隧道翼墙式洞门结构设计计算全解(详细)

隧道翼墙式洞门结构设计计算全解(详细)
隧道翼墙式洞门结构设计计算全解(详细)

隧道翼墙式洞门结构设计计算全解

4.1洞门设计步骤

《规范》关于洞口的一般规定

1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条

件、营运要求,通过经济、技术比较确定.

2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡

的稳定.

3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排

水系统综合考虑布置.

4.洞门设计应与自然环境相协调.

4.1.1确定洞门位置洞口位置的确定应符合下列要求

1.洞口的边坡及仰坡必须保证稳定.

2.洞口位置应设于山坡稳定、地质条件较好处.

3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞.

4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定.

5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定.

6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施.

7.洞门宜与隧道轴线正交;地质条件较好; 做好防护;设置明洞.

洞口地质条件

洞口入口端位于山体斜坡下部,斜坡自然坡度约45°左右,隧道轴线与地形等高线在右洞为大角度相交,位置较好,围岩上部为覆盖层为碎石质,厚度为0.6米-1.7米,下部为砂质板岩,全风化岩石厚为0-2.0米强风化岩厚为0-6.4米,砂质板岩与变质砂岩中风化厚度为8.1-15.8米;为软岩,薄层状结构,岩体破碎,软岩互层,主要结构面为层面及节理裂隙面,结构面的不利组合对围岩有影响;地下水以基岩裂隙水为主,围岩为弱透水,可产生点滴状出水,局部可产生线状出水;围岩稳定性差.

4.1.2确定洞门类型

洞门类型及适用条件

洞门的形式很多,从构造形式、建筑材料以及相对位置等可以划分许多类型.目前,我国公路隧道的洞门形式有: 端墙式洞门翼墙式洞门环框式洞门台阶式洞门柱式洞门遮光棚式洞门等.

端墙式洞门

适用于岩质稳定的Ⅲ级以上围岩和地形开阔的地区,是最常使用的洞门

型式

翼墙式洞门

适用于地质较差的Ⅳ级以下围岩,以及需要开挖路堑的地方.翼墙式洞门

由端墙及翼墙组成.翼墙是为了增加端墙的稳定性,同时对路堑边坡也起支撑

作用.其顶面一般均设置水沟,将端墙背面排水沟汇集的地表水排至路堑边沟内

环框式洞门

当洞口岩层坚硬、整体性好(I级围岩)、节理不发育,路堑开挖后仰坡极为

稳定,并且没有较大的排水要求时采用

台阶式洞门

当洞门傍山侧坡地区,洞门一侧边坡较高时,为减小仰坡高度及外露长度 ,

可以将端墙顶部改为逐步升级的台阶形式,以适应地形的特点,减少仰坡土石

方开挖量.

遮光棚式洞门

当洞外需要设置遮光棚时,其入口通常外伸很远.遮光构造物有开放式和封闭

式之分,前者遮光板之间是透空的 ,后者则用透光材料将前者透空部分封闭.但

由于透光材料上面容易沾染尘垢油污,养护困难,所以很少使用后者.形状上又有

喇叭式与棚式之分

洞门形式的选择

按分类,隧道右线属长隧道,基本服从于路线走向,路线与地形等高线基本正

交,洞门按受力结构设计.洞门形式结合实际地形、地质情况选定.根据洞门所处

地段的地形地貌及工程地质条件,遵从“早进洞,晚出洞”的设计原则,并考虑

洞门的实用、经济、美观等因素,因此本隧道使用翼墙式洞门(带挡土墙),使用

翼墙式洞门.

4.1.3 洞门构造要求

按《公路隧道设计规范》(JTG-2004),洞门构造要求为:

(1)洞门仰坡坡脚至洞门墙背的水平距离不宜小于 1.5米,洞门端墙与仰坡之

间水沟的沟底至衬砌拱顶外缘的高度不小于 1.0米,洞门墙顶高出仰坡

脚不小于0.5米.

(2)洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计

算或结合其他工程类比确定.

(3)洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度 ,保证

洞门的稳定.基底埋入土质地基的深度不小于 1.0米,嵌入岩石地基的

深度不小于0.5米;基底标高应在最大冻结线以下不小于0.25米.基底埋

置深度应大于墙边各种沟、槽基底的埋置深度 .

(4)松软地基上的基础,可采取加固基础措施.洞门结构应满足抗震要求.

4.1.4 验算满足条件

采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性.验算时应符合表3.1和表3.2(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定.

表4.1 洞门设计计算参数

表4.2 洞门墙主要验算规定

4.2龙洞翼墙式洞门结构设计计算

4.2.1计算参数

计算参数如下:

(1)边、仰坡坡度 1:1.25;

(2)仰坡坡脚ε=39°,tanε=0.8,α=9°;

(3)地层容重γ=18KN/米3;

(4)地层计算摩擦角φ=45°;

(5)基底摩擦系数0.4;

(6)基底控制应力【σ】=0.3米pa

4.2.2建筑材料的容重和容许应力

(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为米u100,水泥砂浆的

强度等级为米10.

(2)容许压应力【σa】=2.2米pa,重度γt=22KN/ 米3.

4.2.3洞门各部尺寸的拟定

根据《公路隧道设计规范》(JTG-2004),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=13.35米;其中基底埋入地基的深度为1.59米,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.8米,洞门翼墙与仰坡间的的水沟深度为0.5米,洞门墙顶高出仰坡坡脚1.05米,洞口仰坡坡脚至洞门墙背的水平距离为2.5米,墙厚2.48米,设计仰坡为1:1.25,具体见图纸.

4.3洞门验算

4.3.1洞门土压力计算

根据《公路隧道设计规范》(JTG-2004),洞门土压力计算图示具体见图3.2.

图3.2 洞门土压力计算简图

最危险滑裂面与垂直面之间的夹角:

tan w=

式中:?——围岩计算摩擦角;

ε——洞门后仰坡坡脚;

α——洞门墙面倾角 代入数值可得:

tan 0.6799

34.21o

ωω=

== 根据《公路隧道设计规范》(JTG —2004),土压力为;

2001

[()]2

E H h h h b γλξ'=+-

(tan tan )(1tan tan )

tan()(1tan tan )

ωααελω?ωε--=

+-

由三角关系得:tan tan a h ωα'=

- tan 1tan tan o a h ε

αε

=-

式中: E ——土压力(KN);

γ——地层重度 (KN/米3)

λ——侧压力系数; ω——墙背土体破裂角;

b ——洞门墙计算条带宽度 (米),取b=1.0米; ξ——土压力计算模式不确定系数,可取ξ=0.6. 把数据代入各式,得:

(tan 34.21tan 9)(1tan 9tan 39)0.1928tan(34.2139)(1tan 34.21tan 39)

o o o o o o o o

λ--==+- 2.5

' 4.7937tan 34.21tan 9o o

h =

=-米

2.5tan 39 2.32231tan 9tan 39o

o o o

h m ?==-

洞门土压力E :

221

[(')]21

180.1928[13.35 2.3223(4.7937 2.3223)] 1.00.62

191.4783o o E H h h h b KN

γλξ

=+-=???+?-??=

kN E E x 7604.178)921.34cos(4783.191)cos(=?-??=-?=αδkN E E y 6197.68)921.34sin(4783.191)sin(=?-??=-?=αδ

式中:δ——墙背摩擦角 22

453033

O o δ?==?=

4.3.2抗倾覆验算

翼墙计算图示如图3.3所示,挡土墙在荷载作用下应绕O 点产生倾覆时应满足下式:

00

1.6y M k M

=

≥∑∑

式中: K 0——倾覆稳定系数,0 1.6k ≥;

y M ∑——全部垂直力对墙趾O 点的 稳定力矩; 0M ∑——全部水平力对墙趾O 点的 稳定力矩;

图3.3 墙身计算简图

由图3.3可知:

墙身重量G :13.35 2.4818 1.0595.9440G KN =???=

E x 对墙趾的 力臂:13.35

4.4533

x H Z m ===

E y

对墙趾的 力臂:

(tan )/3 2.4813.35tan9/3 3.1848o y Z B H m α=+=+?=

G 对墙趾的 力臂:tan 2.4813.35tan 9 2.297222

o

G B H Z m α++?=

== 595.940 2.297268.6197 3.1848

1587.5529y G y y M G Z E Z KN M

=?+?=?+?=?∑

178.7604 4.45

795.4837x x M

E Z KN M

=?=?=?∑

代入上式得:

00

1587.4837

1.9957 1.6795.4837

y

M K M

=

=

=>∑∑

故抗倾覆稳定性满足要求.

4.3.3抗滑动验算

对于水平基底,按如下公式验算滑动稳定性: 1.3c N f K E

?=≥∑∑

式中: K c ——滑动稳定系数

N ∑——作用于基底上的 垂直力之和; E ∑——墙后主动土压力之和,取E ∑=E x ; f ——基底摩擦系数,取f=0.4 由图3.3得: ()(595.944068.6197)

1.4870 1.3178.7604

y c x

G E K E ++=

=

=>

故抗滑稳定性满足要求.

4.3.4基底合力偏心矩验算

设作用于基底的 合力法向分力为N ∑,其对墙趾的 力臂为Z N ,合力偏心矩为e,则:

1587.5529795.4837

1.1919595.944068.6197

y

G y y x x

n y

M M

G Z E Z E Z Z G E N

m

-?+?-?=

=

+-=

=+∑∑∑

2.48 1.19190.0481022

n B e Z =

-=-=> 合力在中心线的 右侧.

0.04810.41336

B

e =<=

计算结果满足要求. max 299.1767min 236.76176(595.944068.6197)60.0409(1)(1)2.48 2.48

Kpa

Kpa N

e B

B σ+?=

±

=?±=∑max 299.1767[]0.3Kpa Mpa σσ=<=,计算结果满足要求.

4.3.5墙身截面偏心矩及强度 验算 (1)墙身截面偏心矩e

0.3M

e B N

=< 式中: 米——计算截面以上各力对截面形心力矩的 代数之后; N ——作用于截面以上垂直力之后.

13.3513.35 2.48

()178.7604()68.6197232232

312.6534x y H H B M E E KN m

=?--?=?--?

=?595.944068.6197664.5637y N G E KN =+=+=

将数据代入墙身偏心矩E 的 公式,可得:

312.65340.47050.30.744664.5637M e B N ===<=,计算结果满足要求.

(2)应力σ

6(1)N

e B

B

σ=

+

6664.563760.4705(1)(1)572.9771[] 2.22.48 2.48

a N

e kpa Mpa B

B σσ?=

+

=±=<=∑ 满足要求.

通过以上的 验算,说明龙洞端翼墙式洞门的 尺寸合理.详图见设计图纸.

排水设计

隧道排水应根据防排堵截结合,因地制宜,综合治理的 原则,采用切实可靠地设计和施工措施,达到防水可靠排水畅通经济合理的 目的 . 1.在洞口仰坡5米以外,设置天沟,并加以铺砌.

2.对洞顶地表的 陷穴,深穴加以回填,对裂缝进行堵塞.

3.对洞顶天然沟槽加以整治,是山洪宣泄畅通.

4.在地表水上游设截水导流沟.

5.在仰坡到洞顶处2米左右设计排水沟.

6.边坡设计排水沟.

纵段剖面

纵剖面图

平面图

纵剖面图

排水平面图

排水纵剖面图

隧道翼墙式洞门计算

第四章洞门设计 4.1洞门设计步骤 《规范》关于洞口的一般规定 1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程 及施工条件、营运要求,通过经济、技术比较确定。 2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及 仰坡的稳定。 3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并 和路基排水系统综合考虑布置。 4.洞门设计应与自然环境相协调。 4.1.1确定洞门位置洞口位置的确定应符合下列要求 1.洞口的边坡及仰坡必须保证稳定。 2.洞口位置应设于山坡稳定、地质条件较好处。 3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。 4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定。 5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定。 6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采

取防范措施。 7.洞门宜与隧道轴线正交;地质条件较好;做好防护;设置明洞。 洞口地质条件 洞口入口端位于山体斜坡下部,斜坡自然坡度约45°左右,隧道轴线与地形等高线在右洞为大角度相交,位置较好,围岩上部为覆盖层为碎石质,厚度为0.6m-1.7m,下部为砂质板岩,全风化岩石厚为0-2.0m强风化岩厚为0-6.4m,砂质板岩与变质砂岩中风化厚度为8.1-15.8m;为软岩,薄层状结构,岩体破碎,软岩互层,主要结构面为层面及节理裂隙面,结构面的不利组合对围岩有影响;地下水以基岩裂隙水为主,围岩为弱透水,可产生点滴状出水,局部可产生线状出水;围岩稳定性差。 4.1.2确定洞门类型 洞门类型及适用条件 洞门的形式很多,从构造形式、建筑材料以及相对位置等可以划分许多类型。目前,我国公路隧道的洞门形式有: 端墙式洞门翼墙式洞门环框式洞门台阶式洞门柱式洞门遮光棚式洞门等。 端墙式洞门 适用于岩质稳定的Ⅲ级以上围岩和地形开阔的地区,是最常使用的洞门型式 翼墙式洞门 适用于地质较差的Ⅳ级以下围岩,以及需要开挖路堑的地方。翼墙式洞门由端墙及翼墙组成。翼墙是为了增加端墙的稳定性,同时对路堑边坡也起支撑作用。其顶面一般均设置水沟,将端墙背面排水沟汇集的地表水

系统总体结构设计

一、系统设计的原则 1、系统性 从整个系统的角度进行考虑,系统的代码要统一,设计规范要标准,传递语言要尽可能一致,对系统的数据采集要做到数出一处、全局共享,使一次输入得到多次利用。 2、灵活性 系统应具有较好的开放性和结构的可变性,采用模块化结构,提高各模块的独立性,尽可能减少模块间的数据偶合,使各子系统间的数据依赖减至最低限度。 3、可靠性 可靠性是指系统抵御外界干扰的能力及受外界干扰时的恢复能力。一个成功的管理信息系统必须具有较高的可靠性,如安全保密性、检错及纠错能力、抗病毒能力等。 4、经济性 经济性指在满足系统需求的前提下,尽可能减小系统的开销。一方面,在硬件投资上不能盲目追求技术上的先进,而应以满足应用需要为前提;另一方面,系统设计中应尽量避免不必要的复杂化,各模块应尽量简洁,以便缩短处理流程、减少处理费用。 二、系统设计的主要内容 1、系统总体结构设计 系统总体结构设计包括两方面的内容: 系统网络结构设计; 系统模块化结构设计。 2、代码设计 代码设计就是通过设计合适的代码形式,使其作为数据的一个组成部分,用以代表客观存在的实体、实物和属性,以保证它的唯一性便于计算机处理。 3、数据库(文件)设计

根据系统分析得到的数据关系集和数据字典,再结合系统处理流程图,就可以确定出数据文件的结构和进行数据库设计。 4、输入/输出设计 输入/输出设计主要是对以纪录为单位的各种输入输出报表格式的描述,另外,对人机对话各式的设计和输入输出装置的考虑也在这一步完成。 5、处理流程设计 处理流程设计是通过系统处理流程图的形式,将系统对数据处理过程和数据在系统存储介质间的转换情况详细地描述出来。 6、程序流程设计 程序流程设计是根据模块的功能和系统处理流程的要求,设计出程序模框图,为程序员进行程序设计提供依据。 7、系统设计文档 系统标准化设计是指各类数据编码要符合标准化要求,对数据库(文件)命名、功能模块命名也要标准化。 描述系统设计结果是指系统设计说明书,程序设计说明书,系统测试说明书以及各种图表等,要将他们汇集成册,交有关人员和部门审核批准; 拟定系统实施方案设计是在系统设计结果得到有关人员和部门认可之后,拟定系统实施计划,详细地确定出实施阶段的工作内容、时间和具体要求。 另外,为了保证系统安全可靠运行,还要对数据进行保密设计,对系统进行可靠性设计。 三、系统设计的步骤 1、系统总体设计 包括:系统总体布局方案的确定;软件系统总体结构设计;数据存储的总体设计;计算机和网络系统方案的选择。 2、详细设计

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移

隧道洞门类型.

完整隧道工程答案50 浏览次数:1280次悬赏分:10 |解决时间:2010-1-2 22:34 |提问者:okhao12345 谢谢 最佳答案 1. 隧道概念及作用;主体建筑物,附属建筑物《隧道通常是指用作地下通道的工程建筑物。一般可分为两大类,一类是修建在岩层中的,称为岩石隧道,一类是修建在土层中的,称为软土隧道。主体建筑物包括洞身衬砌和洞门,附属建筑物包括通风,照明,防排水,安全设备等。 2、道路隧道工程调查内容:地形调查、地质调查、气象调查、环境调查、施工条件调查以及与工程有关法令调查等。 3、道路隧道位置的定位,洞口位置的选择《定位:在决定隧道位置时,要考虑到路线的特性,与前后线形的衔接、地形地质条件对施工难易程度的影响、交通安全、行驶性能等,洞口附近应特别加以注意。洞口位置的选择:1洞口部分在地质上通常是不稳定的。应避免不稳定地区,设在山体稳定、地质条件好、排水有利的地方。2通口不应设在沟谷低洼处和汇水沟处。3隧道穿过悬崖陡壁时,要注意岩壁的稳定性。4洞口地形平缓时,一般也应早进洞玩出洞。5为使洞口段衬砌结构受力条件较好,应使隧道中线与地形等高线正交,正交洞口的边、仰坡开挖较小而且均衡。6长大隧道在洞门附近考虑施工场地、弃渣场以及便道的位置,对组织施工时的难易和进度有很大影响7洞口部分埋深较小,应考虑附近的地上构筑物、低下埋设物对隧道的影响和对策。8预先考虑运营后,通风设备排出的废气和噪声对周围环境的影响程度和解决办法。9研究雪崩、阵风、风吹雪等对安全行驶的影响,考虑设置防雪工程、防风工程和放路面冻害工程的必要性。10在城市隧道的进出路上,平交路口对隧道交通有无影响,如何解决等。 4、隧道工程概算应包括的费用:土建费、机电费、储备费、管理费。 5. 隧道线性确定的原则:1平面线形要求:原则上采用直线,避免曲线2纵面线形要求:以不妨碍排水的缓坡为宜,在变坡点上应放入足够的竖曲线3引线要求:引线的平面及纵断线形应当保证有足够的视距和行驶安全,洞口前的引线纵坡与隧道纵坡在必要的距离之内应保持一致4隧道净空断面要求:应给附属设备留有足够的空间,在长隧道里要设置加宽带,净高由汽车载货限制高度和富裕量决定。自然通风的隧道,断面应适当大些。 6 .隧道洞身衬砌的类型及适用条件:1直墙式衬砌:通常适用于岩石地层垂直围岩压力为主要计算荷载、水平围岩压力很小的情况。一般适用于IV 、V类围岩,有时也可用于III 类围岩;2曲墙式衬砌:通常在III 类以下围岩中,水平压力

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

常用结构分析设计软件之比较

常用结构软件比较 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP 在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。

隧道洞门检算参考

3. 洞门结构的设计及检算 3.1 洞门结构的设计 洞门是隧道洞口用圬工砌筑并加以建筑装饰的支档结构物。它联系衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进、出口的标志。 洞门的作用在于支挡洞口正面仰坡和路堑边坡,拦截仰坡上方的小量剥落、掉块,保持边、仰坡的稳定,并将坡面汇水引离隧道,保证洞口线路的安全。另外,洞门是隧道唯一的外露部分,对它进行适当的建筑艺术处理,可以起到美化环境的作用。 根据洞口地形、地质及衬砌类型等不同的情况和要求,洞门的结构形式主要有环框式、端墙式、柱式、翼墙式、耳墙式、台阶式及斜交式。 3.1.1设计原则 (1) 选用洞门结构形式时,应根据洞口的地形、地质条件及工程特点确定。 (2) 当线路中线与洞口地形等高线斜交,经技术经济比较不宜采用正交洞门,且围岩分类在III级以上时,可采用斜交式洞门,其端墙与线路中线的交角不应小于45°。 (3) 设置通风帘幕的洞门或通风道洞口与隧道洞门相连时,洞门的结构形式应结合通风设备和要求一并考虑。 (4) 位于城镇、风景区、车站附近的洞门,必要时应考虑与环境相协调和建筑美观的要求。 3.1.2洞门设计 根据陈家沟隧道沿线地形、地质状况,并结合隧道设计专业事前指导书,在确定进、出口洞门位置的基础上,拟定陈家沟隧道进口和出口均采用耳墙式洞门,边、仰坡坡度均为1:1.25,开挖方式为乙式,进、出口洞门各部分尺寸参照洞门图确定。 隧道进、出口洞门图分别见附录一中的图LCST-03。 3.2 洞门结构的检算 洞门是支挡洞口正面仰坡和路堑边坡的结构物,因此洞门的端墙和翼墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。 3.2.1计算原理及方法 根据《公路隧道设计规范》的规定,洞门墙计算时,应按照表3.1的要求,与挡土墙一样用容许应力法检算其强度,按极限状态验算其强度,并检算其绕墙趾倾覆及沿基

客户关系管理系统功能设计

根据系统需求分析和系统功能模块结构图来看,该系统应具备如下基本功能:●客户管理系统客户信息添加、修改和删除功能 ●联系人信息添加、修改和删除功能 ●销售信息添加、修改和删除功能 ●服务反馈信息添加、修改和删除功能 ●客户信息、联系人信息、销售信息、服务反馈信息的查询功能 ●客户信息、联系人信息、销售信息、服务反馈信息的报表和打印功能 其功能模块结构图如下: 图3 系统功能模块结构图

查入查录查录入查 询询入询入询 客 户联销服 信系售务 息人信反 信息馈 息信 息 客户记录 图4 客户关系管理数据流图 图5 系统数据流图符号说明 2.2 客户关系管理系统数据库设计 2.2.1 CRM数据库概念设计 根据对数据流图和数据字典的分析,可以将这个数据库抽象为一个E-R图,如图4所示: N M

图6 客户关系管理系统E-R图 图7 E-R图数据说明 根据上述E-R模型,将其转化为关系模型: 客户(客户名称、客户编码、国家/地区、国际区号、省份、区号、城市、邮编、详细地址、客户电话、客户传真、电子邮箱、主页、年收入、员工数、行业、客户类型、客户来源、客户状态) 联系人(姓名、称呼、主联系人、客户、部门、职务、国家/地区、国际区号、省份、区号、城市、邮编、详细地址、办公电话、移动电话、家庭电话、传真、电子邮箱、业余爱好、特别纪念日) 销售产品(销售日期、相关客户、相关联系人、订单/合同号、产品、单价、销售数量、折扣、金额) 2.2.2 数据字典 通过系统需求分析,对客户关系管理系统编制数据字典如下: 各主要数据流的定义如表1至表4所示。

表1 表1注释: 客户录入单是客户信息录入到系统之前,系统管理员提供的客户录入资料,为便于日后的管理,客户录入单应尽可能详细,主要记录必须要填写清楚,避免录入记录数据丢失。 ①客户编码是唯一的,对应公司的一个客户,按重要等级分为i(inportant),n(normal), p(potential)。 系统名:客户关系管理系统 条目名:客户编号 存储处:客户一览表 客户编码为文本数字码,长度最大为8位 代码类型意义 字符X XXXX XXX 代码,流水码 省(市)/国际区号,流水码 重要等级(i,n,p) 例:i010110表示中国石油物资装备公司 ②电子邮箱和主页字段的设置是为了顺应企业信息化潮流,使公司与客户的联系手段增加了,也就增加了留住客户的机会。

索穹顶和弦支穹顶结构在我国的应用

索穹顶和弦支穹顶结构在我国的应用 摘要:本文主要就索穹顶结构和弦支穹顶结构体系的特点以及近几年在我国的工程应用进行了总结。 关键字:预应力;空间钢结构;索穹顶;弦支穹顶;工程应用 Abstract: In this paper, a cable domes structure chord and structural system of the dome characteristics will be introduced and the engineering application in our country in recent years also be summarized. Key Word: prestressed; space steel structure; cable domes; string a dome; engineering application 1 引言 随着我国大型场馆的大量建设,预应力钢结构技术得到了有力的推动和发展,然而相比于预应力网格和斜拉网格等结构形式,索穹顶结构和弦支穹顶结构近几年才在我国有了实际的工程应用,因此文本对索穹顶结构和弦支穹顶结构的特点及近几年在我国的工程实践进行了总结。 1 索穹顶结构 索穹顶结构是由索穹顶结构主要由脊索、斜索、压杆和环索构成,是最近十几年发展起来的一种新型的空间结构形式。这种结构体系具有受力合理、自重轻、跨度大和结构形式美观、新颖等特点,是一种结构效率极高的全张力体系[2],有着广阔应用和发展前景的大跨度空间结构形式,然而索穹顶在应用当中又有一系列的难题,主要是由于在施工和工作状态下索穹顶具有很强的非线性(特别是施工过程中),这对结构分析设计及施工提出了很高的要求。国内目前在无锡新区科技交流中心和太原煤炭交易中心采用了索穹顶结构。 国内第1个刚性屋面的索穹顶是于2009年完工的无锡新区科技交流中心索穹顶[2],见图1所示,该索穹顶平面为圆形,直径24 m,矢高2.109 m,采用铝板结合的刚性屋面和三环Geiger 型索杆系,其中脊索和环索均连续贯通。 太原煤炭交易中心是一个设点支承式玻璃的刚性屋面索穹顶[2],见图2所示,于2011年1月完成索穹顶主体结构张拉,该索穹顶由三环Geiger 型索杆系和支承玻璃面板的次索网构成,跨度36 m,矢高1.636 m。这两个工程,所

Autodesk Robot 结构设计分析软件标准入门手册

Autodesk Robot 结构设计分析软件 标准入门手册

目录 Autodesk Robot 结构设计分析软件 快速浏览 (1) 软件概述 (3) Robot模块 (3) Robot的页面布局 (5) 软件的基本配置 (6) 首选项 (6) 工程首选项 (7) 导航功能 (8) Robot工作界面的使用方法 (10) 系统菜单 (10) 文件菜单 (11) 编辑菜单 (11) 浏览菜单 (12) 图形菜单 (12) 荷载菜单 (12) 分析菜单 (13)

结果菜单 (13) 设计菜单 (13) 工具菜单 (14) 窗口菜单 (14) 帮助菜单 (14) 布置系统 (15) 输入结构分析数据 (18) 分析结构 (22) 结果预览 (24) 梁的示意图 (24) 面的示意图 (26) 彩图结果 (28) 结构元素的设计 (29) 钢构件和木构件的设计 (29) 钢连接设计 (32) RC设计 (34) 所需钢筋面积(理论值)的计算 (34) 假设钢筋面积的计算 (35) 报告及输出计算书 (37) 快捷键列表 (39) 三维框架结构 (41) 软件配置 (43)

模块定义 (44) 杆的定义(二维框架)……………………………………… 44 约束的定义 (45) 2D椼架的定义 (46) 荷载定义 (47) 特殊荷载工况下荷载的定义 (48) 复制已有框架 (52) 横向梁的定义 (53) 交叉约束的定义 (54) 复制已定义的杆(梁横截面或支撑) (56) 结构分析 (57) 结果预览 (58) 以图形的形式预览梁的结构 (58) 以表格的形式预览杆的结构 (60) 压力分析 (61) 打印前的准备 (64) “捕捉”视图和计算记录的数据 (64) 准备输出的计算书 (65) 打印输出计算报告 (67) RC和钢混合结构 (71) 程序的配置 (73)

常用结构计算软件与结构概念设计

常用结构计算软件与结构概念设计 论文作者:不详 摘要:随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。 关键词:常用结构计算软件概念设计 1、结构计算软件的局限性、适用性和近似性。 随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设 计。 2、现阶段常用的结构分析模型 实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。 1) 平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规 则的框架结构、框-剪结构、剪力墙结构等。 2) 三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形 成线性方程组求解。 3、常用结构计算软件 多、高层结构的基本受力构件有柱、梁、支撑、剪力墙和楼板。柱、梁及支撑均为一维构件,可用空间杆单元来模拟其受力状态。空间杆单元的每个端点有6个自由度,即3个平动自由度和3个转角自由度。对一维构件,各种有限元分析软件对这类构件的模型化假定差异不大。剪力墙和普通楼板均为二维构件,这两种构件的模型化假定是关键,它直接决定了多、高层结构分析模型的科学性,同时也决定了软件分析结果的精度和可信度。目前国内外流行的几个结构计 算软件对剪力墙和楼板的模型化假定差异较大。现进行分述。 3.1 TAT结构计算软件 TAT是由中国建筑科学研究院开发的建筑结构专用软件,采用菜单操作,图形化输入几何数据和荷载数据。程序对剪力墙采用开口薄壁杆件模型,并假定楼板在平面内刚度无限大,平面外刚度为零。这使得结构的自由度大为减少,计算分析得到一定程度的简化,从而大大提高了计算效率。薄壁杆件模型采用开口薄壁杆件理论,将整个平面联肢墙或整个空间剪力墙模拟为开口薄壁杆件,每个杆件有两个端点,每个端点有7个自由度,前6个自由度的含义与空间杆单元相同,第7个自由度是用来描述薄壁杆件截面翘曲的。开口薄壁杆件模型的基本假定为: 1) 在线弹性条件下,杆件截面外形轮廓线在其自身平面内保持不变,在平面外可以翘曲,同时忽略其剪切变形的影响。这一假定实际上增大了结构的刚度,薄 壁杆件单元及其墙肢越多,则结构刚度增大的程度越高。 2) 将同一层彼此相连的剪力墙墙肢作为一个薄壁杆件单元,将上下层剪力墙洞口之间的部分作为连梁单元。这一假定将实际结构中连梁对墙肢的线约束简化为

系统组织结构图表及主要功能阐述1.doc

系统组织结构图表及主要功能阐述1 附件2 以旧换再信息管理系统 操作手册再制造企业及网点 版本号:2.0 2015年4月 目录 一、系统目标(1) 二、系统组织结构图表及主要功能阐述(2) 一)、软件系统参与主体(2) 1.主管部门(2) 2.再制造企业(3) 3.网点(4) 二)、系统用户类别说明表(4) 三)、系统主要功能模块(5) 三、系统功能介绍(企业级网点)(6) 一)、业务管理(7)

1.联单管理(8) 2.联单查询(9) 3.联单审核(10) 4.销售登记(网点)(12) 二)、再制造产品管理(14) 1. 再制造产品定义(14) 2.再制造产品数量核定(14) 3.再制造产品核定(15) 三)、产品序列号管理(17) 四)、机构与用户(19) 1.用户维护(19) 五)、报表管理(21) 1.月度统计汇总表(21) 2.季度补贴申请表(22) 3.交易数据统计表(31) 4.资金补贴统计表(32) 四、常见问题FAQ (33)

一、系统目标 为协助相关部门对”以旧换再”业务的开展进行规范化管理,促使”以旧换再”流程管理规范化、标准化,协助相关部门监督再制造企业为”以旧换再”客户提供高品质的产品和服务。 为相关主管部门提供一个信息化管理平台,及时掌握再制造产品的交易情况和交易规模,以及”以旧换再”补贴资金的支付和使用情况,为不断完善行业发展,及时制订和调整行业政策,提供宏观管理数据。 协助再制造企业完善营销网络,及时统计和上报再制造产品的销售数据,实现再制造零部件”以旧换再”的交易数据传输、审核、上报,方便各级主管部门及时了解及监管全国”以旧换再”业务开展情况,随时掌握“以旧换再”各项业务状态。 二、系统组织结构图表及主要功能阐述 一)、软件系统参与主体 1.主管部门 目前参与的主管部门主要有国家发展与改革委员会、工业和信息化部、财政部。每个主管部门实行三级管理,分别是:中央——省、直辖市——地级市。(其中直管市仅有中央、直管市两级)

(完整版)很详细的系统架构图-强烈推荐

很详细的系统架构图--专业推荐 2013.11.7

1.1.共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。整体应用系统通过SOA面向服务管理架构模式实现应用组件的有效整合,完成应用系统的统一化管理与维护。 2 应用资源采集 整体应用系统资源统一分为两类,具体包括结构化资源和非机构化资源。本次项目就要实现对这两类资源的有效采集和管理。对于非结构化资源,我们将通过相应的资源采集工具完成数据的统一管理与维护。对于结构化资源,我们将通过全面的接口管理体系进行相应资源采集模板的搭建,采集后的数据经过有效的资源审核和分析处理后进入到数据交换平台进行有效管理。 3 数据分析与展现 采集完成的数据将通过有效的资源分析管理机制实现资源的有效管理与展现,具体包括了对资源的查询、分析、统计、汇总、报表、预测、决策等功能模块的搭建。 4 数据的应用 最终数据将通过内外网门户对外进行发布,相关人员包括局内各个部门人员、区各委办局、用人单位以及广大公众将可以通过不同的权限登录不同门户进行相关资源的查询,从而有效提升了我局整体应用服务质量。 综上,我们对本次项目整体逻辑架构进行了有效的构建,下面我们将从技术角度对相

关架构进行描述。 1.2.技术架构设计 如上图对本次项目整体技术架构进行了设计,从上图我们可以看出,本次项目整体建设内容应当包含了相关体系架构的搭建、应用功能完善可开发、应用资源全面共享与管理。下面我们将分别进行说明。 1.3.整体架构设计 上述两节,我们对共享平台整体逻辑架构以及项目搭建整体技术架构进行了分别的设计说明,通过上述设计,我们对整体项目的架构图进行了归纳如下:

路面结构设计计算书

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 1)轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 :s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时, i δ=1;单轴—单轮时,按式43.03 1022.2-?=i i P δ计算; 双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22.08 1024.2--?=i i P δ计算。 轴载换算结果如表所示

太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注:轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范,一级公路的设计基准期为30年,安全等级为二级,轮迹横向分布系数η是0.17~0.22 取0.2,08.0=r g ,则 [][] 362.69001252.036508 .01)08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其交通 量在4 4102000~10100??中,故属重型交通。 2)初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低~中。根据一级公路、重交通等级和低级变异水平等级,查表4.4.6 初拟普通混凝土面层厚度为24cm ,基层采用水泥碎石,厚20cm ;底基层采用石灰土,厚20cm 。普通混凝土板的平面尺寸为宽3.75m ,长5.0m 。横缝为设传力杆的假缝。 3)确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=,水泥碎石a MP E 15001=,石灰土a MP E 5502= 设计弯拉强度:a cm MP f 0.5=, a c MP E 4101.3?= 结构层如下: 水泥混凝土24cm 水泥碎石20cm 石灰土20cm × 按式(B.1.5)计算基层顶面当量回弹模量如下: a x MP h h E h E h E 102520.020.0550 20.0150020.02 222222122 2121=+?+?=++= 1 2 211221322311)11(4)(1212-++++=h E h E h h h E h E D x 1233)2 .05501 2.015001(4)2.02.0(122.0550122.01500-?+?++?+?= )(700.4m MN -= m E D h x x x 380.0)1025 7.412()12(3 1 31=?== 165.4)351025(51.1122.6)( 51.1122.645.045.00=?????? ?-?=?? ????-?=--E E a x

数据结构课程设计计算器

数据结构课程设计报告 实验一:计算器 设计要求 1、问题描述:设计一个计算器,可以实现计算器的简单运算,输出并检验结果的正确性,以及检验运算表达式的正确性。 2、输入:不含变量的数学表达式的中缀形式,可以接受的操作符包括+、-、*、/、%、(、)。 具体事例如下: 3、输出:如果表达式正确,则输出表达式的正确结果;如果表达式非法,则输出错误信息。 具体事例如下: 知识点:堆栈、队列 实际输入输出情况: 正确的表达式

对负数的处理 表达式括号不匹配 表达式出现非法字符 表达式中操作符位置错误 求余操作符左右出现非整数 其他输入错误 数据结构与算法描述 解决问题的整体思路: 将用户输入的中缀表达式转换成后缀表达式,再利用转换后的后缀表达式进行计算得出结果。 解决本问题所需要的数据结构与算法: 用到的数据结构是堆栈。主要算法描述如下: A.将中缀表达式转换为后缀表达式: 1. 将中缀表达式从头逐个字符扫描,在此过程中,遇到的字符有以下几种情况: 1)数字 2)小数点 3)合法操作符+ - * / %

4)左括号 5)右括号 6)非法字符 2. 首先为操作符初始化一个map priority,用于保存各个操作符的优先级,其中+ -为0,* / %为1 3. 对于输入的字符串from和输出的字符串to,采用以下过程: 初始化遍历器std::string::iterator it=infix.begin() 在当it!=from.end(),执行如下操作 4. 遇到数字或小数点时将其加入到后缀表达式: case'1':case'2':case'3':case'4':case'5':case'6':case'7':case '8':case'9':case'0':case'.': { to=to+*it; break; } 5. 遇到操作符(+,-,*,/,%)时,如果此时栈顶操作符的优先级比此时的操作符优先级低,则将其入栈,否则将栈中的操作符从栈顶逐个加入到后缀表达式,直到栈空或者遇到左括号,并将此时的操作符加入到栈中,在此过程中需判断表达式中是否出现输入错误: case'+':case'-':case'*':case'/':case'%': { if((it+1)==from.end()) { cout<<"输入错误:运算符号右边缺少运算数"<

系统功能结构图

器材供应处物资进出库管理系统 系统管理 组织机构管理用户、角色管理 物资信息管理消息提醒物资进库管理 初始库存导入合同管理到货通知单管理 无合同采购审批物资入库不合格物资管理 入库记录查询在库物资存储管 理 在库物资台帐物资盘点(盈亏) 管理 物资减值管理物资退换管理年结转管理物资出库管理 未入库物资发放单录入、审批 代管物资领料单录入、审

器材供应处物资进出库管理 系统 系统管理 用户、角 色管理消息提醒 供应商管理 密码管理 通知、公告、信 息 物资编码管理物资标准代码管 理物资标准代码审 核物资应收实收上 浮控制 合同管理 合同录入 合同审批 合同审批(处领 导) 物资入库管理 生成到货通知单生成入库单 交接验收物资存储管理 储备定额 管理 退料管理 退料审批退库管理 退库审批 物资盘点生成盘点表盘点表查询打印录入盘点结果盘点盈亏处理盘点表审批 物资出库管理 生成出库单物资出库单生成代管物资出库单代管物资出 库单物资出库单 审批 汇总与分析管理 库存查询

物资盘点 生成盘点表盘点表查询打印录入盘点结果盘点盈亏处理盘点表审批AA

器材供应处物资进出库管理系统 系统管理用户、角色管理 消息提醒 供应商管理 密码管理 通知、公告、信 息 物资编码管理 物资标准代码管理 物资标准代码审核 物资应收实收上浮 控制 合同管理 合同录入 合同审批 合同审批(处领导) 物资入库管理生成到货通知单 生成入库单 交接验收 物资存储管理储备定额管理 退料管理 退料审批 退库管理 退库审批 物资出库管理生成出库单 物资出库单 生成代管物资出库单 代管物资出库单 物资出库单审批 汇总与分析管理 库存查询

设计院常用结构计算软件比较

常用结构软件比较 摘要:本人在设计院工作,有机会接触多个结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解。现在根据自己的使用体会,从设计人员的角度对各个软件作一个评价,请各位同行指正。本文仅限于混凝土结构计算程序。 关键词:结构软件结构设计 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。SATWE、TBWE 和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处

相关文档
最新文档