迈克尔逊-莫雷实验(彩板)

迈克尔逊-莫雷实验(彩板)
迈克尔逊-莫雷实验(彩板)

迈克尔逊-莫雷实验

迈克尔逊干涉仪是1880年美国物理学家迈克尔逊为研究“以太”漂移速度实验设计制造出来的。1887年,他和美国物理学家莫雷合作进一步用实验结果否定了“以太”的存在,为爱因斯坦建立狭义相对论开辟了道路。由于发明了精密的光学仪器和借助这些仪器所做的基本度量学的研究,迈克尔逊于1907年获得了诺贝尔物理学奖。

迈克尔逊-莫雷实验:在弄清光波的电磁本质之前,就已经提出光的波动理论并得到完善,以太存在的假设是很自然和必要的。所谓以太就是光波借以传播的弹性介质,就象声波是借助空 气而传播一样。以太观念提出后,很自然想到或许就是牛顿体系中的绝对空间。因此,一度有许多实验企图去发现地球相对于以太的速度,从而规定出绝对空间。

实验分析:

从'S 系来看,光线①从G M G →→1所需的时间

)

1(22

2

1c v c l v c l v c l t -=

++-=

光线②从G M G →→2所需的时间为

2

/1222)

1(2c

v c l

t -=

两束光到达望远镜的时间差约为

22

21c

v c l t t t ?≈-=?

于是两光束的光程差为

22

c

v l t c ?≈?=δ

仪器旋转90˙过程中,望远镜视场中应看到干涉条纹移动N ?条。

2222c

lv N λλδ

==? 实验观察不到预期的理论效果,没有预期的条纹移动。为了解释迈克耳逊--莫雷

实验的否定结果,曾经提出了以下一系列的假说。

1.充满运动物体内的以太,完全被这一物体所带走,正象飞机密封仓的空

气被飞机所带走一样,因而不存在所谓“以太流”。这与光行差的观测结果相矛盾。

2.通过以太的运动物体,纵向线度发生收缩(平行运动方向),其收缩的比例恰好使以太流的影响被抵消。收缩长度与原来长度之间的关系具有形式

22'/1c v l l -=。这一假说称为收缩假说,由洛伦兹和斐兹杰惹所提出(后面将看到与爱因斯坦相对性原理矛盾)。

3.运动光源所发射出来的光线速度与光源速度以矢量方式相加。这一假设由李兹所提出,一般称为弹道假说。按照经典速度相加定理,光速c v v c c

=-+=)(',也就是以太流的影响被以太内的光速和光源的速度所抵消。

弹道假说由天文学上观测双星运动结果易于排除。观测发现,光的速度与光源的速度无关。

直到后来,爱因斯坦建立了相对论,物理学家们通过大量的实践,终于认识到“以太”是不存在的,从此“以太”便退出了历史的舞台.

计算机网络课程设计-模拟以太网帧封装

计算机网络期中考试试题 —模拟虚拟机中局域网的传输过程,完成简单图形界面。 学生:韩成周 学号: 2014117138 完成时间:2016年12月

目录 1.设计任务和要求 ......................................... 1.1 课程设计任务 ...................................... 1.2课程设计要求 ...................................... 2.设计原理 ............................................... 2.1 802.3标准帧结构................................... 2.2CRC的基本实现..................................... 3.设计思路 ............................................... 4.程序源码 ............................................... 5.运行结果 ............................................... 1.设计任务和要求 1.1课程设计任务 虚拟局域网(VLAN),是一种通过将局域网内的设备逻辑地而不是物理地划分成一个个网段从而实现虚拟工作组的新兴技术,在功能和操作上和传统的LAN 基本相同。虚拟局域网技术是目前网络界最热门的技术之一,也是交换网络中最重要的技术之一,它的出现是和局域网的交换技术的发展分不开的。而我们的任务就是模拟虚拟局域网中帧的传输过程。 1.2设计要求 1.初始化交换机的转发表; 2.模拟虚拟局域网同一个局域网或者不同局域网之间帧的传输过程 2.设计原理 2.1 802.3标准帧结构 虚拟局域网帧格式:

材料专题实验实验一 位错蚀坑的观察

在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响 目前,在研究位错的密度、分布和组态以及它们的运动和交互作用过程中,常常应用光学、电子和场离子显微镜及X射线技术对位错进行观察。主要方法有以下几种: 1.浸蚀法——利用蚀坑显示晶体表面的位错露头。 2.缀饰法——在对光透明的整块试样中,通过在位错上用沉淀体质点缀饰来显它们的位置及存在情况。 3.投射电子显微分析——在很高放大倍数下,观察研究薄膜(厚度为0.1~ 4.0μm)试样中的位错。 4.X射线衍射显微分析——用X光束的局部衍射来研究的密度位错。 5.场离子显微分析——以极高的放大倍数显示金属表面的原子排列情况。 ) 和螺型 ( b ) 位错蚀坑 1000 × 位错蚀坑的形状与晶体表面的晶面有关。譬如,对于立方晶系的晶体,位错 蚀坑在各晶面上的形状和取向如图 6-1 所示。观察面为{ 111 }晶面,位错蚀坑呈正三角形漏斗状;在{ 110 }晶面上的位错蚀坑呈矩形漏斗状;在{ 100 } 晶面上的位借蚀坑则是正方形漏斗状。因此,按位错蚀坑在晶体表面上的几何形 状,可以反推出观察面是何晶面,并且按蚀坑在晶体表面上的几何形状对称程度, 还可判断位错线与观察面(晶面)之间的夹角,通常为 10~90 °;自然,若位 错线平行观察面便无住错蚀坑形成了。位借蚀坑的侧面形貌与位错类型有关。蚀 坑侧面光滑平整时是刃型位错,如图 6-2 ( a )所 , 坑侧面出现螺旋线时, 是螺型位错,如图 6 - 2 ( b )所示。 根据位错蚀坑的分布特征,能够识别晶体中存在的小角度晶界和位借塞积 群。当晶体中存在小角度晶界时,蚀坑将垂直于滑移方向排列成行,如囹 6 - 3 ( a )所示;而当出现位错塞积群时,蚀坑便沿滑移方向排列成列,并且它们 在滑移方向上的距离逐渐

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

迈克尔逊干涉仪实验作业

迈克尔逊干涉仪的等倾干涉的特点 麦克尔逊干涉仪观察的等倾干涉条纹是同心圆环状。 而且移动眼睛时不会有条纹移出和移入视场。这样才能确保是等倾,即两板平行。 迈克尔逊干涉仪发明历史是什么? 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。迈克尔逊和爱德华·威廉姆斯·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,并证实了以太的不存在。迈克尔逊干涉仪的最著名应用即是它在迈克尔逊-莫雷实验中对以太风观测中所得到的零结果,这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。 迈克尔逊干涉仪还可测哪些物理量? 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量; 采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性2. 角度测量: 仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。 3.薄透明体的厚度及折射率的同时测量 在不放薄膜时调出白光干涉条纹,而后插入透明薄膜,在薄膜与光线垂直时调出白光干涉条纹后,记录此时动镜移动的距离,再将薄膜偏转α角(45°比较方便),再调出白光干涉条纹,再记录动镜移动的距离。通过动镜这两次移动的距离和薄膜的偏转角,就可以同时计算出待测薄膜的厚度和折射率。 4.气体浓度的测量: 在迈克尔逊干涉仪的参考光路中,放入一个透明气体室,利用白炽灯做光源,在光程差为零的附近观察到对称的几条彩色条纹,中间的黑色条纹是等光程(Δ=0)精确位置。利用通入气体前后等光程位置的改变量,计算出气体的折射率,再利用气体的折射率与气体浓度的关系,计算出气体浓度。 4.引力波探测(超大型迈克尔逊干涉仪) 引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。 2.光纤迈克尔逊干涉仪的应用: (1).混凝土内部应变的测量 把组成光纤迈克尔逊干涉仪的一个臂预埋到混凝土中,当混凝土内部发生膨胀、收缩或变形时,光纤迈克尔逊的白光干涉条纹发生变化,这样可以混凝土内部的一维和二维很小的应变状态进行测量,可以及时了解材料内部应变信息以及内部应变状态分布。由于光纤传感器体积小,重量轻,柔软易于布置,可埋入性好,抗拉性好,耐腐蚀性强;不改变材料结构的受力状态;测量的成本低等特点。 (2). 地震波加速度的测量 以全光纤迈克尔逊干涉仪为基础,研制出由地震敏感元件组成的单分量双光路加速度地震检

以太网帧的封装实验

实训报告以太网帧的封装实验 1.实训目的 1)观察以太网帧的封装格式 2)对比单播以太网帧和广播以太网帧的目标MAC地址 2.实训拓扑图 以太网帧实验拓扑 PC IP地址子网掩码 PC0 PC1 PC2 PC3 3.主要操作步骤及实训结果记录 (1)任务一:观察单播以太网帧的封装 步骤1:准备工作 打开对应文件,完成初始化,删除练习文件中预设场景 步骤2:捕获数据包 进入Simulation模式。添加数据包,单击auto capture/play捕获数据包,再次单击停止捕获 步骤3:观察以太网帧的封装格式 步骤4:观察该广播包的以太网封装

DEST MAC: MAC: 步骤4:观察交换机是否会修改以太网帧各字段取值 DEST MAC:MAC:

(2)任务二:观察广播以太网帧的封装 步骤1:捕获数据包 Pc0数据帧被交换机转发给pc1、pc2、pc3(所有节点),pc1、pc2、pc3(所有节点)接收该广播帧。 步骤2:观察该广播包的以太网封装 DEST MAC:字段的取值: MAC字段取值的含义:广播地址。

4.实训结果分析及心得体会 (1)任务一中,观察到以太网帧封装格式中前导字段的取值是什么阐述其在数据帧传输过程中的作用。 答:任务一中,前导码字段取值为···1010;以太网使用曼彻斯特编码传输数据,其特征是每个码元中间有一次电压的跳变,用于接收方提取同步信号,以太网帧中的前导码有何作用前导码是为了隔离每个以太网帧的,也是定位符。因为以太网是变长的,所以每个帧之间需要前导来区分。 (2)任务一中,Switch0转发数据帧时是否修改其源MAC地址和目标MAC地址 答:switch0转发给pc2地数据帧中源MAC地址和目标MAC地址并未进行修改。 (3)交换机接收数据帧后,依据什么判断该数据帧是单播还是广播或依据什么判断向哪个目标节点转发 答:交换机工作在数据链路层,依据数据帧中的目标MAC地址的取值判断数据帧是单播还是广播,依据目标MAC地址判断向哪个目标节点转发。

晶体位错观察

实验一晶体位错观察 一、实验目的 1.初步掌握用浸蚀法观察位错的实验技术。 2.学会计算位错密度。 二、实验设备 1. 单晶硅专用磨片机; 2. 高纯热处理炉; 3. 反光显微镜; 4. 酸处理风橱; 5. 纯水系统; 6. 大、小烧杯; 7. 大、小量筒 8. 纯净干燥箱 9. 超声清洗机,10. 硅单晶试样、11. 带测微目镜的金相显微镜、12. 切片机。 三、实验原理 由于位错是点阵中的一种缺陷,所以当位错线与晶体表面相交时,交点附近的点阵将因位错的存在而发生畸变,同时,位错线附近又利于杂质原子的聚集。因此,如果以适当的浸蚀剂浸蚀金属的表面,便有可能使晶体表面的位错露头处因能量较高而较快地受到浸蚀,从而形成小的蚀坑,如图1-1所示。这些蚀坑可以显示晶体表面位错露头处的位置,因而可以利用位错蚀坑来研究位错分布以及由位错排列起来的晶界等。但需要说明的是,不是得到的所有蚀坑都是位错的反映,为了说明它是位错,还必须证明蚀坑和位错的对应关系。由于浸蚀坑的形成过程以及浸蚀坑的形貌对所在晶体表面的取向敏感,根据这一点可确定蚀坑是否有位错的特征(图1-1所示)。本实验所用的硅单晶及其它立方晶体中的位错在各种晶面上蚀坑的几种特征如图1-2所示。

图1-1 位错在晶体表面露头处蚀坑的形成 (a)刃型位错,包围位错的圆柱区域与其周围的晶体具有不同的物理和化学性质; (b)缺陷区域的原子优先逸出,导致刃型位错处形成圆锥形蚀坑;(c)螺位错的露头位置;(d)螺位错形成的卷线形蚀坑,这种蚀坑的形成过程与晶体的生长机制相反。 (111) a=b (100) 图1-2 立方晶体中位错蚀坑形状与晶体表面晶向的关系

迈克尔逊干涉实计算仿真

西南交通大学 个性化实验项目结题报告迈克尔逊干涉实验的计算仿真 班级:电气(电牵)2012级班学生姓名: 指导教师:邱春蓉 完成时间:2015年5月23日

1.在项目中的分工 在项目中我主要负责代码的撰写和实验结果的采集调试。 2.查阅资料、方案确定等准备工作 迈克尔逊干涉实验是一个基本的光学物理实验。光的干涉现象是波相干迭加的必然结果,证明了光的波动性。 根据光强分布的理论公式,通过编程得到数值曲线,这种计算机仿真方法可以不受仪器、场地的限制,实验效果形象、直观,扩展了等倾干涉,等厚干涉问题的研究途径。 应用 Matlab 仿真这两种干涉方式,并与实验结果类比。 我首先复习了大学物理实验关于迈克尔逊干涉实验中的部分,初步理解了迈克尔逊干涉实验的原理和结果。然后复习了数学实验中MATLAB 软件的应用。在做完这一切之后,我开始试图思考MATLAB 中仿真迈克尔逊实验图样的方法,即通过解析式生成函数图样。我发现我的物理知识和书本内容不足够描述干涉图样,在上网查阅专著后,我们解决了这个问题。最终编写了代码。 3.项目实施过程描述 3.1 二、实验原理 光的干涉现象是光的波动性的一种表 现。当一束光被分成两束,经过不同路径再 相遇时,果光程差小于该束光的相干长度, 将会出现干涉现象。迈克尔逊干涉仪是一种 利用分割光波振幅的方法实现干涉的精密光 学仪器。自1881年问世以来,迈克尔逊曾用 它完成了三个著名的实验:否定“以太”的 迈克尔逊—莫雷实验,光谱精细结构和利用 光波波长标定长度单位。迈克尔逊干涉仪结 构简单、光路直观、精度高,其调整和使用 具有典型性。 迈克尔逊干涉仪利用两个完全相同、斜 置的玻璃板,将两个几乎垂直的平面镜等效 为接近平行的情况,以至于只需要用螺丝进 行微调即可,同时使一束光成为两束相关光,发生干涉现象。可以认为,是平面镜与另一个平面镜等效位置之间的空气薄膜发生了干涉。 光程差推导计算式为: θcos 2d =? 其中d 为薄膜厚度,θ为入射角。 根据理论公式,迈克尔逊干涉仪成像会是一群同性圆环,其各点处光强公式为: δcos 22121I I I I I ++= 其中,δ是两列光波的相位差。由此可以构造xOy 坐标轴下的轨迹方程集合,由这个原理编写程序。 3.2 程序设计与运行

实验二使用Wireshark分析以太网帧与ARP协议

实验二使用Wireshark分析以太网帧与ARP协议 一、实验目的 分析以太网帧,MAC地址和ARP协议 二、实验环境 与因特网连接的计算机网络系统;主机操作系统为windows;使用Wireshark、IE等软件。 三、实验步骤: IP地址用于标识因特网上每台主机,而端口号则用于区别在同一台主机上运行的不同网络应用程序。在链路层,有介质访问控制(Media Access Control,MAC)地址。在局域网中,每个网络设备必须有唯一的MAC地址。设备监听共享通信介质以获取目标MAC地址与自己相匹配的分组。 Wireshark 能把MAC地址的组织标识转化为代表生产商的字符串,例如,00:06:5b:e3:4d:1a也能以Dell:e3:4d:1a显示,因为组织唯一标识符00:06:5b属于Dell。地址ff:ff:ff:ff:ff:ff是一个特殊的MAC地址,意味着数据应该广播到局域网的所有设备。 在因特网上,IP地址用于主机间通信,无论它们是否属于同一局域网。同一局域网间主机间数据传输前,发送方首先要把目的IP地址转换成对应的MAC 地址。这通过地址解析协议ARP实现。每台主机以ARP高速缓存形式维护一张已知IP分组就放在链路层帧的数据部分,而帧的目的地址将被设置为ARP高速缓存中找到的MAC地址。如果没有发现IP地址的转换项,那么本机将广播一个报文,要求具有此IP地址的主机用它的MAC地址作出响应。具有该IP地址的主机直接应答请求方,并且把新的映射项填入ARP高速缓存。 发送分组到本地网外的主机,需要跨越一组独立的本地网,这些本地网通过称为网关或路由器的中间机器连接。网关有多个网络接口卡,用它们同时连接多个本地网。最初的发送者或源主机直接通过本地网发送数据到本地网关,网关转发数据报到其它网关,直到最后到达目的主机所在的本地网的网关。 1、俘获和分析以太网帧 (1)选择工具->Internet 选项->删除文件

浅析实验与试验,检测与检验

浅析实验与试验,检测与检验! 咱们中华语言博大精深,别说老外经常会被搞晕,咱们中国人遇到检验、检测、实验、试验这样的词语,未必都理解清楚、准确 您语文好,您先来读读试试,感受下 1.今天下雨,我骑车差点摔倒,好在我一把把把把住了! 2.来到杨过曾经生活的地方,小龙女动情地说:“我也想过过过儿过过的生活” 。 3.多亏跑了两步,差点没上上上上海的车。 4.用毒毒毒蛇毒蛇会不会被毒毒死? 5.校长说:校服上除了校徽别别别的,让你们别别别的别别别的你非别别的! 6. 人要是行,干一行行一行,一行行行行行,行行行干哪行都行。要是不行,干一行不行一行,一行不行行行不行,行行不行干哪行都不行。 有人说,每天读一遍,可以预防老年痴呆!所以强烈建议收藏好,言归正传,我们来看看技术人员逃不开的这两对词语,您理解正确了吗?

实验 VS 试验的区别 1、实验和试验的英文翻译 实验:experiment 试验:test 2、实验和试验的定义 实验(experiment): 是一种通过实际操作来探究某自然或社会规律的一种研究方法,主要强调与理论研究的方法对立。 如:双缝干涉实验、迈克尔逊-莫雷实验。 实验不完全依赖特定标准文件来判断是否成功(纯科研甚至往往没有标准),而主要是依据实验目的,设计实验的条件和方法,然后操作,来观测实验品能否达到期望(成功)的或未知的效果。

试验(test): 采用测试的手段来获取或验证某一结果的行为。 如:核试验、独立随机试验。 试验test,是依据已有的标准(国际、国家、企业标准)去验证产品或零部件或材料是否达标(比如型式试验)。也就是已知试验品“应该”到达什么结果,而进行的验证操作。 这里的“试”跟非专业用语“试一试”不是一个含义。着重在是否达标。往往属于质量管理的范畴(质量管理涉及了产品研发,生产,售后,反馈等整个过程)。 3、实验和试验的进一步解释 如果能获取的一个规律性的结论,那么是实验。 例如: 库仑扭秤实验可以得到静电相互作用服从平方反比关系; 双缝干涉实验可以得到微观粒子具有波动性; 迈克尔逊-莫雷实验可以得到地球上两个垂直方向上的光速相; LY/T 1772-2008 杨树品种分子鉴定实验方法-DNA大增片断氏度多态性法(AFLP)

迈克尔逊-莫雷实验

迈克尔逊-莫雷实验 一、经典时空观 存在绝对静止的参照系是经典时空观的核心。人们在原始状态下,总从自我的感觉出发认识世界。并总以自我为中心,来处理一切事物。从这点上说,哥白尼的贡献是相当伟大的。他启示了人们要站在公正的角度看问题。 “以太”(ether)一词来自古希腊亚里士多德,他以为,人们用纯粹思维可以找出制约宇宙的定律,不必要用观测去检验它。他把地上物质与天上物质人为划开,认为天上是由与地上污浊的物质不同的纯洁的物质即“以太”组成。此外他相信存在一个优越的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静止的。经典力学打破了天上与人间的不同,并且否定静止存在唯一标准。人们可以讲,物体A静止而物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。 牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。他思考了这样一个实验,即水桶中水的旋转。 (1) 开始时,桶旋转得很快,但水几乎静止不动。在粘滞力经过足够的时间使它旋转起来之前,水面是平的,完全与水桶转动之前一样。 (2)水和桶一起旋转,水面变成凹状的抛物面。 (3)突然使捅停止旋转,水面仍然保持凹状的抛物面。 牛顿就此分析道,在第(1)(3)阶段里,水和桶都有相对运动,而前者是水平的,而后者水面凹下:在第(2)(3)阶段里,无论水和桶有无相对运动,水面都是凹下的。牛顿由此得出结论:桶和水的相对运动不是水面凹下的原因,这个现象的根本原因是水在空间里绝对运动(即相对于牛顿的绝对空间的运动)的加速度。 绝对空间在哪里牛顿曾经设想,在恒星所在的遥远地方,或许在它们之外更遥远的地方。他提出假设,宇宙的中心是不动的,这就是他所想象的绝对空间.从现今的观点来看,牛顿的绝对空间观是不对的。不过,牛顿当时了清楚地意识到,要给惯性原理以一个确切的意义,那就必须把空间作为独立于物体惯性行为之外的原因引进来。爱因斯坦说:“对此,牛顿自己和他同时的最有批判眼光的人都是感到不安;但是人们

实验3分析mac帧格式

实验3 分析MAC帧格式 实验目的 1.了解MAC帧首部的格式; 2.理解MAC帧固定部分的各字段含义; 3.根据MAC帧的内容确定是单播,广播。 实验设备 Winpcap、Wireshark等软件工具 相关背景 1.据包捕获的原理:为了进行数据包,网卡必须被设置为混杂模式。在现实的网络环境中,存在着许多共享式的以太网络。这些以太网是通过Hub 连接起来的总线网络。在这种拓扑结构的网络中,任何两台计算机进行通信的时候,它们之间交换的报文全部会通过Hub进行转发,而Hub以广播的方式进行转发,网络中所有的计算机都会收到这个报文,不过只有目的机器会进行后续处理,而其它机器简单的将报文丢弃。目的机器是指自身MAC 地址与消息中指定的目的MAC 地址相匹配的计算机。网络监听的主要原理就是利用这些原本要被丢弃的报文,对它们进行全面的分析,这样就可以得到整个网络中信息的现状。 2.Tcpdump的简单介绍:Tcpdump是Unix平台下的捕获数据包的一个架构。Tcpdump最初有美国加利福尼亚大学的伯克利分校洛仑兹实验室的Van Jcaobson、Craig Leres和 Steve McCanne共同开发完成,它可以收集网上的IP数据包文,并用来分析网络可能存在的问题。现在,Tcpdump已被移植到几乎所有的UNIX系统上,如:HP-UX、SCO UNIX、SGI Irix、SunOS、Mach、Linux 和FreeBSD等等。更为重要的是Tcpdump是一个公开源代码和输出文件格式的软件,我们可以在Tcpdunp的基础上进行改进,加入辅助分析的功能,增强其网络分析能力。(详细信息可以参看相关的资料)。 3.Winpcap的简单介绍:WinPcap是由意大利Fulvio Risso和Loris Degioanni等人提出并实现的应用于Win32 平台的数据包捕获与分析的一种软件包,包括内核级的数据包监听设备驱动程序、低级动态链接库和高级系统无关库,其基本结构如图3-1所示:

实验一 半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

以太网帧格式分析

的IP,而MAC地址是伪造的,则当A接收到伪造的ARP应答后,就会更新本地的ARP缓存,这样在A 看来B的IP地址没有变,而它的MAC地址已经不是原来那个了。由于局域网的网络流通不是根据IP地址进行,而是按照MAC地址进行传输。所以,那个伪造出来的MAC地址在A上被改变成一个不存在的MAC地址,这样就会造成网络不通,导致A不能Ping通B!这就是一个简单的ARP欺骗。 【实验体会】 这次实验最大的感触是体会到了网络通信过程的趣味性。在做ping同学IP的实验时,我发现抓到的包之间有紧密的联系,相互的应答过程很像实际生活中人们之间的对话。尤其是ARP帧,为了获得对方的MAC地址,乐此不疲地在网络中广播“谁有IP为XXX的主机?”,如果运气好,会收到网桥中某个路由器发来的回复“我知道,XXX的MAC地址是YYY!”。另外,通过ping同学主机的实验,以及对实验过程中问题的分析,使我对之前模糊不清的一些概念有了全面的认识,如交换机、路由器的区别与功能,局域网各层次的传输顺序与规则等。还有一点就是,Wireshark不是万能的,也会有错误、不全面的地方,这时更考验我们的理论分析与实践论证能力。 成绩优良中及格不及格 教师签名:日期: 【实验作业】 1 观察并分析通常的以太网帧 1.1 以太网帧格式 目前主要有两种格式的以太网帧:Ethernet II(DIX 2.0)和IEEE 802.3。我们接触过的IP、ARP、EAP和QICQ协议使用Ethernet II帧结构,而STP协议则使用IEEE 802.3帧结构。 Ethernet II是由Xerox与DEC、Intel(DIX)在1982年制定的以太网标准帧格式,后来被定义在RFC894中。IEEE 802.3是IEEE 802委员会在1985年公布的以太网标准封装结构(可以看出二者时间 相差不多,竞争激烈),RFC1042规定了该标准(但终究二者都写进了IAB管理的RFC文档中)。 下图分别给出了Ethernet II和IEEE 802.3的帧格式: ⑴前导码(Preamble):由0、1间隔代码组成,用来通知目标站作好接收准备。以太网帧则使用8个字节的0、1间隔代码作为起始符。IEEE 802.3帧的前导码占用前7个字节,第8个字节是两个连续的代码1,名称为帧首定界符(SOF),表示一帧实际开始。 ⑵目标地址和源地址(Destination Address & Source Address):表示发送和接收帧的工作站的地址,各占据6个字节。其中,目标地址可以是单址,也可以是多点传送或广播地址。

实验一 半导体材料的缺陷显示及观察资料讲解

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 仅供学习与交流,如有侵权请联系网站删除谢谢2

实验一 以太网数据帧的构成

【实验一以太网数据帧的构成】 【实验目的】 1、掌握以太网帧的构成,了解各个字段的含义; 2、能够识别不同的MAC地址并理解MAC地址的作用; 3、掌握网络协议分析器的基本使用方法; 4、掌握协议仿真编辑器的基本使用方法; 【实验学时】 4学时; 【实验类型】 验证型; 【实验内容】 1、学习协议仿真编辑器的五个组成部分及其功能; 2、学习网络协议分析器的各组成部分及其功能; 3、学会使用协议仿真编辑器编辑以太网帧,包括单帧和多帧; 4、学会分析以太网帧的MAC首部; 5、理解MAC地址的作用; 6、理解MAC首部中的LLC-PDU长度/类型字段的功能; 7、学会观察并分析地址本中的MAC地址; 8、了解LLC-PDU的内容; 【实验原理】 局域网(LAN)是在一个小的范围内,将分散的独立计算机系统互联起来,实现资源的共享和数据通信。局域网的技术要素包括了体系结构和标准、传输媒体、拓扑结构、数据编码、媒体访问控制和逻辑链路控制等,其中主要的技术是传输媒体、拓扑结构和媒体访问控制方法。局域网的主要的特点是:地理分布范围小、数据传输速率高、误码率低和协议简单等。 1、三个主要技术 ⑴传输媒体:双绞线、同轴电缆、光缆、无线。 ⑵拓扑结构:总线型拓扑、星型拓扑和环型拓扑。 ⑶媒体访问控制方法:载波监听多路访问/冲突检测(CSMA/CD)技术。 2、IEEE 802标准的局域网参考模型 IEEE 802参考模型包括了OSI/RM最低两层(物理层和数据链路层)的功能。OSI/RM的数据链路层功能,在局域网参考模型中被分成媒体访问控制MAC(Medium Access Control)和逻辑链路控制LLC(Logical Link Control)两个子层。由于局域网采用的媒体有多种,对应的媒体访问控制方法也有多种,为了使数据帧的传送独立于所采用的物理媒体和媒体访问控制方法,IEEE 802 标准特意把LLC 独立出来形成单独子层,使LLC子层与媒体无关,仅让MAC子层依赖于物理媒体和媒

实验四:以太网帧结构

北京理工大学珠海学院实验报告 ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY 班级:网络2班学号:120205021姓名:指导教师:高树风成绩实验题目:以太网帧结构实验时间:2013.11.22 第一部分、实验目的 掌握以太网的帧结构,理解以太网帧中各字段的含义和作用。 第二部分、实验环境 1.连网的Windows XP主机两台,PC1安装有科来网络分析系统,PC2安装IIS。 2.实验分组:两名同学一组,轮换进行实验。 第三部分、实验内容 用科来网络分析系统捕获并分析以太网的帧结构。 第四部分、实验步骤 1.在PC1上删除本机的ARP表项。如图: 2.先关闭防火墙,再在PC1上启动科来网络分析系统,准备开始捕获数据包,然后立刻访问

PC2的Web页面【利用实验三中建立的WWW服务器进行本实验】。 4.停止捕获。 5.分析捕获到的数据包。 (1)在捕获到的数据包中,找到每个数据包的数据帧,查看每个数据帧的首部各字段的内容并进行记录; (2)根据所学的内容和每个数据帧首部字段的MAC地址信息,判断数据帧的方向; (3)观察数据帧的大小,检查每个帧的大小是否符合协议要求。 第五部分、结论 通过次实验后,进一步掌握科来网络分析系统在网络分析中的作用和使用方法,理解并掌握了以太网帧结构、以太网帧中各字段的含义和作用,进一步了解并熟悉了科来网络分析系统的用法。 第六部分、思考 1.查看捕获到的数据帧,目的地址为PC2的数据帧中长度最小的是多大?查看这种帧的各个

域,查看先导域(前同步码)是否包括在记录的数据中?捕获到的数据帧从哪个字段开始,到哪个字段结束?是否包含帧校验序列?是否可以验证EthernetV2标准中规定的最小帧长为64字节? 答:目的地址为PC2的数据帧中长度最小的是64,捕获到的数据帧从目标MAC地址开始,到目标IP地址结束,没有帧校验序列,可以验证EthernetV2标准中规定的最小帧长为64字节。2.查找捕获的帧中长度最长的帧。确定这些帧中最长的帧是多少字节?为什么? 答:这些帧中最长的帧是64字节,帧携带的信息比较少! 3.找到捕获的数据帧中由PC1发出的ARP请求帧,辨认其目的地址域和源地址域,查看目的MAC地址是多少?用IPconfig -all命令查看PC2的MAC地址,看是否与该帧中的源地址一致?答:其目的地址域 6C:62:6D:82:0B:7D,源地址域6C:62:6D:82:0B:49. 目的MAC地址是6C:62:6D:82:0B:7D 4.对比封装ARP分组的帧和其他帧(封装IP分组的帧),它们的类型字段分别是多少?答:类型字段分别是ox0806和OX0800

以太网帧格式分析

实验报告 实验名称以太网帧格式分析 姓名学号实验日期 实验报告要求:1.实验目的 2.实验要求 3.实验环境 4.实验作业 5.问题及解决 6.思考问题 7.实验体会 【实验目的】 1.复习Wireshark抓包工具的使用及数据包分析方法。 2.通过分析以太网帧了解以太网数据包传输原理。 【实验要求】 用Wireshark1.4.9截包,分析数据包。 观察以太网帧,Ping同学的IP地址,得到自己和同学的mac地址。 观察以太网广播地址,观察ARP请求的帧中目标mac地址的格式。 用ping-l指定数据包长度,观察最小帧长和最大帧长。 观察封装IP和ARP的帧中的类型字段。 【实验环境】 用以太网交换机连接起来的windows 7操作系统的计算机,通过802.1x方式接入Internet。 【实验中出现问题及解决方法】 1.在使用命令行“ping -l 0 IP”观察最小帧长时抓到了长度为42字节的帧,与理论上最小帧长64字节相差甚远。通过询问教员和简单的分析,知道了缺少字节的原因是当Wireshark抓到这个ping请求包时,物理层还没有将填充(Trailer)字符加到数据段后面,也没有算出最后4字节的校验和序列,导致出现最小42字节的“半成品”帧。可以通过网卡的设置将这个过程提前。 2.在做ping同学主机的实验中,发现抓到的所有ping请求帧中IP数据部分的头校验和都是错误的。原本以为错误的原因与上一个问题有关,即校验和错误是因为物理层还没有将填充字符加到数据段后面。但是这个想法很快被证明是错误的,因为在观察最大帧长时,不需要填充字符的帧也有同样的错误。一个有趣的现象是,封装在更里层的ICMP数据包的校验和都是正确的。这就表明IP层的头校验和错误并没有影响正常通信。进一步观察发现,这些出错的头校验和的值都是0x0000,这显然不是偶然的错误。虽然目前还没有得到权威的答案,但是可以推测,可能是这一项校验实际上并没有被启用。作为中间层的IP头的意义是承上启下,而校验的工作在更需要的上层的IMCP包和下层MAC头中都有,因此没有必要多此一举。 【思考问题】 1.为什么可以ping到同宿舍(连接在同一个交换机上)的主机而ping不到隔壁宿舍的主机? 通常情况下,如果配置正确,设备都连接着同一个网络(互联网),而且没有防火墙等阻拦,就可以正常ping到同一网络中的任何主机。在第一次实验中,我们曾成功地ping到了https://www.360docs.net/doc/9218423556.html,的IP。 在ping其他宿舍的IP时需要通过宿舍的交换机将ping请求先转发给楼层交换机,再由楼层交换机转发给目标IP所在的宿舍交换机。分析无法ping到隔壁宿舍主机的原因,很可能是楼层交换机设置了禁止内部ping的防火墙,阻止了本楼层交换机地址段内的主机相互ping对方。而同宿舍之所以可以相互ping 到,是因为ping请求没有经过楼层交换机,直接由宿舍交换机转发给了目标IP主机。 2.什么是ARP攻击? 让我们继续分析4.1 ARP原理,A得到ARP应答后,将B的MAC地址放入本机缓存。但是本机MAC 缓存是有生存期的,生存期结束后,将再次重复上面的过程。(类似与我们所学的学习网桥)。 然而,ARP协议并不只在发送了ARP请求才接收ARP应答。当计算机接收到ARP应答数据包的时候,就会对本地的ARP缓存进行更新,将应答中的IP和MAC地址存储在ARP缓存中。 这时,我们假设局域网中的某台机器C冒充B向A发送一个自己伪造的ARP应答,即IP地址为B

实验12半导体材料层错位错的显示

实验12 半导体材料层错、位错的显示及照相 通常制造电子器件要求所采用的半导体材料是单晶体,这就要求材料的原子排列应严格的按照一定规律排列。但由于种种原因,实际的单晶中存在有某些缺陷,位错就是其中的一种。在硅单晶中,由于种种原因,特别是在高温下材料内应力使原子面间产生滑移,晶面局部产生范性形变,这种形变即形成位错,使得完整的晶体结构受到破坏。 在半导体器件工艺制造中,外延是一项重要的工艺。外延就是在单晶衬底上再长一层具有一定导电类型、电阻率,厚度的完整晶格结构的单晶层。在外延生长过程中,原子的排列仍然要按一定的顺序,但是由于种种原因,如样品表面机械损伤,表面沾污气体不纯等,使得外延层原子的排列发生了错排,这种原子层排列发生错乱的地方叫层错,它是一种面缺陷。 一、实验目的 1. 掌握半导体材料硅单晶片的位错的显示方法。 2. 掌握金相显微镜的使用方法并了解显微照像的一般过程并对结果进行分析。 *3.掌握半导体材料硅单晶片外延层的层错的显示方法。 *4.学会计算位错、层错密度以及观测外延层厚度的方法。 二、预习要求 1. 阅读实验讲义,理解实验原理。 2. 熟悉有关仪器的使用方法及注意事项。 三、实验仪器 数码摄影金相显微镜、计算机、打印机、具有位错、层错的样品、*外延硅片等。 四、基础知识 位错: 位错主要有刃位错和螺位错两种。所谓刃位错(也称棱位错),如图1所示,除了在“⊥”处有一条垂直于纸面的直线AD外,原子排列基本上是规则的,原子的位置排列错乱只发生在直线AD附近,我们就说在“⊥”处有一条垂直于纸面的刃位错。因为在图(1)中由ABCD 所围成的原子平面象一把刀砍入完整晶格,而原子位置的错乱就发生在这把刀的刃AD附近,故取名刃位错。 图2的晶格包含了螺位错。可以看出,除了在A 点垂直于晶体表面的直线AD附近的区外,原子的排列是规则的,因而在AD处有一条螺位错。为什么称为螺位错呢?如果在晶体表面任取一点B,使它绕直线AD沿原子面顺时针转动,并保持B点与AD直线的距离不

物理学史上的著名“理想实验”

物理学史上的著名“理想实验”

物理学史上的著名理想实验 在物理学发展的历史中,理想实验以其独特方式在物理学发展的许多关键时刻发挥了重要作用,直接或间接地导致了许多物理规律的发现和物理理论的建立。下面我们一起欣赏物理学史上的著名理想实验,感怀物理学家的睿智。 1伽利略的“理想斜面”实验 力与物体的运动的关系是力学的一个最基本的问题。亚里士多德认为:物体的运动是由于外力的作用,当外力的作用停止时,运动的物体就会静止,所以力是维持物体运动的原因。亚里士多德这一观点与人们的一些生活经验相一致,正是由于这样的原因,亚里士多德的观点易于被人们接受,以至于长期以来被人们奉为真理。 彻底推翻亚里士多德错误观点的是伽利略。伽利略凭借的有力武器不是数学推导,不是真实的实验,而是理想实验。伽利略设想:如图1在A点悬一单摆,拉至AB时放开,在忽略空气阻力的情况下,摆球会沿着弧线升至对面的C 处。如果在摆线经过的E或F处钉上小钉子,可以使摆球沿不同的弧线上升至同一水平高度G、H,由此得到单摆的等高性结论。 以单摆的等高性为基础,伽利略进一步设想,如图2中从A点释放一个光滑坚硬的小球,让它沿坚硬光滑的斜面AB下落。到达B点后,小球将以获得的速度沿对面的BC、BD或BE中的某一斜面上升至通过A点的水平面,比较斜面BC、BD和BE,倾角越来越小,斜面越来越长,即小球在斜面上走过的距离越来越远,运动的时间越来越长。当斜面的倾角为零而成为水平面BF时,物体由于不可能达到A点的高度而永远地运动下去。至此,伽利略得出结论:“任何速度一旦施加给一个运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变……”伽利略的结论从根本上否定了亚里士多德的“力是维持物体运动的原因”的错误论断,指出力与运动的正确关系是:力是改变物体运动状态的原因。 伽利略从单摆等高性的理想实验到理想斜面实验,忽略了空气阻力和摩擦力,而这些忽略在现实中都是无法真正实现的。在真实的实验中,人们可以用各种方法减小空气阻力和摩擦力,但永远也无法彻底消除它们,因而人们无法

相关文档
最新文档