售点不同的短缺补偿,短缺数量需要用各个销售点的需求减去所有基地供给给这个的销售点的蔬菜数量之和。 问题三中,要求增加任意两个基地的生产数量,使得不存在短缺情况出现,然后视运费补贴最小的情况来确定哪两个基地分

数学建模每年比赛介绍

苏北数学建模联赛 比赛时间:5月1日—5月4日 苏北数学建模联赛是由江苏省工业与应用数学学会、中国矿业大学、徐州市工业与应用数学学会联合主办,中国矿业大学理学院协办及数学建模协会筹办的面向苏北及全国其他地区的跨校、跨地区性数学建模竞赛,目的在于更好地促进数学建模事业的发展,扩大中国矿业大学在数学建模方面的影响力;同时,给全国广大数学建模爱好者提供锻炼的平台和更多的参赛机会,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识。 联赛由中国矿业大学数学建模协会组织,苏北数学建模联赛组织委员会负责每年发动报名、拟定赛题、组织优秀答卷的复审和评奖、印制获奖证书、举办颁奖仪式等。竞赛分学校组织进行,每个学校的参赛地点自行安排,没有院校统一组织的参赛队可以向苏北数学建模联赛组委会报名参赛。每个参赛队由三名具有正式学籍的在校大学生(本科或专科)组成,参赛队从A、B、C 题中任选一题完成论文,本科组和专科组分开评阅。竞赛按照全国大学生数学建模竞赛的程序进行,报名时间为每年4月1日—4月29日(直接由学校统一报名),竞赛时间为5月1日—5月4日,网址:https://www.360docs.net/doc/9116450245.html, , 苏北数学建模联赛组委会聘请专家组成评阅委员会,评选一等奖占报名人数的5%、二等奖15%、三等奖25%,

如果有突出的论文将评为竞赛特等奖,凡成功提交论文的参赛队均获成功参赛奖。对于获奖队伍将给予一定的奖品奖励并颁发获奖证书。 全国大学生数学建模大赛 比赛时间:9月的第三个星期五上午8时至下一个星期一上午8时“全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛” 全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。 报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。 大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组)。 考核内容(竞赛内容): 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

相关文档
最新文档