第六章系统的性能指标与校正 机械工程控制基础 教案

第六章系统的性能指标与校正 机械工程控制基础 教案
第六章系统的性能指标与校正 机械工程控制基础 教案

Chp.6 系统性能分析与校正

基本要求

(1) 了解系统时域性能指标、频域性能指标和综合性能指标的概念;了解频域性能指标和时域性能指标的关系。

(2) 了解系统校正的基本概念。

(3) 掌握增益校正的特点;熟练掌握相位超前校正装置、相位滞后校正装置和相位滞后—超前校正装置的模型、频率特性及有关量的概念、求法及意义;掌握各种校正装置的频率特性设计方法;熟练掌握各种校正的特点。

(4) 掌握PID 校正的基本规律及各种调节器的特点;掌握PID

调节器的工程设计方法。

(5) 掌握反馈校正、顺馈校正的定义、基本形式、作用和特点。

重点与难点

本章重点

(1) 各种串联无源校正装置的模型、频率特性及有关量的概念、求法及意义;各种校正装置的特点及其设计方法。

(2) PID 校正的基本规律及各种调节器的特点;PID 调节器的工程设计方法。

(3) 反馈校正、顺馈校正的定义、基本形式、作用和特点。

本章难点

(1) 各种串联无源校正装置的设计。

(2) PID 调节器的工程设计方法。

系统首先应稳定,只有稳定性还不能正常工作,还必须满足给定的性能指标才能正常工作。

§1 系统性能指标

分类:时域性能指标(瞬态、稳态)

频域指标

综合性能指标(误差准则)

一、时域指标:

在单位阶跃输入下,对二阶振荡系统给出

1、上升时间t r:

2、峰值时间t p:

3、调整时间t s:

4、最大超调量M P:

5、振荡次数N:

6、稳态指标:

(1)误差:e1(t)=x or(t)-x0(t)

E1(s)=X or(s)-X0(s)

(2)偏差:ε(t)=x i(t)-h(t)x0(t)

E(s)=X i(s)-H(s)X0(s)

(3)误差和偏差的关系:

控制系统应力图使x0(t) →x or(t),当X0(s)= X or(s)时,

存在E(s)= H(s) E1(s)

结论:求出偏差后即可求出误差E(s);

若单位反馈H(s)=1,则E(s)= E1(s);

闭环系统的误差包括瞬态误差和稳态误差,稳态误差不仅与系统特征有关,也与输入和干扰信号特性有关。

(4) 稳态偏差εss:

因为,E(s)=X i(s)-H(s)X0(s)

由终值定理,

阶跃输入下,X i(s)=1/s

位置无偏系数k p:

速度无偏系数k v:

加速度无偏系数k a:

7、G k(s)对稳态偏差的影响:

不同系统结构(G k(s)的“型”号),则无偏系数和稳态偏差亦不同。

(1)系统型号对εss和k p的影响:(阶跃信号输入)

0型系统v=0:

稳态位置偏差为有限值(有差系统)

Ⅰ型系统v=1及v>1:(无差系统)

(2) 系统型号对k v的影响:(速度信号输入)

0型v=0:

Ⅰ型v=1:

Ⅱ型及以上:k v=∞εss=0

(3)系统型号对k a的影响:(加速度输入)

0型:k a=0 εss=∞

Ⅰ型:k a=0 εss=∞

Ⅱ型:k a=k εss=1/k

讨论:a) k p、k v、k a反映系统减少或消除εss的能力;

b)应根据系统承受输入情况选择系统的型号;

c)k值的重要作用:k 大有利于减少εss,但k太大不利于系统稳定性。

例:如图,求系统在单位阶跃、单位恒速、单位恒加速下的稳态误差。

二、频域性能指标:

1、谐振频率ωr:

2、谐振峰值M r:

3、截止频率ωb:

4、相位裕量γ:γ=180o+∠G(jωc)H(jωc)

对二阶系统,

5、幅值裕量k g:

对二阶系统,

三、时域和频域指标的关系:

1、M p和M r的关系:

M p、N(时)和M r、γ都只与阻尼比ζ有关,反映系统的阻尼特性和系统的相对稳定性。

M r=1.2~1.5,对应M p=20%~30%,过渡过程较平稳;

M r>2,则M p>40%,平稳性很差。

2、t p、t s(时)与ωr的关系:

对一定ζ,t p、t s均与ωr成反比,ωr高的系统,反映速度快。

3、t p、t s(时)与ωb的关系:

ζ一定,t p、t s(时)与ωb成反比,即频带越宽,响应速度越快。

§2 系统校正

一、基本概念:

系统各项性能指标要求往往互相矛盾,应首先满足主要性能指标,其他指标采取折衷方案,加上必要校正。

1、定义:在系统中增加新的环节,以改善系统性能。

(图6.5.1)

从频域观点说,校正就是改变系统频率特性曲线的形状,以改善系统性能。

2、分类:

(1)串联校正:在前向通道中串联校正环节G c(s)。(6.5.3)

位置:低功率部分。

分为:增益校正,相位超前校正,相位滞后校正,相位超前—滞后校正。

(2)并联校正:校正环节与前向通道G c(s)的某些环节并联。(6.5.4,5)

分为:反馈校正,复合校正。

二、相位超前校正:

可提高系统相对稳定性和响应速度,但稳态性能改善不大。

在系统剪切频率ωc附近(或稍大)加入一些超前相角(使相位裕量增大),使系统有较大增益k又不致影响系统稳定性。

1、相位超前环节G c(s):

例:运放组成的PD调节器,R—C电网。(6.6.1)

讨论:1)低频ω→0,G(jω)≈α,相当于比例环节;

中频(ω较小),G(jω)≈α(jωT+1),比例微分环节;

高频ω→∞,G(jω)≈1,不起校正作用;

→高通滤波器

2)φ>0,G c(jω)相位超前;

3)G c(jω)是上半圆,圆心:[1/2(1+α),j0],半径:1/2(1-α)

4)最大相位超前角φm:(图6.6.2)

α对φm的影响(图6.6.3)

5)φm所对应的频率ωm:

6)相位超前环节的Bode图:

ωT1=1/T ωT2=1/αT

可见,φm在对数幅频特性[+20]段存在,将使系统ωc的增大,且增大ωr、ωb,即加大了系统带宽,加快了系统响应速度;另外,在ω=ωm处,产生φm,增加了系统相位裕量。

2、用Bode图进行相位超前校正:

三、相位滞后校正:

改善稳态性能而基本不影响动态性能。

目的:减少稳态误差,不影响稳定性和快速性。

措施:加大低频段增益→采用相位滞后环节。

1、相位滞后环节:(R-C网络)(6.7.1)

讨论:1)低频ω→0,G(jω)≈1, 不起校正作用;

中频(ω较小),,比例积分+微分环节;

高频ω→∞,,比例环节;

→低通滤波器

2)φ<0,G c(jω)相位滞后;

3)G c(jω)是下半圆,圆心:[β+1/β,j0],半径:β-1/2β(6.7.2)

4)最大相位滞后角φm:(图6.6.2)

5)φm所对应的频率ωm:

6)相位滞后环节的Bode图:

ωT1=1/βT ωT2=1/T

7)β和T的取值:

相位滞后环节的根本目的并不是相位滞后,而是使得大于1/T的高频段的增益全部下降,并且保证在这个频段的相位变化很小。为此β和T的取值应很大,但具体实现较困难。

βmax=20 T max=7~8,一般选β=10 T=3~5

2、用Bode图进行相位滞后校正:

例:Ⅰ型

设计指标:1)单位恒速输入时,e ss=0.2

2) 相位裕量γ=40o,增益裕量k g(dB)≥10dB

解:a)确定开环增益k k=1/ e ss=1/0.2=5

b)画G(s)的Bode图,(图6.7.4)

c)分析G(s)的Bode图,确定β值。(β=10)

d)确定T:为使校正前后系统在ωc处相位变化不大,滞后校正环节的转角频率1/T 应低于ωc的5~10倍,一般取5倍。→T=10

e)校正环节为

f)校正后的开环传递函数

四、相位滞后-超前环节:

需同时改善动态特性和稳态性能时使用。

例:R-C网络

T1=R1C1 T2=R2C2 R1C1+R2C2+R1C2=T1/β+βT2(β>1)

Bode图:(6.8.2)

可见,0<ω≤ω1环节起滞后作用;

ω1<ω<∞环节起超前校正作用

数字通信系统的主要性能指标

批准人: 年月日 第二讲数字通信系统的主要性能指标 教学提要 课目数字通信系统的主要性能指标 内容一、有效性指标 二、可靠性指标 目的掌握日常的故障处理方式方法,为以后的值勤打下良好的基础。 方法集中授课,理论讲解,电化教学 时间 45分钟 要求 1.遵守课堂纪律,专心听讲,做好笔记; 2.勤于动脑,善于思考,课后做好复习。 教学进程 教学准备(5分钟)

1.清点人数,准备教学用具 2.宣布作业提要 教学实施(37分钟) 在设计及评价一个通信系统时,必然涉及通信系统的性能指标问题。通信系统的性能指标包括信息传输的有效性、可靠性、适应性、经济性、标准性及维护使用方便等等。因为通信的任务时传递信息,从信息传输角度讲,在各项实际要求中起主导的、决定作用的,主要是通信系统传输信息的有效性和可靠性。 一、有效性指标 有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率R B、信息速率R b和频带利用率衡量。 (一)码元速率(R B) 码元速率R B也称为传码率、符号传输速率等 定义:码元速率R B是指每秒钟传输码元的数目。 单位:为波特(baud),简记为B。 虽然数字信号由二进制和多进制的区分,但码元速率与信号的进制无关,只与一个码元占有时间T b有关,R B=1/T b。 (二)信息速率(Rb)

在讨论信息速率之前,首先介绍信息量的概念。 1.信息量。图1--6给出的两个码元序列,虽然码元速率相同,但其携带的信息量是不同的。我们可以举例说明,假设有四种等概出先的离散信息“黄”“红”“绿”“蓝”要传输;如用二进制码元0,1,2,3,表示时,只要一个码元就可以表示一种颜色。显然四进制信号的一个码元有二进制信号两个码元具有的信息量。衡量各种不同消息中包含信息多少的标准称为信息量。信息量单位为比特,符号bit。关于信息量的严格定义限于篇幅,我们不作讨论,这里至给出一个特定条件下的定义:一个二进制数字信号当1,0码等概出现时,一个码元包含的信息量为1*(bit)。 一个N 进制狮子信号,各种码元等槪出现时,一个码元含有的信息量为log2N(bit)。 2.信息速率(R b)又称传信率 定义:信息速率(R b)是指每秒传输的信息量。 单位:比特/秒(bit/s),简记(b/s) 对于传输二进制数字信号, 有R b=二进制码元数目/秒, 对于传输N二进制数字信号, 有R b=R BN log2N

控制系统性能指标

本章主要内容: 1控制系统的频带宽度 2系统带宽的选择 3确定闭环频率特性的图解方法 4闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω> ωb 2。Ig ΦO)∣<20?∣ΦQ,0)∣-3 而频率范围 根据带宽定义,对高于带宽频率的正弦输入信号,系统输岀将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、丨型和II型系统的带宽 Φ(-0 = -―- 凶为开环系s?j?ι翌,,E 所以20 Igl Φ(J?) = 2Glg 1 / JiT応孑=20Ig-L 二阶系虬的例环传禺为, (】)(,¥,〕= — ~ Λ'+2CΓ?1S +Λ?; 1 圜为I (I I(√,3) =L ∕∣ T此∕?>3+4ζ,T?∕∕? = ?∣2 叫=叫[(1 -2√2) + √(l-2ζ*3)2+l P 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输岀端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法 b)称为系统带宽

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

模拟通信系统性能指标

1.5.1 模拟通信系统性能指标 知识点归纳: 通信系统的主要性能指标 通信系统的性能指标指涉及有效性、可靠性、标准性、经济性及可维护性等,但设计或评价通信系统的主要性能指标是传输信息的有效性和可靠性。有效性主要是指消息传输的“速度”,而可靠性主要是指消息传输的“质量”。 对于模拟通信系统来说,有效性可以用消息占用的有效带宽来度量,可靠性可以用接受端输出的信噪比来度量。 对于数字通信系统来说,度量其有效性的主要性能指标是传输速率和频带利用率,可靠性主要指标是差错率。 数字系统的性能指标 有效性 有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率RB、信息速率Rb和频带利用率衡量。 1.码元速率 码元速率RB也称为传码率、符号传输速率等定义:码元速率RB是指每秒钟传输码元的数目。单位:为波特(baud),简记为B, 例如,某系统在 2 秒内共传送 4800 个码元,则该系统的传码率为 2400B 。 虽然数字信号由二进制和多进制的区分,但码元速率与信号的进制无关,只与一个码元占有时间Tb有关,RB=1/Tb。 2 .信息速率 定义:信息速率(Rb)是指每秒传输的信息量。单位:比特/秒(bit/s),简记(b/s) 例如,若某信源在 1 秒钟内传送 1200 个符号,且每一个符号的平均信息量为 l ( bit ),则该信源的信息传输速率 =1200b/s 或 1200bps 。对于传输二进制数字信号,则Rb为二进制码元数目/秒,对于传输N二进制数字信号,有 Rb=RBlog2M 式中RB为M进制数字信号的码元速率。二进制时,码元速率与信息速率数值相等,只是单位不同。 3.频带利用率 在比较不同的数字通信系统的效率时,仅仅看他们的信息传输速率是不够的。因为即使是两个系统的

--BPSK通信系统的计算机性能分析与MATLAB仿真.

淮海工学院 课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:BPSK通信系统性能分析与MATLAB仿真 系(院): 学期: 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

BPSK通信系统性能分析与MATLAB仿真 1绪论 随着通信技术的发展,信号处理方面硬件设计与专业软件设计结合日趋紧密,已经有一些公司开付出专业数字信号处理软件。比较优秀的而且得到广大技术人员认可的有MATLAB。 MATLAB等优秀软件使仿真技术得到很好的应用。通过对通信过程的仿真,我们就可以在低成本的条件下检测某一个方案是否能够实现,是否有更好的方案可以代替原来的方案,这样对通信的研究就站在了一个更高的起点,使通信技术的发展日新月异,近几年手机的普及率的迅速提高就从侧面反映移动通信技术的发展。 现代移动通信系统的发展是以多种先进的通信技术为基础发展起来的。移动通信的主要基本技术包括调制技术、移动信道中颠簸的传播特性、多址方式、抗干扰技术以及组网技术。在移动通信中,数字调制解调技术是关键技术,其中数字调相信号具有数字通信的诸多优点,在数字移动通信中广泛使用它来传送各种控制信息。 1.1 研究背景与研究意义 随着通信系统复杂性不断增加,传统设计已不能适应发展的需要,通信系统的模拟仿真技术越来越受到重视,因此在设计新系统时,要对原有的系统做出修改或者进行相关研究,通常要进行建模和仿真,通过仿真结果来衡量方案的可行性,从中选择合理的系统配置和参数设置,然后进行实际应用。MATLAB 作为一种功能强大的数据分析和工程计算高级语言,已被广泛应用于现代科学技术研究和工程设计的各个领域。调制解调技术在通信系统中不可或缺,因此,基于MATLAB的调制解调模块仿真设计对通信系统的教学和科研都具有积极的意义。 1.2 课程设计的目的和任务 本次课程设计是根据“通信工程专业培养计划”要求而制定的。通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算机仿真专业课后进行的综合性课程设计。其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是:(1)掌握一般通信系统设计的过程、步骤、要求、工作内容和设计方法;掌握用计算机仿真通信系统的方法。(2)建立系统模型:根据数字调制与解调原理及通信系统组成情况建立所选题目的系统模型。(3)设置参数:包括信源、抽样量化编码/译码、信道编码/译码、基带调制/解调器、各噪声产生器、信道、误码率计算器、星座图仪等参数的选择。(4)运行参数,进行系统仿真,得到误码率与信

模拟通信系统性能指标

模拟通信系统性能指标 知识点归纳: 通信系统的主要性能指标 通信系统的性能指标指涉及有效性、可靠性、标准性、经济性及可维护性等,但设计或评价通信系统的主要性能指标是传输信息的有效性和可靠性。有效性主要是指消息传输的“速度”,而可靠性主要是指消息传输的“质量”。 对于模拟通信系统来说,有效性可以用消息占用的有效带宽来度量,可靠性可以用接受端输出的信噪比来度量。 对于数字通信系统来说,度量其有效性的主要性能指标是传输速率和频带利用率,可靠性主要指标是差错率。 数字系统的性能指标 有效性 有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率RB、信息速率Rb和频带利用率衡量。 1.码元速率 码元速率RB也称为传码率、符号传输速率等定义:码元速率RB是指每秒钟传输码元的数目。单位:为波特(baud),简记为B, 例如,某系统在 2 秒内共传送 4800 个码元,则该系统的传码率为 2400B 。 虽然数字信号由二进制和多进制的区分,但码元速率与信号的进制无关,只与一个码元占有时间Tb有关,RB=1/Tb。 2 .信息速率 定义:信息速率(Rb)是指每秒传输的信息量。单位:比特/秒(bit/s),简记(b/s) 例如,若某信源在 1 秒钟内传送 1200 个符号,且每一个符号的平均信息量为 l ( bit ),则该信源的信息传输速率 =1200b/s 或 1200bps 。对于传输二进制数字信号,则Rb为二进制码元数目/秒,对于传输N二进制数字信号,有Rb=RBlog2M 式中RB为M进制数字信号的码元速率。二进制时,码元速率与信息速率数值相等,只是单位不同。 3.频带利用率 在比较不同的数字通信系统的效率时,仅仅看他们的信息传输速率是不够的。因为即使是两个系统的信息传输的速率相同,他们所占用的频带宽度也可能不同。从而效率也不同。对于相同的信道频带,传输的信息量越来越高。所以用来衡量数字通信系统传输效率指标(有效性)应当是单位频带内的传输速率,即 n=符号传输速率/频带宽度(波特/赫) 对于二进制传输,则可以表示为 n=信息传输速率/频带宽度(比特/秒*.赫) 可靠性

控制实验报告二典型系统动态性能和稳定性分析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示: 对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 因此,调整R x 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调

的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。 当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示: 根据所连接的电路图可以知道其开环传递函数为: 其中,R 的单位为kΩ。系统特征方程为,根据 x 劳斯判据可以知道:系统稳定的条件为012,调节R 可以调节K,从而调节系统的性能。具体实 x 验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为左右。

第六章系统的性能指标与校正 机械工程控制基础 教案

Chp.6 系统性能分析与校正 基本要求 (1) 了解系统时域性能指标、频域性能指标和综合性能指标的概念;了解频域性能指标和时域性能指标的关系。 (2) 了解系统校正的基本概念。 (3) 掌握增益校正的特点;熟练掌握相位超前校正装置、相位滞后校正装置和相位滞后—超前校正装置的模型、频率特性及有关量的概念、求法及意义;掌握各种校正装置的频率特性设计方法;熟练掌握各种校正的特点。 (4) 掌握PID 校正的基本规律及各种调节器的特点;掌握PID 调节器的工程设计方法。 (5) 掌握反馈校正、顺馈校正的定义、基本形式、作用和特点。 重点与难点 本章重点 (1) 各种串联无源校正装置的模型、频率特性及有关量的概念、求法及意义;各种校正装置的特点及其设计方法。 (2) PID 校正的基本规律及各种调节器的特点;PID 调节器的工程设计方法。 (3) 反馈校正、顺馈校正的定义、基本形式、作用和特点。 本章难点 (1) 各种串联无源校正装置的设计。 (2) PID 调节器的工程设计方法。 系统首先应稳定,只有稳定性还不能正常工作,还必须满足给定的性能指标才能正常工作。 §1 系统性能指标 分类:时域性能指标(瞬态、稳态) 频域指标 综合性能指标(误差准则) 一、时域指标: 在单位阶跃输入下,对二阶振荡系统给出 1、上升时间t r: 2、峰值时间t p:

3、调整时间t s: 4、最大超调量M P: 5、振荡次数N: 6、稳态指标: (1)误差:e1(t)=x or(t)-x0(t) E1(s)=X or(s)-X0(s) (2)偏差:ε(t)=x i(t)-h(t)x0(t) E(s)=X i(s)-H(s)X0(s) (3)误差和偏差的关系: 控制系统应力图使x0(t) →x or(t),当X0(s)= X or(s)时, 存在E(s)= H(s) E1(s) 结论:求出偏差后即可求出误差E(s); 若单位反馈H(s)=1,则E(s)= E1(s); 闭环系统的误差包括瞬态误差和稳态误差,稳态误差不仅与系统特征有关,也与输入和干扰信号特性有关。 (4) 稳态偏差εss: 因为,E(s)=X i(s)-H(s)X0(s) 即 由终值定理, 阶跃输入下,X i(s)=1/s 位置无偏系数k p: 速度无偏系数k v: 加速度无偏系数k a: 7、G k(s)对稳态偏差的影响: 不同系统结构(G k(s)的“型”号),则无偏系数和稳态偏差亦不同。

控制系统性能指标

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc 大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

控制系统时域与频域性能指标的联系

控制系统时域与频域性能指标的联系 经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。 如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。 在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。 系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。 一、系统的时域性能指标 延迟时间t d 阶跃响应第一次达到终值h (∞)的50%所需的时间 上升时间 t r 阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系 统,也可定义为从0到第一次达到终值所需的时间 峰值时间t p 阶跃响应越过终值h (∞)达到第一个峰值所需的时间 调节时间 t s 阶跃响应到达并保持在终值h (∞)的±5%误差带内所需的最短时间 超调量%σ 峰值h( t p )超出终值h (∞)的百分比,即 %σ= () ()() ∞∞-h h h t p ?100% 二、系统频率特性的性能指标 采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

通信光缆性能指标的确定与检测

龙源期刊网 https://www.360docs.net/doc/9213399844.html, 通信光缆性能指标的确定与检测 作者:王惠娟崔健 来源:《数字技术与应用》2012年第10期 摘要:本文重点介绍了通信光缆性能指标的工程应用意义和用户在选购通信光缆时应考虑的各种实际因素,详细介绍了通信光缆各项指标的检测方法和注意事项。对提高整个光缆接续施工质量和维护工作极其重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定的现实意义。 关键词:通信光缆性能检测 中图分类号:TN818 文献标识码:A 文章编号:1007-9416(2012)10-0059-01 进入21世纪,随着数字技术、光纤通信技术和软件技术的飞速发展,话音、数据、视频应用技术开始交互融合,相互促进,信息对人们日常生活的影响越来越大,推动了信息市场的急速膨胀,通信产品越来越多地走进我们的日常工作和生活,为保证光缆的检测质量,检测前应根据使用需求、采购数量等方面的具体情况,对测试的项目、方法等形成一个全面的计划,并依据采购合同与光缆供应方达成共识。 1、光纤的性能与测试 单模光纤的性能可分为传输性能和光学几何特性。 (1)单模光纤的传输性能及测试传输性能是影响光传输系统整体性能指标的最重要因素,通常用户关注的主要是光纤的衰减性能和色散特性。1)衰减性能。光纤的衰减性能以衰减系数(单位长度上光纤的总衰减)来表示,单位符号为dB/km。该参数是用来确定系统再生中继段长度的一个重要依据。需要注意的是,测试此项参数时,采用的测试方法与测得的结果有很大关系。目前采用较多的测试方法是剪断法和后向散射法,使用的仪表是光源/功率计和光时域反射计(OTDR)。光缆的衰减系数必须逐盘测试或复查。在检测光缆衰减性能时,还应注意检查光纤的衰减均匀性,以免在施工和维护工作中因光纤本身的衰减突变点造成故障定位错误。2)色散特性。光纤的色散系数是系统设计时的另一个重要参数,通常情况下,对于小容量和短距离的系统,色散因素可忽略不计,但对于大容量和长距离的系统,就必须要考虑色散的影响。测量光纤色散系数的仪表主要有YOUK公司的S18色散仪、EG&G公司的CD-3色散仪等。 (2)单模光纤的光学几何特性及测试。光纤的光学几何特性是影响光纤接续的主要内在因素,以同心度误差为例,该参数是指光纤模场中心与包层中心之间的距离,光纤的接续损耗与该参数的平方成正比,因此该参数对光纤的接续有很大影响。由于光纤的光学几何特性几乎不受成缆过程的影响,因而光纤的光学几何特性通常是在实验室中用短段光缆进行测试.用户

第六章控制系统的校正

第六章控制系统的校正 6.1 引言 一、校正的概述 1.自动控制系统的设计 一个单输入单输出的控制系统一般可化为图6-1 (S)是控制系统的不可变部分,即被控对象, 的形式,G H(S)为反馈环节。未校正前,系统不一定能达到理想 的控制要求,因此有必要根据希望的性能要求进行重 新设计。在进行系统设计时,应考虑如下几个方面的 问题: (1)综合考虑控制系统的经济指标和技术指标,这是在系统设计中必须要考虑的。 (2)控制系统结构的选择。对单输入、单输出系统,一般有四种结构可供选择:前馈校正、串联校正、反馈校正和复合校正。 (3)控制器或校正装置的选择。校正装置的物理器件可以有电气的、机械的、液压的和气动的等形式,选择的一般原则是根据系统本身结构的特点、信号的性质和设计者的经验,并综合经济指标和技术指标进行选择。 (4)校正手段或校正方法的选择。究竟采用时域还是频域方法,须根据控制系统性能指标的表达方式选择。控制系统的性能指标通常包括动态和静态两个方面。动态性能指标用于反应控制系统的瞬态响应情况,它一般可用时域性能指标和频域指标两个方面: 1)时域性能指标:调整时间、上升时间、峰值时间和最大超调量等; 2)频域性能指标:开环指标包括相位裕量、增益裕量;闭环指标包括谐振峰值、谐振频率和频带宽度等。 2.校正的几种方式 对单输入、单输出系统,一般有四种结构可供选择:前馈校正、串联校正、反馈校正和复合校正,其框图如图6-2。 考虑到串联校正比较经济,易于实现,且设计简单,在实际应用中大多采用此校正方法,因此本章只讨论串联校正,典型的校正装置有超前校正、滞后校正、滞后-超前校正和PID校正等装置。

第六章系统校正资料

第六章控制系统的校正1基本概念 2 超前校正 3 滞后校正 4 滞后-超前校正

第一节基本概念 (1)什么是校正 当确定了被控对象后,根据技术指标来确定控制方案,进而选择传感器、放大器和执行机构等就构成了控制系统的基本部分,这些基本部分称为不可变部分(除放大器的增益可适当调整,其余参数均固定不变)。当由系统不可变部分组成的控制系统不能全面满足设计需求的性能指标时,在已选定的系统不可变部分基础上,还需要增加必要的元件,使重新组合起来的控制系统能全面满足设计要求的性能指标,这就是控制系统的综合与校正问题。

控制系统的综合与校正问题与前面讲解的分析问题既有联系又有差异;分析问题,是在已知控制系统的结构形式与全部参数的基础上,求取系统的各项性能指标,以及这些性能指标与系统参数间的关系。而综合与校正问题,是在给定系统不可变部分的基础上,按系统应有的性能指标,寻求全面满足性能指标的校正方案,并合理确定校正元件的参数。因此,综合与校正问题不像分析问题那么简单,也就是说,能全面满足性能指标的控制系统并不是唯一的。

控制系统的综合与校正问题,是在已知下列条件的基础上进行的,即 A)已知控制系统的不可变部分的特性与参数;B)已知对控制系统提出的全部性能指标。 根据第一个条件初步确定一个切实可行的校正方案,并在此基础上根据第二个条件;利用本章将要介绍的理论确定校正元件的参数。

(2)校正的类型 (a)校正装置可以串联在前向通道之中,形成串联校正 一般情况下,对于体积小、重量轻、容量小的校正装置(电器装置居多),常加在系统信号容量不大的地方,即比较靠近输入信号的前向通道中。相反,对于体积、重量、容量较大的校正装置(如无源网络、机械、液压、气动装置等),常串接在容量较大的部位,即比较靠近输出信号的前向通道中。 -G s() R s()C s() c G s()

二阶系统的性能指标分析(DOC)

邢台学院物理系 《自动控制理论》 课程设计报告书 设计题目:二阶系统的性能指标分析 专业:自动化 班级: 学生姓名: 学号: 指导教师: 2013年3 月24 日

邢台学院物理系课程设计任务书 专业:自动化班级: 2013年3 月24 日

摘要 二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。 控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。 稳态过程性能 稳态误差是系统稳定后实际输出与期望输出之间的差值 本次课程设计以二阶系统为例,研究控制系统的性能指标。 关键词:二阶系统性能指标稳态性能指标动态性能指标稳态误差调节时间

目录 1.二阶系统性能指标概述 (1) 2. 应用模拟电路来模拟典型二阶系统。 (1) 3.二阶系统的时间响应及动态性能 (4) 3.3.1 二阶系统传递函数标准形式及分类 (4) 3.3.2 过阻尼二阶系统动态性能指标计算 (5) 3.3.3 欠阻尼二阶系统动态性能指标计算 (7) 3.3.4 改善二阶系统动态性能的措施 (14) 4. 二阶系统性能的MATLAB 仿真 (18) 5 总结及体会 (19) 参考文献 (19)

1.二阶系统性能指标概述 二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC 电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。 控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。 稳态过程性能 稳态误差是系统稳定后实际输出与期望输出之间的差值 2. 应用模拟电路来模拟典型二阶系统。 1.2—l 是典型二阶系统原理方块图,其中T0=1秒;T1=0.1秒;K1 分别为10;5;2.5;1。 开环传递函数为: ) 1()1()(11 101+=+= S T S K S T S T K S G (2-1) 其中,== 1 T K K 开环增益。 闭环传递函数: 22 22 22 121 21 )(n n nS S S T S T K S S T K S W ωξωωξ++= ++= ++= (2-2) 其中,01111T T K T K T n = == ω (2-3) 110 2 1T K T = ξ (2-4) 图2-1 二阶系统

QPSK通信系统性能分析与MATLAB仿真

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计题目: QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期: 2013-2014-2 专业班级: 姓名: 学号:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用

系统的性能指标与校正

第六章系统的性能指标与校正 本章目录 6.1 控制系统设计的基本思路 6.2 串联校正装置的结构与特性 6.3 基于频率法的串联校正设计 6.4 基于根轨迹的串联校正设计 小结 本章简介 在本书第一章,曾指出控制理论学习的两大任务是系统的分析和系统的设计。在第二章到第五章,我们从时域和频域两个角度分析了控制系统的稳定性、相对稳定性和及其性能指标。本章考虑如何根据系统的要求或预定的性能指标对控制系统进行分析。 一个控制系统一般可分解为被控环节、控制器环节和反馈环节三个部分,其中被控部分和反馈部分一般是根据实际对象而建立的模型,不可变的,因此根据要求对控制器进行设计是控制系统设计的主要任务。同时需要指出,由于系统设计的目的也是对系统性能的校正,因此控制器(又称补偿器或调节器)的设计有时又称控制系统的校正。 本章内容包括了无源控制器设计、有源控制器设计(PID控制器)两个内容,重点介绍控制器的结构、校正原理和设计方法。 6.1 控制系统设计的基本思路

一般的控制系统均可表示为如图6-1的形式, 是控制系统的不可变部分,即被控对象, 为反馈环节。未校正前,系统不一定能达到理想的控 制要求,因此有必要根据希望的性能要求进行重新设 计。在进行系统设计时,应考虑如下几个方面的问题: (1)综合考虑控制系统的经济指标和技术指标,这 是在系统设计中必须要考虑的。 (2)控制系统结构的选择。对单输入、单输出系统,一般有四种结构可供选择:前馈校正、串联校正、反馈校正和复合校正,其框图如图6-2。考虑到串联校正比较经 济,易于实现,且设计简单,在实际应用中大多采用此校正方法,因此本章只讨论 串联校正,典型的校正装置有超前校正、滞后校正、滞后-超前校正和PID校正等 装置。 (3)控制器或校正装置的选择。校正装置的物理器件可以有电气的、机械的、液压的和气动的等形式,选择的一般原则是根据系统本身结构的特点、信号的性质和设计 者的经验,并综合经济指标和技术指标进行选择。本书我们以电气校正装置作为控 制器,详述有源和无源装置的工作原理和设计方法。其思想方法同样适用于其它类 型的校正装置设计。 (4)校正手段或校正方法的选择。究竟采用时域还是频域方法,须根据控制系统性能指标的表达方式选择。控制系统的性能指标通常包括动态和静态两个方面。动态性 能指标用于反应控制系统的瞬态响应情况,它一般可用时域性能指标和频域指标两 个方面:1)时域性能指标:调整时间、上升时间、峰值时间和最大超调量 等;2)频域性能指标:开环指标包括相位裕量、增益裕量;闭环指标包括谐 振峰值、谐振频率和频带宽度等。 在进行系统设计时,若所使用的指标是时域指标,则一般宜用根轨迹法进行设计,使闭环系统的极点重新配置;若所使用的指标是频域指标,宜用频率法(如伯德图或极坐标)进行设计。 最后需要指出,由于电子技术和计算机技术的发展,目前实际系统中大量采用的控制器是有源校正装置,如典型的PID调节器,但正如下文大家将看到的,无源校正与有源校正尽管组成形式有差别,但它们的工作原理是相同的。

第6章-控制系统的设计与校正-参考(附答案)

习题六 1. 在题图6.1(a )(b)中,实线分别为两个最小相位系统的开环对数幅频特性曲线,图中虚线部分表示采用串联校正后系统的开环对数幅频特性曲线改变后的部分,试问: 1)串联校正有哪几种形式: 2)试指出图(a )、(b)分别采取了什么串联校正方法? 3)图(a )、(b)所采取的校正方法分别改善了系统的什么性能? L (ωL (ω 题图6.1 习题1图 答案:1)、相位超前校正、相位滞后校正、相位-超前校正 2)、图(a)串联相位滞后校正,图(b)串联相位超前校正。 3)、相位滞后校正提高了低频段的增益,可减少系统的误差。相位超前校正改善了系统的稳定性,使剪切频率变大,提高系统的快速性。 2. 单位反馈系统的开环对数幅频特性曲线)(0ωL 如题图6.2所示,采用串联校正,校正装置 的传递函数)1100 )(13.0() 110)(13()(++++=s s s s s G c 题图6.2 习题2图 (1)写出校正前系统的传递函数)(0s G ; (2)在图中绘制校正后系统的对数幅频特性曲线)(ωL ; (3)求校正后系统的截止频率c ω和γ。 解:(1))1100 )(110(100 )0++=s s s s G (2)20)1100 )(13.0() 13(100))()(+++==s s s s s G s G s G c ,)(ωL 曲线见答案图。

(3)10=c ω,?=?--?-+?=6.63100 10arctan 23.010arctan 90310arctan 180γ 题2解图 3. 已知最小相位系统的开环对数幅频特性)(0ωL 和串联校正装置的对数幅频特性)(ωc L 如题图6.3所示。 (1)写出原系统的开环传递函数)(0s G ,并求其相角裕度; (2)写出校正装置的传递函数)(s G c ; (3)画出校正后系统的开环对数幅频特性曲线)(ωL ,并求其相角裕度。 1 题图6.3 习题3图 解:(1))105.0)(1.0(100 )(0+= s s s s G ?-=4.33γ (2)1 1001 125.3)(++=s s s G c (3)) 1100)(105.0)(11.0() 1125.3(100)()()(0++++==s s s s s s G s G s G c 125.3=c ω ?=9.57γ

相关文档
最新文档